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ABSTRACT

Advances in genomic technologies have allowed vast amounts of
gene expression data to be collected. Protein functional annotation
and biological module discovery that are based on a single gene
expression data suffers from spurious coexpression. Recent work
have focused on integrating multiple independent gene expression
data sets. In this paper, we propose a two-step approach for min-
ing maximally frequent collection of highly connected modules
from coexpression graphs. We first mine maximal frequent edge-
sets and then extract highly connected subgraphs from the edge-
induced subgraphs. Experimental results on the collection of mod-
ules mined from 52 Human gene expression data sets show that
coexpression links that occur together in a significant number of
experiments have a modular topological structure. Moreover, GO
enrichment analysis shows that the proposed approach discovers
biologically significant frequent collections of modules.

1. INTRODUCTION

In gene expression analysis, clustering genes that show high ex-
pression profile similarity has been proposed to predict the func-
tions of unknown genes [3]. The effectiveness of the clustering
approach is limited by the fact that some genes with similar ex-
pression profiles may not have the same function and the similarity
in profiles is attributed to the simultaneous perturbation of multiple
biological pathways [5].

Recent research have focused on integrating multiple gene ex-
pression datasets and discovering sets of genes that show similar
expression profiles in a significant number of experiments [9]. Mul-
tiple gene expression data sets are first converted to graph struc-
tures. Graph mining-based approaches have recently been employed
to mine expression patterns from multiple cross-platform microar-
ray data. Each microarray data is converted to a coexpression graph
in which nodes represent genes, and there is an edge (link) between
two genes if the expression profiles of the two genes are highly
correlated. Since nodes in coexpression graphs have unique labels
representing genes (these graphs are referred to as relation graphs),
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several efficient subgraph mining algorithms have been developed
for this type of graphs [8, 13, 11, 7].

The MULE algorithm proposed an efficient enumeration approach
for mining frequent subgraphs from a set of graphs representing the
protein-protein interaction networks for several species [8]. Since
the number of frequent subgraphs can be very large, several al-
gorithms have been proposed for mining a summarized set of the
frequent patterns by incorporating frequency and connectivity con-
straints. Yan et al. [13] proposed an algorithm for mining closed
subgraphs with connectivity constraints from coexpression graphs.
The Crochet algorithm [11] mines cross-all-graphs quasi-cliques,
that are subgraphs which meet a density constraint and appear in
all the graphs. Since the occurrence requirement of the reported
cross-all-graphs quasi-clique is too strict in the Crochet algorithm,
the Crochet™ algorithm [7] for mining frequent cross-graph quasi-
cliques was proposed by the same researchers.

Pattern enumeration algorithms do not scale well for large graph
data sets. Therefore, researchers have focused on discovering mod-
ules from an aggregate graph. Lee et al. [9] builds a summary graph
that has edges that occur in at least a number of graphs. Rahman
et al. proposes a clustering algorithm which works on the aver-
age molecular interaction hypergraph [12]. The MCODE algorithm
[1] for network clustering is employed on the aggregate summary
graph to extract highly connected genes (modules). Experiments
showed that coexpression patterns mined from multiple indepen-
dent microarray data sets have higher chance of being functionally
relevant and thus improve gene function predictions [9]. Cluster-
ing the aggregate graph results in false positive modules since the
links between the edges in a given module can actually be scattered
across the graphs but appear together in the aggregate graph.

To overcome the false positive modules, the CODENSE [5] al-
gorithm proposed a two-step approach for mining coherent dense
subgraphs. First, highly-connected subgraph from the aggregate
graph are discovered. The second phase is to cluster the edges
in the extracted subgraphs. Similarity between the occurrence list
of the edges is used for the second clustering phase. It can occur
that some subnetworks extracted in the first step are false positive
submodules. Starting with a false positive module and based on
the similarity threshold, the second phase can split the module into
smaller modules that are themselves false positive.

Another approach for integrating multiple coexpression graphs
that reverse the order of the two steps in CODENSE was proposed
in [6]. The approach builds a summary graph and the associated bi-
nary matrix. Rows in the binary matrix correspond to edges of the
summary graph, columns correspond to the graphs, and the value
of each entry corresponds to the presence/absence of the edge in
the corresponding graph. A simulated annealing-based bicluster-
ing approach is applied on the binary matrix. A summarized set



of the frequent edgesets are used as seeds for the simulated an-
nealing biclustering algorithm. Once the biclusters are discovered,
connected components are extracted from the subgraph induced by
the set of edges in each bicluster. These connected components are
then used for context-specific functional annotation. Mining the
set of frequent edge sets to be summarized and used as seeds for
the clustering algorithm can be a challenging task. This is espe-
cially significant since the number of coexpression edges is large.
Second, when searching for biological complexes, connected com-
ponents are not dense enough to be considered as complexes.

In this work, we propose a two-step approach for mining collection
of frequent modules. The approach first mines the set of maximal
frequent edgesets. Collections of frequent modules (cliques and
percolated k-cliques) are extracted from the subgraph induced by
the edgeset.

To summarize, we have made the following contributions in this
work:

1. We propose an algorithm for mining maximal frequent col-
lections of k-cliques and percolated k-cliques from graph
representations of multiple gene expression data sets.

2. Experimental results on Human gene expression data sets
show that the extracted module sets are biologically signifi-
cant.

2. EDGE-ATTRIBUTED GRAPH

We use the edge-attributed graph as a data structure for repre-
senting multiple coexpression graphs. An edge-attributed graph
can appear naturally when the relationship between the entities in
the network can have attribute values. Moreover, edge-attributed
graphs can model complex relations in multi-relational, heteroge-
neous networks. Figure 1 shows an illustrative example in which a
multi-relation graph is represented as an edge-attributed summary
graph. The set of edges in the summary graph in Figure 1(b) is the
union of all the sets of edges in the six relation graphs shown in
Figure 1(a) . Edges that appear infrequently can be removed from
the summary graph. The attribute matrix has six dimensions, each
of which represents a relation graph.

Definition 1. Given a multi-layered graph G ={G|,G»,...,G,},

such that graph G; = (V,E;) for all 1 <i < n, the summary graph
I

1
of Gis Gu=(V,E), where E = |J E;.
i=1

Definition 2. An edge-attributed graph G = (V,E, L), consists
of a set of vertices ¥ = {vy,vy, - ,v,}, a set of edges £ = {e],
e, em}, EC YV x Y, and a function £ : £ — R? that assigns
each edge a d-dimensional attribute profile. Alternatively, an edge-
attributed graph can be defined as G = (G, X), where G = (V,E) is

aregular graph and X € RIEI*d js the edge attribute matrix.

In this work, we focus our attention to binary attribute profiles
and thus X is a binary edge attribute matrix. However, the approach
is seamlessly applicable to weighted graphs.

Definition 3. A subgraph G' (V' E’) of G is said to be an induced
subgraph by set of vertices V', if for x,y € V’, there is an edge
between x and y in G’ if and only if (x,y) € E. The subgraph G’ is
said to be induced from G by the vertex set V/ and is denoted by
G[V'].

Definition 4. For a set of edges E’, the edge-induced subgraph
G' (V' E’), denoted as G|E'], is a subgraph of G whose edge set
is E' and the vertex set is all the vertices that are endpoints of the
edgesin E'.

2.1 Mining Maximal Frequent Module Sets

For a set of edges S C E, let A(S) be the set of graph identi-
fiers in which all the edges in S appear. More formally, A(S) =
{J1,J25--, jx} such that S C E(G;),Y i € {j1,J2,--,Jx}- In the
edge-attributed graphs, A(S) is the set of common attributes for
all the edges in S. Next, we define frequent edgeset and maximal
frequent edgeset.

Definition 5. Frequent edgeset: A set of edges S is frequent if
the number of graphs in which the edges appear is at least a user-
specific threshold, i.e., |A(S)| >= minsup.

Definition 6. Maximal Frequent Edgeset: A set of edges S is
maximal frequent if S is a frequent edgeset and there is no super-
set of S that is frequent. More formally, a set of edges S is max-
imal frequent if |A(S)| >= minsup, and 3S’ such that &’ O S, and
A(S") >= minsup.

Next, we generalize frequent and maximal frequent edgesets to
frequent and maximal frequent module sets.

Definition 7. FMS: Frequent Module Set: A Frequent Module
Set (FMS) in graph G = (V,E) is a collection of modules M =
{my,...,mp}, mi = G(V(m;),E(m;)), such that the following three
conditions hold:

1. M{;req: The edgeset E (M) is frequent, i.e., E(M) is observed
in at least oo graphs. Due to the down-closure property of
frequency, Vm;, the edgeset E (m;) is frequent.

2. Mé"iz;: The module set has at least B modules, each of which
is of size at least Y.

Definition 8. MFMS: Maximal Frequent Module Set: A Maxi-
mal Frequent Module Set (MFMS) in graph G = (V,E) is a collec-

tion of modules My = {m1,...,my,} such that, AM> = {my1,...,my},

with the following property:
e For all my; € M, szj € M, such that my; C my;.

Given a multi-layered graph G, minimum support o, minimum
number of modules in a module set B, and minimum module size v,
the Maximal Frequent Module Set problem is to mine all MFMSs.

If we use the clique property to define a module, our problem
becomes mining Maximal Frequent Clique Set. Next, we shall
present how mining maximal frequent edgeset will lead to mining
all Maximal Frequent Clique Set. We follow an approach that is
similar in spirit to the approach presented in Mougel et al. [10] for
mining sets of cliques sharing vertex properties.

Let E(M) be the set of edges in the Maximal Frequent Clique Set
and let £(M) be a set of maximal frequent edge set. Note that there
can be many sets of maximal frequent edgesets that are supersets
of E(M). The following theorem holds:

Theorem 1. A Maximal Frequent Module Set (MFMS) M is the
collection of all maximal cliques in the edge-induced subgraph
G[E(M))] of G induced by £(M).

PROOF. Let S be the collection of maximal cliques in the edge-
induced subgraph G[E(M)] and suppose S # M. Let T € S be a
maximal clique such that T ¢ M, and let C € M be a maximal
clique. There are two cases:
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Figure 1: An example of representing multiple graphs as an edge-attributed graph.

1. If T D C, then we replace C with T in M, and obtain MEMS
M' =M —{C}U{T}. Since T D C, that follows M’ D M,
which contradicts the maximality condition of MFMS.

2. If T p C, then we add maximal clique 7' to MFMS M and
obtain a new MFMS M’ = M U{T}. This follows that M’ D
M, which contradicts the maximality condition of MFMS.

O

The theorem enables us to mine the set of MFMSs by first mining
the set of maximal frequent edgesets.

3. ALGORITHM

The proposed algorithm has two main phases. First, we mine the
set of maximal frequent edge sets.

For a given support threshold, let, M, be the set of maximal
frequent edgesets:

M: {P17P27V3>"' 7P‘M|}

such that every P; € M is a maximal frequent edgeset.

Note that there is no connectivity constraints in the definition of
a maximal edgeset pattern. Thus, the subgraph G’ induced by the
edges of a pattern P; can be disconnected; this subgraph is denoted
as G[P;]. The highly connected subgraphs (modules) of the edge-
induced subgraph can be written as:

G3C ={CGPy,...,CGPy}

where n; is the number of modules in the edge-induced subgraph,
G[P;]. Due to the anti-monotonicity property of the frequency con-
straint, each module, CGP;j, is frequent.

The MFMS algorithm is described in Algorithm 2. The algo-
rithm first constructs the edge attribute matrix from summary graph.
Then it biclusters the edge attribute matrix using GenMax algo-
rithm by Gouda and Zaki [4], and creates maximal frequent edgeset
M . For each maximal cohesive pattern P; € M, the algorithm finds
the highly connected subgraph set GPI-CC from the edge-induced
subgraph G[P,]. Finally, each highly connected component set GPEC
is added to the maximal frequent module set My. Because two
maximal frequent edgesets can generate the same maximal module
set, we check for redundancy when we add GPI-CC to M.

In our experiments, we use k-cliques and percolated k-cliques as
the definition of highly connected subgraphs. A k-clique percolated
component is a maximal chain of connected k-cliques, where two

Algorithm 1: MFMS: Mining Maximal Frequent Module Set
Input:
G ={G1,G,...,Gy}; Gi = (V,E;), V1 < i < n: Multi-layered Graph
o support threshold
B: minimum number of modules in a module set
Y: minimum size of module
Output:
My : Maximal Frequent Module Set

I.  My=0 >MFMS

2. Gs = (V,Es) = getSummaryGraph(G)

3. X = generateEdgeAttributedMatrix (Gs)

4. M ={P,Pp, ’1)\9\4\} = GenMax (X,0) > Maximal frequent edgesets
5. for each P, € M :

6. GP; = Gs[P] > Edge-induced subgraphs

8. GPY€ = {CGPy,...,CGP,,;} > Highly connected modules

9. Mgr = M:}r U {GPiCC}

12. end for

13. return My

Figure 2: Mining Maximal Cohesive Subgraphs

k-cliques are considered connected if they share k£ — 1 nodes [2].
Moreover, throughout the experiments, we use § = 1 which allows
the module set to have at least 1 module.

4. EXPERIMENTS

To assess the effectiveness of the proposed method in extracting
collections of highly connected subgraphs, we performed an exper-
imental evaluation of the proposed method using multiple human
gene expression data sets.

4.1 Data Set

We selected the Affymetrix microarray data sets from the data
set used in [6]. In the original data set, there were a total of 65 data
sets, 52 of which are Affymetrix microarray data sets, and the other
13 data sets are cDNA expression data sets. There is a high overlap
between the genes in the Affymetrix microarray data. However,
the cDNA data adds another 3397 new genes to the data sets and
adding these 13 datasets will create a sparse data in which 3397
genes appear only in 13 out of the 65 datasets.

Therefore, we construct our datasets from the 52 Affymetrix mi-
croarray datasets only. Each microarray data set is converted to a



Table 1: Topological analysis of the maximal frequent edgesets and the collection of k-cliques. Only maximal edgesets of size at
least 25 are used. In the table, 0 represents the number of minimum number of graphs in which the edgeset occurs, or support
threshold; M is the number of maximal frequent edgesets with at least 25 edges; V and E are the average numbers of vertices and
edges, respectively, in the edge-induced subgraphs; G is the average density of the edge-induced subgraphs of the reported maximal
frequent edgesets. CC is the average number of connected components in the edge-induced subgraphs; RE is the average ratio for
all maximal frequent edgesets; M’ is the number of edgesets that have at least one k-clique; KC is the average number of cliques
in the edge-induced subgraphs; KRE is the ratio of the edges present in the collection of cliques to the total number of edges in the
summary graph between the vertices in the edgeset.

Maximal Edgesets

Components 4-cliques 5-cliques

0] M 1% E c cc RE M KC | KRE | M’ KC | KRE

8 | 22885 | 27.8 | 354 | 0.11 | 6.37 0.30 17390 | 3.80 | 0.17 | 8140 | 2.83 | 0.20
9 | 7246 | 239 | 33.4 | 0.13 | 5.32 0.37 6248 | 3.67 | 0.21 | 3242 | 2.49 | 0.23
10 | 2137 | 21.2 | 31.2 | 0.16 | 4.62 0.41 1951 | 3.52 | 0.25 | 1094 | 292 | 0.26

11 530 19.2 | 293 | 0.18 | 4.24 0.45 500 | 3.42 | 028 | 297 | 2.21 | 0.29
12 96 18.1 | 27.7 | 0.20 | 4.17 0.49 91 331 | 032 57 | 2.14 | 0.38
13 9 16.7 | 264 | 023 | 4.0 0.54 9 3.1 | 036 7 2.14 | 0.36

coexpression graph in which nodes represent genes and a link be-
tween two genes indicates that Pearson’s correlation between the
two genes’ expression is significant.

From the multiple coexpression graphs, we constructed the sum-
mary graph and the associated edge attribute matrix. The number
of all unique edges that appear in any of the 52 graphs is very large
(49,817,037). Therefore, we prune the edges that occur in a small
number of graphs since these edges will not be part of any maxi-
mal frequent edgeset if the support threshold is high. For example,
when we prune edges that occur in less than 3 graphs, we get a
summary graph of 10,951,387 edges and 12490 nodes. When we
further prune edges that occur in less than 7 graph to construct the
edge-attributed graph, we get a graph with 308162 edges and 9784
nodes. This is the edge-attributed graph that we use throughout the
experiments.

4.2 Structural topology analysis of MFMS
4.2.1 Collections of K-Cliques

Table 1 shows the topological analysis of the reported patterns
for varying frequency thresholds: o indicates the number of mini-
mum number of graphs in which the edgeset occurs; M is the num-
ber of maximal frequent edgesets with at least 25 edges; V and
E are the average numbers of vertices and edges, respectively, in
the edge-induced subgraphs; G is the average density of the edge-
induced subgraphs of the reported maximal frequent edgesets; and
CC is the average number of connected components in the edge-
induced subgraphs. For each edgeset, we compute the ratio of
the number of edges in the maximal frequent edgeset to the total
number of edges in the summary graph between the vertices in the
edgeset. In other words, the ratio is of the number edges in the
edge-induced subgraph (same as the number of edges in the edge-
set) to the edges in the induced subgraph. RE is the average ratio
for all maximal frequent edgesets. It is clear that for low support
constraint, o, we get a much larger number of maximal frequent
edgesets. Moreover, the edgesets with low support have several
components and the ratio of edges in the edgeset to the total num-
ber of edges between the same set of nodes is low (0.30 for o = 8).
This is not surprising since among the same set of genes, there are
many coexpression edges that exist in the other graphs. The actual

ratio is in fact much less since the edge-attributed graph contains
only edges that appear in at least 7 coexpression graphs. For higher
support values, the average number of connected components de-
creases, which indicates that edges that occur together in a large
number of graphs are more likely to be connected.

The next set of topological properties are for the extracted MFMSs.
M’ is the number of edgesets that have at least one k-clique. KC
is the average number of cliques in the edge-induced subgraphs.
Since not all the edges reported in an edge set belong to k-cliques,
and we calculate the ratio of the edges present in the collection of
cliques to the total number of edges in the summary graph between
the vertices in the edgeset. KRE is the average of these ratios. The
percentage of edgesets (M’ /M) with at least one k-clique increases
for higher support for both k =4 and k = 5. Moreover, for low sup-
port thresholds (8,9, 10, 11), more than half of the edgesets do not
have any clique of size 5. We observed that in most of the edge-
induced subgraphs, there exists a large highly-connected compo-
nent that dominates the subgraph.

Figure 3 shows an example of a subgraph that is induced by the
set of edges in a maximal frequent edgeset. The occurrence of the
edges, of the maximal frequent edgeset, in all the graphs is shown
in (a). These edges, and thus the corresponding edge-induce sub-
graph, occur in 10 graphs out of the 52 graphs. Notice that there
are many isolated edges. The collection of six 4-cliques is shown
in 3(c).

4.2.2 Collections of Percolated k-cliques

Collections of cliques can be too restrictive. Moreover, collec-
tions of cliques do not translate to collections of biological mod-
ules as many overlapping cliques can belong to the same module.
Therefore, we adopt the definition of percolated k-clique which al-
lows for overlapping cliques.

Table 2 shows the topological analysis of the patterns which are
composed of k-percolated cliques for varying frequency thresholds.
Maximal edgeset M is the same as in k-clique analysis, as this is
the initial module set. As k increases, the number of percolated
k-cliques, represented as M’ in the table, decreases. KPC is the
average number of k-percolated cliques in the maximal frequent
edgesets. Notice that KPC decreases as k or a increases.




Table 2: Topological analysis of the the maximal frequent edgesets and the percolated k-cliques. Only maximal edgesets of size at
least 25 are used. In addition to parameters described in Table 1, KPC represents the average number of k-percolated cliques in the
maximal frequent edgesets.

Maximal Edgesets Components Percolated 3-cliques Percolated 4-cliques Percolated 5-cliques

o M 1% E G cc RE M KPC | KRE M KPC | KRE | M’ | KPC | KRE

8 | 22885 | 27.8 | 354 | 0.11 | 6.37 0.30 22705 | 1.90 | 0.21 | 17388 | 1.16 | 0.18 | 8140 | 1.07 | 0.21
9 | 7246 | 239 | 33.4 | 0.13 | 5.32 0.37 7241 | 1.78 | 0.28 | 6246 | 1.13 | 0.23 | 3242 | 1.06 | 0.25
10 | 2137 | 21.2 | 31.2 | 0.16 | 4.62 0.41 2137 | 1.65 | 033 | 1951 1.09 | 0.26 | 1094 | 1.05 | 0.28

11 530 19.2 | 293 | 0.18 | 4.24 0.45 530 1.57 | 0.38 500 1.06 | 030 | 297 | 1.06 | 0.31
12 96 18.1 | 27.7 |1 0.20 | 4.17 0.49 96 1.49 | 0.42 91 1.05 | 0.34 57 1.11 | 0.35
13 9 16.7 | 26.4 | 023 | 4.0 0.54 9 1.3 | 047 9 1 0.38 7 1.14 | 0.38
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Figure 3: An example of a coexpression subgraph induced by a maximal frequent edgeset and the collection of cliques. In the
attribute matrix, columns (graphs) have been reordered so that the graphs in which the edgeset appears are to the left. Genes are
labeled by their Entrez Gene identifiers.

4.3 Gene Ontology enrichment analysis

To assess the biological significance of the reported maximal
module sets, we computed the percentage of the collections of mod-
ules which are enriched with at least one GO term. For GO term
enrichment, we used the high-throughput GoMiner tool [14] with
FDR-corrected p-values of 0.05. Table 3 shows the percentage of
modules (ER) that are enriched with at least one GO term. We
only analyze the GO enrichment for collections of modules which
have complete gene symbol mapping, and that is why the number
of collections in Table 3 is much less than the numbers in Table
1. The average number of genes (V) in the collections of modules
increases as the support threshold decreases. The results also in-
dicate that the the ratio of GO-enriched collections (biologically
significant) is higher for collections with high support (frequency).

Table 3: GO enrichment analysis of the collections of k-cliques
discovered. Only collections of k-cliques with complete gene
name mapping are used. ER represents percentage of modules
that are enriched with at least one GO term.

4-Cliques 5-Cliques

o | M V | ER%) | M | V | ER(%)

9 | 1209 | 7.4 93 370 | 7.4 97
10 | 257 | 6.7 94 64 | 6.6 98

For support o0 = 9, we have 1209 and 370 collections of 4-cliques
and 5-cliques, respectively. Among the 1209 collections of 4-cliques,
there are 234 collections that have only 4 genes which means each 11 30 6 97 6 |58 100
has only one 4-clique. There are 228 collections that have more

than 10 genes, with the largest having 30 genes, which indicates

that the collections have many cliques, possibly overlapping. Fig-

ure 4 shows a collection of 4-cliques with 30 genes, each of which

has at least 3 coexpression links. The genes in this collection are




Figure 4: An example of a collection of 4-cliques with 30 genes.

enriched with 111 GO terms.

For support oo = 11, we have 30 collections of modules, 29 (97%)
of which are enriched with at least one GO term. There are 81
GO terms that are enriched in these 30 collections. Among these
81 GO terms, 25 are cell related. Figure 5 shows the top 20 GO
terms that are enriched in the largest number of collections of 4-
cliques; dark color indicates that the corresponding GO term is en-
riched in the module set. Interestingly, the top 4 GO terms are
related to the mitotic phase of the cell cycle: GO:0000279 (M
phase), GO:0000278 (mitotic cell cycle), GO:0007067 (mitosis),
and GO:0000087 (M phase of mitotic cell cycle). Other GO terms
that are enriched in these module sets include biological processes
such as GO:0006260 (DNA replication), GO:0045786 (negative
regulation of cell cycle) and GO:0051301 (cell division).

Running Time and Scalability: Mining the set of maximal fre-
quent edgesets dominates the running time, especially for low sup-
port thresholds. For support o = 8, the first step took 1857 seconds;
for a0 =9, it took 357 seconds. Extracting the collection of highly
connected modules from the induced subgraph for each maximal
frequent edgeset took much less time. The reason behind this can
be attributed to the small size of the edge-induced subgraphs; the
average number of vertices is 27.8 for the collection of modules
mined with support o« = 8. Moreover, we only extract collections
of modules from large edgesets (at least 25 edges). Theoretically, in
the first step of the algorithm, if there are £ microarray experiments
with n nodes each, generating the summary graph takes O(nzk)
time. In the second step, the GenMax algorithm finds the maximal
frequent edgesets M, which can take O(2/Fs | ) time in the worst case,
but this time is reduced in practice with pruning techniques used in
the GenMax algorithm. In the third step of the algorithm, for each
maximal frequent edgeset, finding maximal cliques is exponential
in the number of edges, so the third step takes 0(2‘5‘*“) time, where
Ej is the edgeset of the summary graph. Overall, the MFEMS algo-
rithm is exponential in the number of edges of the summary graph.

5. CONCLUSIONS

We have proposed a two-step algorithm for mining collections
of highly connected subnetworks from coexpression graphs repre-
senting multiple gene expression data sets. The proposed approach
discovers collections of highly connected modules that are present
in at least a number of graphs. We observed there are module struc-
tures in the subgraphs induced by the set of edges that appear to-
gether in the same set of graphs. This is interesting considering that
connectivity was never used to mine these sets of edges. The occur-
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Figure 5: The top 20 GO terms that are enriched in the 30
collections of modules.

rence of the same set of modules in multiple coexpression graphs
alleviates the problems associated with biological inference based
on a single gene expression data. We have performed GO enrich-
ment analysis to assess the biological significance of the reported
collections of modules. Experimental results on the collections of
modules mined from 52 Human gene expression data set show that
proposed approach discovers biologically significant patterns.
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