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ABSTRACT 

Biomarker discovery studies that utilize NAPPA protein 

microarrays must identify spots on each array with significant 

protein binding.  One approach is to identify spots for which the 

signal extends out beyond the spot, which we refer to as the halo 

effect.  The identification of spots exhibiting the halo effect is a 

cumbersome process that requires humans to adjust the contrast 

and brightness of the image of the microarray and scan through 

2352 spots per image. The goal of our research is to create a set 

of attributes using pixel intensity data within the image that will 

accurately classify halo spots on the microarray in order to 

automate identification of halo spots, reduce time spent on 

classifications, and prevent user-to-user variability between 

classifications. This paper describes how we generated relevant 

attributes and used data mining techniques to create a model that 

would classify each spot on a protein microarray. With our 

approach we were able to classify halos with a recall, precision, 

and f-measure of .818, .655, and .727 respectively. 

Categories and Subject Descriptors 

H.2.8 [Database Management]: Database Application – data 

mining. 

I.4.0 [Image Processing and Computer Vision]: General – 

image processing software. 

I.5.2 [Pattern Recognition]: Design Methodology – classifier 

design and evaluation, feature evaluation and selection 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed for 

profit or commercial advantage and that copies bear this notice and the full citation on 

the first page. Copyrights for components of this work owned by others than ACM must 

be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to 

post on servers or to redistribute to lists, requires prior specific permission and/or a fee. 

Request permissions from permissions@acm.org.. 

KDD-DMH’13, August 11, 2013, Chicago, Illinois, USA. 

Copyright © 2013 ACM 978-1-4503-2174-7/13/08...$15.00. 

General Terms 

Algorithms, Measurement, Performance, Design, Reliability, 

Human Factors, Standardization. 

Keywords 

Halo, Microarray, NAPPA, Biomedical Image, Data Mining 

1. INTRODUCTION 
NAPPA- Nucleic Acid Programmable Protein Array is a method 

of producing protein microarrays that was designed to avoid the 

problems associated with using purified proteins for microarrays 

by instead printing cDNA and producing fresh proteins in situ on 

the microarrays [5]. NAPPA technology has been used to discover 

biomarkers for the early detection of breast cancer [2] and is 

currently being used to search for biomarkers in other diseases 

including type 1 diabetes, colon cancer, ovarian cancer, and 

tuberculosis.   

Traditional analysis of NAPPA data utilizes the sum of pixel 

intensity within each spot on the array as a measure of protein 

binding.  A promising alternative approach is to identify halo 

spots in which the pixel intensity is elevated in a region even 

outside of the spot itself. Using ELISA (Enzyme-linked 

Immunosorbent Assay) and LIPS (Luciferase Immuno-

Precipitation System) as two orthogonal methods to NAPPA, we 

have successfully confirmed that the halo effect of P53 spots 

indicate positive autoantibody responses in basal like breast 

cancer patients (data not shown). Currently, halo identification 

has been adopted as a complementary method for analyzing data 

generated from autoantibody biomarker screening as well as 

other studies utilizing NAPPA technology, such as protein post-

translational modifications and protein-protein interaction. 
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However, the time it takes for a user to evaluate a microarray 

image for halos ranges from 10-20 minutes per image. In order to 

automate halo classification and eliminate user-to-user 

variability, we developed a Java program that can automate this 

process.  The program incorporates the ImageJ API [1] to 

generate attributes and utilizes the Weka API [4] to learn a 

model based on these attributes that would be able to classify 

each of the spots on a microarray image. Spot types include 

halos, weak halos, comets, regular spots, and blank spots (see 

Figure 1 and 2). We show that through the use of our program we 

can significantly decrease the amount of time spent on manual 

classification of halos. It would take users 16 hours to make halo 

classifications on 100 images. Using our statistical attribute 

model, which is described in the methods section, 100 images 

can be classified in approximately 3 minutes. 

 

Figure 1. Image of comets, regular spots, and blank spots. 

The spot in the upper left corner is a blank. The spots in the 

middle column are all considered comets. All other spots are 

regular spots.  

2. METHODS 
The process by which our program classified spot types on 

microarrays can be broken down into three main parts: spot 

recognition and starter data generation using Array-Pro Analyzer 

(Media Cybernetics, Inc.), attribute generation using our 

program, and classification of spot types using data mining 

techniques. 

2.1 Spot Recognition and Generation of 

Startup Data 
In order to generate the attributes used to classify the spots, each 

image was manually loaded into Array-Pro. Using Array-Pro, the 

users generate a grid of 2352 circles, each circle encapsulating a 

spot in the microarray, except in the case where the circle was in 

a location where no binding occurred. After generating the grids, 

Array-Pro is capable of providing image data for each spot on the 

grid. For the purpose of this experiment, position (row:column), 

mean background intensity, and horizontal and vertical pixel 

location of the center of the grid circle were generated and saved 

to be used in the attribute generation portion.  

2.2 Attribute Generation 
The program that was written for this research is capable of 

generating two different sets of attributes: a statistical set and a 

pixel intensity set. 

2.2.1 Statistical Attribute Set 
This attribute set contains 33 relevant attributes corresponding to 

each spot on the microarray image. Each attribute (with the 

exception of the mean background intensity) is either a pixel’s 

distance from the center of the spot (this attribute will be 

referred to as radius), the intensity of a specific pixel, or a 

statistical computation using these two variables. The radius is 

not the standard physical metric that is used in everyday 

language, but rather a measure of how many pixels the pixel of 

interest is shifted vertically or horizontally from the location of 

the center pixel. For example, if the pixel of interest is located 

20 pixels up and 20 pixels right of the center pixel, the radius 

would be consider 20. Note that the pixels considered for 

attribute generation always had an equal shift vertically and 

horizontally, thus resulting in only four directions for analysis 

(see Figure 2). These directions were chosen in order to avoid 

quick intersection with neighboring spots. 

 

 Figure 2. Example of halo and the radial directions 

 

The attribute space was chosen based on the differences in pixel 

intensity transition in the regions just outside the grid circles of 

the spots for the different types of spots. Figures 3, 4, and 5 show 

changes in pixel intensities of the regions outside individual 

spots as the pixels move further away from the center. It was 

believed that creating an attribute set that would evaluate the 

strength and direction of the relationship between these two 

variables, along with some other values, would allow for the 

differentiation of the spot types. 

 
The following is a description of each attribute: 

Correlation- The value of the correlation attribute was obtained 

by computing Pearson's correlation of the radius of a pixel 

against its intensity. Beginning at a radius of 21, the pixel 

intensity was acquired for each radius up to 40 creating 20 

ordered pairs: (radius r, pixel intensity of pixel at radius r). The 

correlation coefficient was computed using these ordered pairs. 

Since there are four different radial directions, four sets of 20 

ordered pairs were generated, resulting in 4 correlation 

attributes: upper right, upper left, bottom right, and bottom left 

correlations. In addition, the mean of the upper correlations and 

the mean of all the correlations were computed and served as two 

additional attributes, resulting in a final total of six correlation 



related attributes. These attributes were chosen because it was 

believed that halo spots would have linearly decreasing pixel 

intensities as the pixels moved further away from the center of 

the spot while for other spot types this relation would have little 

correlation. 

Slope- Using the ordered pairs generated for the correlation 

attributes, the slopes of two lines of best-fit were acquired for 

each radial direction. The first slope was generated by computing 

the slope of the best fit line using ordered pairs: (radius r, pixel 

intensity at radius r) where r ranged between 21 and 30. The 

second slope was generated by computing the slope of the best fit 

line using ordered pairs: (radius r, pixel intensity at radius r) 

where r ranged between 31 and 40. For each pair of slopes, the 

ratio between the two was computed (note that a value of .0001 

was added to the slopes to account for the case in which the 

second slope was equal to 0). These three measures were 

computed for each of the considered directions resulting in 12 

slope related attributes. These attributes were chosen to 

distinguish comets from halos when correlation failed to do so. 

The difference between the two slopes of comets is predicted to 

be greater than those of other spots because the comets should 

show a drastic decrease in pixel intensity once the radius moves 

out of the comet strip. 

Cutoff Radius- Beginning at a radius of 0 (the center pixel), the 

pixel intensity of pixels were acquired until either the pixel 

intensity dropped below 1000, or the radius reached 40. If the 

pixel intensity dropped below 1000, the radius at which this 

occurred was recorded. 1000 was chosen as the stopping 

intensity because it was an intensity that would stop 

approximately at the edge of a normal spot for most images. If 

the radius reached 40 before the intensity dropped below 1000, 

then 40 was recorded. 40 was chosen as the maximum radius in 

order to prevent the search from traveling into another spot. The 

cutoff radius was recorded for each of the four considered 

directions of pixel shifts resulting in four attributes. In addition, 

the means and medians of the four direction’s cutoff radii were 

computed creating two additional attributes for a final total of six 

cutoff radius attributes. These attributes were chosen because it 

was believed that halos would have higher intensities outside the 

grid circle and thus would result in larger cutoff radii. 

Pixel Intensity- For each of the four considered directions, the 

pixel intensity of the pixel at a radius of 40 from the center of 

each spot was obtained and served as an attribute. Each of these 

values was also multiplied by a scaling factor described below. 

The pixel intensities and the scaled pixel intensities account for 

8 total attributes. These attributes were chosen for the same 

reason as the cutoff radius; halos should have higher pixel 

intensities outside the grid circle. 

Background Intensity- This attribute is the only value generated 

in Array-Pro that is used for the purpose of classification. It is 

computed by taking the mean pixel intensity of a two pixel thick 

ring around the grid circle of each spot. It accounts for one 

attribute of the statistical attribute set. Again, this attribute was 

chosen because halos should have higher pixel intensities outside 

the grid circle. 

Whenever pixel intensity was extracted from the image, its value 

was scaled by a factor of 247 divided by the median intensity of 

the image to adjust for overall intensity differences between the 

images. All slopes, correlations, and cutoff radii were determined 

using intensity values that were adjusted by the scaling factor. 

 

 

Figure 3. Plot of pixel intensities along radial direction for a 

regular spot. The plot shows a weak, positive relationship 

between the two variables. 

 

 

Figure 4. Plot of pixel intensities along radial direction for a 

spot with a weak halo. The plot shows a strong, negative 

relationship between the two variables. 

 

 

Figure 5. Plot of pixel intensities along radial direction for a 

spot demonstrating the comet effect. The plot shows a 

relatively strong, negative relationship between the two 

variables; however, the descent of the first ten pixels is much 

sharper than that of the weak halo. The pixel intensity value 

for the pixel located at radius of 20 is approximately 30800. 



2.2.2 Pixel Intensity Attribute Set 
This attribute set contains 4225 attributes, each representing a 

pixel intensity of a different location. The attributes were 

generated by taking a 65 pixel by 65 pixel box around the center 

of each grid circle and obtaining the pixel intensities for each 

pixel within the box. This was done for each spot on the 

microarray image. The dimensions of the box were chosen to 

contain regions both outside and inside each spot without cutting 

into other spots. The intensity values were scaled by the factor 

described in the previous section. 

2.3 Model Building and Classification 
In order to classify the spots on each microarray image, it was 

necessary to build a training data set and a test data set that 

would be used to generate a model and evaluate the performance 

of the model, respectively. 

2.3.1 Training and Test Data Sets 
A total of 88 images were available to train and test on. 23 of 

these images were randomly selected to be used for training data. 

Within each of these images, all (or almost all) of the halos and 

weak halos were classified by eye and added to the training data 

set.  Due to a heavily skewed class distribution, comets, regular 

spots, and blanks spots were arbitrarily classified by eye in 

quantities that would keep the class distribution of the training 

data set relatively even. Only 20 blanks were used because we 

were confident that the classifier would be able to handle this 

class even with small distributions. As there were two attribute 

sets, there were also two training data sets, each one 

corresponding to one of the attribute sets. The statistical attribute 

training set contained 493 spots in total: 22 blank spots, 142 

comets, 101 halos, 145 regular spots, and 83 weak halos. The 

pixel intensity attribute set contained 491 spots in total: 22 

blanks, 141 comets, 101 halos, 137 regular spots, and 90 weak 

halos. A few values from each set were removed in order to 

improve model performance. 

58 of the remaining images were used for the validation set. Just 

as in the training images, all (or almost all) of the halos and 

weak halos within the images were classified by eye and added 

to the test data set. For the purpose of this project, it was not 

necessary to classify any other type of spot specifically. All spots 

that were not classified as halos or weak halos were classified as 

non-halos. Again, a test data set was built for each of the 

attribute sets. Both sets contained 287 halos, 225 weak halos, 

and 140611 non-halos.  

7 images were neither used in the training nor test set as they 

were of poor quality. Poor quality images include those with 

unclear spot visibility and scattering of high intensity regions in 

the background of the slide. These images would also likely be 

excluded from traditional analysis of NAPPA array data. 

2.3.2 Model Building 
In order to build the model used for classification, several 

iterations of various Weka classifiers using five-fold cross-

validation were performed.  

The final model for the statistical training set was built using a 

cost sensitive RandomForest classifier [3] that increased the cost 

of classifying weak halos as comets by a factor of five, the cost of 

classifying comets as weak halos by a factor of ten and regular 

spots as weak halos by a factor of 20. The number of trees within 

the ensemble was 200 and 6 random attributes were compared at 

each split of the tree building process. 

The final model for the pixel intensity training set was built 

using a cost sensitive RandomForest classifier that increased the 

cost of classifying comets as weak halos and regular spots as 

weak halos by a factor of ten. The number of trees within the 

ensemble was 200 and 13 random attributes were compared at 

each split of the tree building process. Cost sensitive analysis 

was used in both cases in order to improve the precision when 

the models were applied to the validation set. 

2.3.3 Classification and Correction 
Using the Weka API that was incorporated into our program, we 

applied each of the models to their corresponding test data set. 

After the classification was completed, correctional post-

processing was performed in order to improve the results.  

For the statistical test set, three rules incorporated into our 

program were used to reclassify certain spots. The rules were 

performed in the following order: 

1. If the mean upper correlation value was less than -.9 and the 

spot was not classified as a halo or a weak halo, it would be 

reclassified as a weak halo. This correction was performed 

because more often than not, if a spot had a mean upper 

correlation value of less than -.9, then it was a halo or weak halo. 

We chose to reclassify them as weak halos because the model 

was better at predicting halos.  

2. If the spot was classified as a weak halo and had two or more 

comets located in a range of 7 spots below and above it, it would 

be reclassified as a comet. This correction was performed since 

halos and weak halos almost never appeared within a comet 

strip. 

3. If the mean upper correlation was greater than -.6 and the spot 

was classified as a weak halo, it would be reclassified as a 

regular spot. This correction was performed to increase the 

precision of our model since most weak halos had mean upper 

correlation values less than -.6 . 

For the pixel intensity set, since it was not classified using any 

correlation attributes, only the second correction could be 

performed. 

3. RESULTS 

3.1 Performance of Statistical Attribute 

Model 
Tables 1 and 2 show the results of the confusion matrix of the 

five-fold cross validation of the training data and the confusion 

matrix for the results of the classification and correction on the 

test set. Misclassifications of weak halos have the highest 

relative frequency in both validations. Precision and recall of the 

test validation were calculated based on correct classification of 

halos (both types) versus non-halos. For the cross-validation, 

Weka determined precision and recall by computing the 

weighted averages of these performance metrics for all classes. 

Precision loss in the test set validation is due to high frequency 

of misclassifications of non-halos as weak halos. The time it 

takes to generate the attributes and classify and correct the spots 

using this method is 1.65 seconds per image. Table 3 shows the 

performance statistics for both validations.  



Table 1. Confusion Matrix for 5-fold Cross Validation (Stats 

Set) 

Actual 

Class↓ 

Pred. 

Val.→ 

Blank Comet Halo Reg. Weak 

Blank 21 0 0 1 0 

Comet 0 132 0 8 2 

Halo 0 2 84 0 15 

Regular 1 8 0 136 0 

Weak Halo 0 15 5 3 60 

 

Table 2. Confusion Matrix for Test Results (Stats Set) 

Actual 

Class↓ 

Pred. 

Val.→ 

Halo Weak Halo Non-Halo 

Halo 230 41 16 

Weak Halo 9 139 77 

Non-Halo 26 195 140390 

 

 

Table 3. Performance Metrics of Statistical Model 

Model 

Eval. 

Recall or 

TPR 

FPR Precision F-

Measure 

Cross 

Validation 

.878 .04 .88 .877 

Test  

Validation 

.818 .0016 .655 .727 

 

3.2 Performance of Pixel Intensity Attribute 

Model 
Tables 4 and 5 show the results of the confusion matrix of the 

five-fold cross validation of the training data and the confusion 

matrix for the results of the classification and correction on the 

test set. As with the statistical attribute model, misclassifications 

of weak halos have the highest relative frequency in both 

validations. Precision loss in the test set validation is due to high 

frequency of both types of misclassifications of non-halos, though 

misclassifications as weak halos is still the higher of the two.  

The time it takes to generate the attributes and classify and 

correct the spots using this method is about 7 minutes per image. 

Table 6 shows the performance statistics for both validations. 

4. DISCUSSION 
Although cross-validation on the training data sets suggested that 

the pixel intensity model would be the superior of the two, 

evaluation of the two models’ performance on the test data sets 

shows that the statistical model outperforms the pixel intensity 

model on almost every level. While both models demonstrate 

relatively high recall, the precision of the pixel intensity model is 

much too low to serve the desired function, as reflected in its low  

Table 4. Confusion Matrix for 5-fold Cross Validation (Pixel 

Intensity Set) 

Actual 

Class↓ 

Pred. 

Val.→ 

Blank Comet Halo Reg. Weak 

Blank 21 0 0 1 0 

Comet 0 134 0 5 2 

Halo 0 3 89 0 9 

Regular 0 5 1 131 0 

Weak Halo 0 8 12 4 66 

 

Table 5. Confusion Matrix for Test Results (Pixel Intensity 

Set) 

Actual 

Class↓ 

Pred. 

Val.→ 

Halo Weak Halo Non-Halo 

Halo 246 23 18 

Weak Halo 19 149 57 

Non-Halo 177 771 139663 

 

Table 6. Performance Metrics of Pixel Intensity Model 

Model 

Eval. 

Recall or 

TPR 

FPR Precision F-

Measure 

Cross 

Validation 

.898 .033 .897 .896 

Test  

Validation 

.854 .007 .316 .461 

 

f-measure. On the other hand, the f-measure for the statistical 

model is acceptable given the task of classification amongst 

thousands of spots. Dividing the number of non-halos classified 

as halos by the number of images in the test set suggests that 

there will only be 4 spots examined unnecessarily per image.  

Furthermore, since it takes less than 2 seconds to generate the 

attributes and classify the spots, this method would save the 

users at least 10 minutes per image in time spent trying to find 

the halos and classify them themselves.  

Misclassification of weak halos as halos and vice versa is not of 

great concern because we anticipate that statistical analyses will 

be based on the presence or absence of a halo.  Misclassification 

of halos and weak halos as comets and vice versa is substantially 

more important.  However, as comets are technical artifacts, we 

anticipate that changes in NAPPA protocols will reduce the 

prevalence of comets on the arrays, which will in turn enable 

improved classification. 

5. CONCLUSION 
It can be concluded that the halo classification task can be 

successfully automated using our software with acceptable recall 

and precision using the statistical attributes. 



In the future, we look to improve the performance of the model 

specifically in the area of classifying weak halos. We believe that 

the difficulty that the model has in classifying weak halos can be 

explained by the similarities of the space surrounding weak halos 

with those of comets. The use of divergent field gradient 

response and inclusion of new attributes such as S/N ratio may 

be possible solutions for enhancing our process of halo detection. 

In addition, we would like to develop metrics that can quantify 

the size and intensity of each halo and include an evaluation of 

the inter-rater variability of our halo analysts. 
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