A Fast and Scalable Clustering-based Approach for
Constructing Reliable Radiation Hybrid Maps

Raed I. Seetan
Department of Computer
Science
North Dakota State University
Fargo, ND, USA
raed.seetan@ndsu.edu

Ajay Kumar
Department of Plant Sciences
North Dakota State University

Fargo, ND, USA
ajay.kumar.2@ndsu.edu

ABSTRACT

The process of mapping markers from radiation hybrid map-
ping (RHM) experiments is equivalent to the traveling sales-
man problem and, thereby, has combinatorial complexity.
As an additional problem, experiments typically result in
some unreliable markers that reduce the overall quality of
the map. We propose a clustering approach for addressing
both problems efficiently by eliminating unreliable markers
without the need for mapping the complete set of markers.
Traditional approaches for eliminating markers use resam-
pling of the full data set, which has an even higher com-
putational complexity than the original mapping problem.
In contrast, the proposed approach uses a divide and con-
quer strategy to construct framework maps based on clusters
that exclude unreliable markers. Clusters are ordered using
parallel processing and are then combined to form the com-
plete map. Using an RHM data set of the human genome, we
compare the framework maps from our proposed approaches
with published physical maps and with the Carthagene tool.
Overall, our approach has a very low computational com-
plexity and produces solid framework maps with good chro-
mosome coverage and high agreement with the physical map
marker order.

Keywords

Framework mapping, Radiation Hybrid Mapping, Cluster-
ing, Bioinformatics

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

BIOKDD’13 Chicago, IL, USA.

Copyright 2013 ACM 978-1-4503-2327-7 ...$15.00.

Anne M. Denton
Department of Computer
Science
North Dakota State University
Fargo, ND, USA
anne.denton@ndsu.edu

M. Javed Igbal
Department of Plant Sciences
North Dakota State University

Fargo, ND, USA
muhammad.igbal@ndsu.edu s.kianian@ndsu.edu

Omar Al-Azzam
Math, Science and Technology
Department
University of Minnesota
Crookston, MN, USA
oalazzam@crk.umn.edu

Shahryar F. Kianian
Department of Plant Sciences
North Dakota State University

Fargo, ND, USA

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Clustering;
H.2.8 [Database Applications]: Data mining

1. INTRODUCTION

Genome mapping [1] is important for finding the order of
markers within chromosomes. Map information can also be
used in genome sequencing projects [2]. Radiation Hybrid
mapping (RHM) [3] is a mapping technique, in which dele-
tions in chromosomes are created using radiation. Markers
can be any simple short unique fragment of deoxyribonu-
cleic acid (DNA) sequence, that can be amplified and de-
tected using the polymerase chain reaction (PCR). Pres-
ence or absence of a marker in each individual organism in
the mapping population can be viewed as an attribute of
that marker. Physical distances between markers can be
calculated on that basis. The mapping process is largely
equivalent to the traveling salesman problem of finding the
shortest path among markers. The computational complex-
ity is correspondingly high, since for n markers, there are
n!/2 marker orders.

Framework maps consider the subset of most useful mark-
ers that can be ordered with high confidence. Traditional
approaches for building framework maps depend mainly on
resampling analysis [4] to iteratively filter out markers that
cannot be mapped constantly [5, 6]. Such approaches require
repeating the already computationally expensive mapping
task for each resampled data set. An alternative approach
is presented in [7], using an incremental insertion procedure
to add one marker at a time to the current framework. How-
ever, the number of markers in the final map is too small and
may not guarantee full coverage of the whole chromosome.
The procedure extends the current map from both sides un-
til a stopping criterion is satisfied, which may happen before
coverage of the chromosome is achieved.

To overcome these problems we propose a fast approach
to constructing solid framework maps with good coverage
for a large number of markers. The idea of the proposed ap-
proach is to group markers based on their LOD (logarithms
of odds -base 10) scores. The LOD score [8] is a widely used

measure of the likelihood that two markers are linked. The
grouping process is computationally fast and eliminates un-
reliable markers, which would otherwise reduce the quality
of the generated maps [9].

Two types of unreliable markers can be distinguished: 1)
Some markers are far apart from all other markers. These
markers fall into singleton groups that are filtered out as
they do not have linkage with other markers in the map.
2) Another scenario is that markers are linked with many
other markers and may be mapped in different positions.
The grouping helps associate these markers with their most
highly linked neighbors. The process ignores similarities
to other markers which could otherwise result in unstable
maps. Figure 1 shows an example of markers that are far
apart from each other and still have connections that could
result in instabilities of the final map. Problematic con-
nections are {(M1, M5)(M1, M6)(M1, M7)(M2, M5)(M2,
M6)(M2, M7)(M3, M6)(M3, M7)(M4, MT7)}.

Chlslter B Chlstler A

hit M2 M3 M4 s M6

luster B

M3
M4

M5
M6
M7

luster A

1

c

Figure 1: Neighborhood LOD score matrix for two
clusters of markers, Cluster B (M1, M2, M3 and
M4) and Cluster A (M5, M6 and MT).

The proposed approach builds framework maps by first
dividing the markers into several linkage groups and then
building a framework for each linkage group. As a second
step, we concatenate the constructed framework maps of
all groups to form the whole chromosome framework. A
polishing step is used to create the final framework map.

The remainder of this paper is organized as follows: Sec-
tion 2 presents the related work in the area of constructing
framework maps. In Section 3 our proposed approach is in-
troduced in detail. Section 4 presents the experimental eval-
uation of the proposed approach, and Section 5 concludes
the paper.

2. RELATED WORK

Conventional approaches for building skeleton maps by fil-
tering out unreliable markers [5, 6] depend mainly on resam-
pling analysis [4]. Briefly, the process is done in three iter-
ative steps: Resampling, mapping, and removing unreliable
markers. A skeleton map from only the reliable markers is
constructed after filtering out unreliable markers. Applying
the mapping step to every resampled population is computa-
tionally expensive and scales exponentially with the number
of markers to be mapped.

Several software packages provide options for fast alterna-
tives for constructing framework maps [7, 10, 11]. RHMAP-
PER [10] is one of the commonly used packages. This pack-

age builds the framework by searching for all available strongly

ordered triples of markers and then combines overlaps be-
tween these triples into a larger framework. The process of

finding the triples is expensive for large data sets of markers.

Multimap [11] is another package to build framework maps
by initially defining a solid pair of markers then iteratively
adding one marker at a time to the initial framework, which
may result in incomplete coverage of the chromosome.

Carthagene [7] uses a stepwise marker insertion method
called Buildfw to construct framework maps. The Buildfw
command map starts constructing framework maps with an
empty map or an initial set of ordered markers from an ex-
ternal source. Then it tries to insert markers at all possible
positions of the current map by testing if the difference in
loglikelihood between the best insertion position and the sec-
ond best insertion is greater than the Adding threshold. If
so, the marker is placed in its best position. Any markers
for which the insertion results in a loglikelihood difference
greater than the Keeping_threshold will be kept for the next
iterations. This process stops when no marker results in a
difference in loglikelihood greater than the Adding_threshold.
We compare results from our method with the Carthagene
result in the evaluation section.

All the previously discussed mapping packages [7, 10, 11]
use an incremental insertion procedure to extend the initial
framework. Adding one marker at a time does not scale well
with the number of markers. Moreover, it is recommended
that an LOD score of at least 3 is used for building a solid
framework map using these packages. However, using such a
threshold results in framework maps with only few markers.
In some cases, only approximately 5% of markers remain as
the framework map. A framework map that is constructed
using these techniques is neither contain enough of the mark-
ers, nor is there a guarantee for the constructed framework
to cover the whole chromosome.

3. PROPOSED APPROACH

The proposed methods for constructing reliable frame-
work maps is performed in three sequential steps. In the
first step, we extract the most reliable markers from the data
set, and group these markers into clusters in such a way that
the markers in the same cluster are closer to each other than
those in other clusters. The clustering method allows paral-
lelizing the process such that the mapping can be done on
multiple computing nodes. The second step aggregates the
constructed maps of all clusters to form a complete frame-
work map. In the third step a local improvement method is
applied to fill large gaps between pairs of markers. Figure 2
shows the systematic work flow for the proposed approach.

3.1 First Method

In this method, we divide the mapping process into three
steps. The first step filters out unreliable markers and groups
the initial, large set of markers into smaller subsets while
eliminating disconnected markers. Solid maps are constructed
for each subset. The second step merges all framework maps
to get the whole chromosome framework map. The third
step applies a local improvement method to strengthen the
final constructed framework map.

Large Dataset of markers
MI1: 1110110111, M2: 1110010111, M3: 1110000111,. . . ., Mn: 1101101111
Filtering i
. [Reliable Markers M1, M2, M3,......., M |
.5
§ Grouping
o=
g
& @ [Clster()| [Cluster@) | [Cluster3)| [... | [Cluster (k) |
=
é Filtering ou% unreliable
markers & Mapping
[Map(Clus.1)] [Map(Clus 2)] [Map(Clus.3)] [..., | [Map(Clus.k))
w v
N E Agglomerative Merging
g5 all clusters’ maps
n 2 i
|Tola]Male,M2,M3, _____ Mj,MjH,......,Ms‘
B é Appending significant markers
o
g g between weak pairs
=
E| | Final Improved Map: M1, M2, A, M3, Mj, B, Mj*l,......,Ms |

Figure 2: Systematic Proposed Approach.

3.1.1 Filtering and Mapping task

The first step in the proposed method starts by extracting
those pairs of markers that have a high LOD score (greater
than threshold T). Then the extracted markers are grouped
into different clusters, where the distance between any two
markers in different clusters is larger than the distance be-
tween any two markers in the same cluster. This corresponds
to single linkage clustering which is transitive, i.e., if mark-
ers A and B are strongly connected and markers B and C as
well, then markers A, B and C are grouped together in one
cluster.

Based on the transitive linkage assumption, the proposed
method extracts large clusters (with at least three markers)
to construct the final map. Then, each marker is labeled
according to its cluster, and for each cluster we define the
boundary by the two markers which are farthest apart. After
that, for each cluster, we use the mapping strategy that is
discussed in the next paragraph. The details of the proposed
process can be seen in Algorithm 1.

Mapping strategy

We use the Carthagene tool [7] to order markers. As a first
step we represent markers that have identical mapping in-
formation by a single marker (double markers). Second, we
use the build command (heuristic approach) to build an ini-
tial map. The build process starts with the pair of most
strongly linked markers and inserts the remaining markers
incrementally. Third, the greedy search algorithm is used to
enhance the map. Fourth, genetic and simulated annealing
algorithms are used to find a better map in case a local im-
provement exists. Finally, a fixed sliding window is applied
to try all permutations within the window and check if a
better map can be achieved. Then we remove all inconsis-
tently ordered markers that are mapped outside the cluster
boundaries’ positions. Also to improve the constructed map,
we keep only one marker in each unique position. Keeping
only one marker of close neighbors reduces the impact of the
local flipping problem.

Algorithm 1 Step 1: Filtering and Mapping

Input: RHData /* NoOfMrk by NoOfIndv matrix */
Input: 7" /* LOD threshold */
Result: BestMaps /* Map for each cluster */
Clusters = Group (RH Data,T)
for each C' in Clusters do
if Count_Markers(C) > 2 then
(E1, E2)=GetPairWithSmallest LodScore(C)
BestMap = FindBestMap(C')
posl = FindMarkerPosition(E1)
pos2 = FindMarkerPosition(E2)
for each mk in BestMap do
pos3 = FindMarkerPosition(mk)
if pos3 Not in between (posl, pos2) then
RemoveMarker(BestMap, mk)
end if
end for
BestMap = GetMapUniquePositions(BestMap)
BestMap € BestMaps
end if
end for
Return BestMaps

3.1.2 Merging the maps of clusters

In this step we incrementally concatenate the maps of all
clusters to form one framework map. The merging step is
done by extracting the boundaries of all clusters maps. Us-
ing the Carthagene tool, we group these boundaries into
clusters starting with a high LOD score and then releasing
it in each iteration until all map-boundaries are merged into
one cluster. In each iteration, we group the set of current
boundaries. Those grouped boundaries from different maps
that fall into one cluster are concatenated to form a big-
ger map. The grouping process is repeated until all current
map-boundaries are in one cluster. The threshold of group-
ing is decreased in each iteration by T, where the closest
maps merge first then the next closest ones and so on.

Our proposed method merges the boundaries of different
maps grouped in one cluster by concatenating the strongest
pair of markers from two different maps, then concatenating
the second strongest pair, and so on until all different maps
in the cluster are merged. Figure 3 shows a toy example;
suppose we group the current map boundaries and maps C1
and C2 are in one group, then we merge maps C1 and C2
into one map. To merge the C1 and C2 maps, we find the
LOD score between each pair (M1, M3, 6), (M1, M4, 3),
(M2, M3, 2), (M2, M4, 1) and then merge the boundaries
with the highest LOD value (M1, M3, 6). Algorithm 2 shows
the detailed process.

[Map(Clus.1): MI, M10 M12, ..., M2 | [Map(Clus.2): M3, M6 M9, ..., M4 |

Extract Maps® Edges & Get LOD Score between allpermutationsi

LOD Score(M2,M4): 1
LOD Score(M2,M3): 2

Map 2 left edge:
M3

Map 1 left edge:
M1

‘LOD Score(M1,M3): 6
LOD Score(M1,M4): 3

Map 1 right edge:
M2

Map 2 right edge:
M4

Connecting M1 & M3

‘ Merged Map: M4,,M9, M6, M3, M1, M10 M12,, M2

Figure 3: Merging two clusters.

Algorithm 2 Step 2: Merging Maps

Algorithm 3 Step 3: Improvement method

Input: RHData /* NoOfMrk by NoOfIndv matrix */
Input: T /* LOD threshold */
Input: BestMaps /* BestMaps list */
Result: FW Map /* Merged framework map */
MapsBoundaries = ExtractMapsBoundaries (BestM aps)
MapsBoundariesLabels=AssignLabels(M aps Boundaries)
while Count(MapsBoundaries) > 2 do

Clusters = Group (MapsBoundaries,T)

T=T-2

for each C' in Clusters do

if Count_Markers(C) > 2 then

ClusterLabels=GetLabels(M aps Boundaries Labels)

for i = 1 to Count(ClusterLabels) — 1 do
(E1, E2) = FindStrongestPair(C)
M1 = GetMap (E1)
M2 = GetMap (E2)
ConnectMaps(M1,M2) € FW Map
RemoveConnectedBoundaries(MapsBoundaries,
El, E2)
BoundariesLabels(M1)=BoundariesLabels(M2)
end for
end if
end for
end while
Return FW Map

3.1.3 Local Improvement

After mapping the markers of each cluster and merging
these maps together to form the whole map, we expect to
find some large gaps between pairs of markers. These gaps
can result from merging two far apart clusters. Having such
gaps in a map may diminish the overall map quality. There-
fore, a local improvement method is used for filling these
gaps. Markers that were left out of the original grouping
step are added in this step. The process is explained in Al-
gorithm 3. First we scan the whole map and identify the
weak pairs of markers with LOD score less than S. Then we
find the list of neighbors for each marker in that pair. Af-
ter that we find the mutual neighbors that connect the pairs
with LOD score greater than S. Finally we inject the mutual
marker into the gap. If we get multiple mutual neighbors, we
pick the one for which the LOD score difference is smallest,
so that marker will be placed in the middle of the gap.

Figure 4 shows a toy example that explains the improve-
ment step. Instead of having (M2, M3) with LOD score of 2
we insert a new marker (H) between My and M3. The total
map is improved to have (M2, H) with LOD score of 3 and
(H, M3) with LOD score 4.5. The same applies for the pair
Mk and Mk+1‘

3.2 Second Method

The second proposed method uses a clustering technique
that is based on triples and bases the framework map con-
struction on those. Only the first step is discussed in de-
tail, since the second and third steps are the same those for
Method 1, as discussed in Sections 3.1.2 and 3.1.3 respec-
tively.

Input: RHData /* NoOfMrk by NoOfIndv matrix */
Input: S /* LOD threshold */
Input: BestMap /* Framework Map */
Result: ImprovedMap /* Improved framework map */
for i = 1 to length(BestMap) — 1 do
if GetLodScore(mrk;, mrk;+1) < S then
N1 = GetNeighbors(mrk;, RH Data)
N1 = Order(N1,” Descending”)
N2 = GetNeighbors(mrkiyi, RHData)
N2 = Order(N2,” Descending”)
L = GetMutualNeighbors(N1, N2)
SigMrk = GetConnectorMrk(L, S))
ImprovedMap = FillGap(mrk;, mrk;+1, SigMrk)
end if
end for
Return Improved M ap.

Final Improved
Map: Weak Map:
M, s Neighbors (M5): (Marker, LOD score) M,

(A, 6), (C, 4.5), (D, 4), (F, 3.5), (H, 3) | —
M | o N Neighbors (Ms): (Marker, LOD score) £ M,
= : K, 7). (L, 5), (X.5), (H4.5) H H
£ Zoen 2
M; 2 N < M3
53 M; | £
g8 28 5
z= 23 z
gV 59 3
2 50 2
. 0 g - = .
g- £ g
My g &k 2 My
= u Neighbors (M,): (Marker, LOD score) § J
Myt k (E,4),(J,3.5),(1,3) —— M
Neighbors (My.+1): (Marker, LOD score)
J,3),(L,3
i, @)L
Ms Ms
Mg Mg

Figure 4: Local improvement step.

3.2.1 Filtering and Framework constructing

This step finds the reliable groups of markers, and con-
structs a framework map for each cluster. The process starts
with extracting the solid pairs of markers with a high LOD
score, and then grouping these markers into different clus-
ters with low intra-cluster distances and high inter-cluster
distances. This method only considers large clusters (with
at least three markers) to construct the final map. After
labeling all large clusters, a framework map is constructed
for each cluster by searching for the most solid combina-
tions of three ordered markers in each cluster. To find such
solid triple markers, we use Carthagene. The Buildfw com-
mand in Carthagene finds triples of markers such that all
alternatives orders have a loglikelihood not within a given
threshold of the best order. The recommended LOD thresh-
old is three. After getting a solid triple of ordered markers
for each cluster, we label the first and third markers in each
cluster as cluster map boundaries. If Carthagene does not
find such a triple of markers for a cluster, then the cluster
boundaries, the farthest apart two markers, form the clus-
ters’ framework. At the end of this step we get a framework
map of three or two markers for each cluster. The details of
this process can be seen in Algorithm 4.

Algorithm 4 Step 1: Filtering and Framework constructing

Input: RHData /* NoOfMrk by NoOfIndv matrix */
Input: 7" /* LOD threshold */
Result: BestMaps /* Map for each cluster */
Clusters = Group (RH Data,T)
for each C in Clusters do
if Count_Markers(C) > 2 then
BestMap = FindBestTripleMrksinOrder(C')
E1=GetFirstMarker(BestMap)
E2=GetLastMarker(BestMap)
if BestMap is () then
(E1,E2) = FindtheWeakestPair(C')
BestMap = (E1, E2)
end if
BestMap = GetMapUniquePositions(BestMap)
end if
BestMap € BestMaps
end for
Return BestMaps

4. EXPERIMENTAL RESULTS
4.1 Datasets

The Human genome radiation hybrids data set are used
in this study. The common three standard panels of hu-
man radiation hybrids are the G3 and TNG panels produced
by Stanford University and the Genebridge 4 panel by the
Sanger Center. In this study we used the G3 panels. Due
to time constraints, we performed our experiments on three
human chromosomes 20, 21 and 22. The choice of these
chromosomes is determined by the availability of markers in
both radiation hybrid data set and NCBI_LRH map. Chro-
mosome 20 has 317 markers with 83 RH lines, Chromosome
21 has 281 markers with 83 RH lines and chromosome 22
has 268 markers with 83 RH lines. The physical marker lo-
cations are extracted one by one from Ensemble site [12],
and the RH data set are downloaded from EMBL-EBI site
[13].

4.2 Evaluation of the approach

Two metrics were used to measure the quality of the pro-
posed frameworks. The first one is the agreement, consider-
ing the number of markers in the proposed framework map
having the same relative order in the physical map. The
second measurement reflects the coverage of the framework.
To measure the coverage of a framework, we use the distance
between real positions for the first and last markers in the
constructed framework map, and divide that distance by the
total physical map length.

Using the proposed two metrics we compared the con-
structed framework maps with the physical maps of the cor-
responding chromosomes. Also we compare the proposed
framework maps with frameworks generated using the Cartha-
gene tool. The comparison was done by plotting the pre-
dicted position of each marker in the proposed framework
map relative to the marker orders in the physical map. The
plots in Figures 5, 6 and 7 show how well the proposed
framework map orders agree with the physical maps for the
three chromosomes 20, 21 and 22 respectively, where Fig-
ures 5(a) and 5(b) show the results for maps generated for
chromosome 20 applying Methods 1 and 2 respectively, Fig-

ures 6(a) and 6(b) show the generated framework maps for
chromosome 21 applying Methods 1 and 2 respectively, and
Figures 7(a) and 7(d) show chromosome 22 framework map
orders applying Methods 1 and 2 respectively.

The results obtained for human chromosomes 20, 21 and
22 are summarized in Table 1. The results show that the
proposed framework for chromosome 20 using Method 2
agrees 98.4% with the physical map, while the agreement
is 83.2% for Method 1. For chromosome 21 the agreement
of both methods with the physical map is comparable, 76%
for Method 1, and 75% for Method 2. For chromosome 22
the agreement with the physical map of applying Method 2
is 98% while it is 79.0% for Method 1. Method 2, thereby,
gives overall more reliable results than Method 1.

For a comparison with Carthagene we use the Buildfw
command for building a solid framework map, with the rec-
ommended LOD score of 3 for both the Adding_threshold
and Keeping_threshold parameters. Table 1 shows that our
proposed algorithms substantially outperforms Carthagene
with regard to the number of markers in framework maps
for all chromosomes. For chromosome 20, Carthagene was
only able to map 6 markers, while our methods both map
more than 10 times as many. With regard to the coverage
of the physical maps our approaches outperform Carthagene
for both chromosomes 20 and 22, and show comparable cov-
erage for chromosome 21. The agreement percentages of our
approach with the physical maps were much higher than for
the Carthagene framework for chromosome 22. For chro-
mosomes 20 and 21, the Carthagene agreement percentages
are 100% and 95% respectively but the coverage of chro-
mosome 20 is so low that this result is not useful, and the
number of markers in the chromosome 21 framework map is
too small for comparing to our proposed framework maps.
Figures 5(c), 6(c) and 7(c) show a visual representation of
the Carthagene framework maps, where the partial coverage
and the marker order disagreement with the physical maps
can be seen clearly.

4.3 Run Time Comparison

The proposed approach is designed to work fast and scale
well with the number of markers, as the initial set of markers
is divided into smaller groups. Working on each group sep-
arately helps reduce the run time for the mapping problem.
Our three-step algorithm builds framework maps within short
time (less than a minute). The first step (filtering and map-
ping) can group hundreds of markers into small clusters in
less than a second, and the parallel mapping process for all
generated clusters can be done in a few seconds. Even the
largest group consists of a relative small number of markers
in comparison with the total number of markers. Mapping
the largest cluster we have in our experiments (18 markers)
takes only 35 seconds, and the maximum number of clusters
is 32 (see Table 1). The parallel processing decreases the
overall running time further, since the running time for all
clusters equals the running time for the largest cluster. The
second step (merging) is done in a few seconds for all chro-
mosomes, as Carthagene calculates LOD scores for all pairs
of markers upon loading the dataset, and gets the mark-
ers_pairs information ready to use for any further process
(i.e., agglomerative grouping). The third step (improve-
ment) takes only a few seconds to get the neighbors for two
markers and find the mutual neighbors. The total run time
for constructing a framework map depends on the number

2700
z
% 2400

tion:
[
o =
o o
o o

1500
1200

W o 0
Q 9 9
o &6 o

Predicted markers positiol

O/
-
,
d
<
Pral
.’
O
w“(T T T
50 100 150 200 250 300

Markers physical order

350

(a) Chromosome 20 Method 1

Z 1500

50 100 150 200 250
Markers physical order

300

350

(b) Chromosome 20 Method 2

160
S 140
z

120
Z 100
80
60
40
20

(

111

Predicted markers posi

o

(c) Chromosome
Method

50

T T
100 150 200 250 300
Markers physical order

20 Carthagene

1
350

Figure 5: Plot of constructed framework maps for chromosome 20 applying Methods 1, 2 and Carthagene.
The actual order of the markers is shown along the x-axis and the predicted order along the y-axis.

_ 1100 - 800
G e - '
N - 2 o
£ 500 o - 5600 P
=t g ng = . *
Z 700 v Z 600 Rd Z 500
£ 600 v £ ° =
4 *e » 500 o 7 400 +
£ 500 . 5 S 3 o
< 400 v < 400 st = 300 -
E ¢ £ 300 e g B
300 E . < 200 | *
3 200 - 3 200 - 3 K
= 100 2 £ 100 - =g 100
2 oi 4 : : ; ‘ 2 o4 ; ; ‘ £ o . . : ‘
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Markers physical order Markers physical order Markers physical order
(a) Chromosome 21 Method 1 (b) Chromosome 21 Method 2 (¢c) Chromosome 21 Carthagene

Method

Figure 6: Plot of constructed framework maps for chromosome 21 applying Methods 1, 2 and Carthagene.
The actual order of the markers is shown along the x-axis and the predicted order along the y-axis.

_ 1800
% 1600
P

£ 1400

posi
2o
o 0 O N
S 6 © o
& 6 6 &

[N}
=3
S

Predicted markers pc
B
8
o

o

Markers physical order

g
-
e
- s
.
-»
+
/
4
Y *
R{d
.
Fd T T T T T
50 100 150 200 250

300

(a) Chromosome 22 Method 1

1200

1000

800

600

400

200

Predicted markers positions (cR)

T T T
50 100 150 200 250
Markers physical order

300

(b) Chromosome 22 Method 2

50

T T \
100 150 200 250 300
Markers physical order

(c) Chromosome
Method

22 Carthagene

Figure 7: Plot of constructed framework maps for chromosome 22 applying Methods 1, 2 and Carthagene.
The actual order of the markers is shown along the x-axis and the predicted order along the y-axis.

Table 1: Comparison the Framework maps of Method 1, Method 2 and Carthagene frameworks for Chromo-

somes 20, 21 and 22.

Chromosome 20 Input dataset First Method Second Method Carthagene
Method
NO. OF MARKERS IN MAP 317 125 65 6
NoO. OF MARKERS IN CORRECT ORDER | - 104 64 6
AGREEMENT WITH PHYSICAL MAP - 83.2% 98.4% 100%
COVERAGE OF PHYSICAL MAP 198,257 - 62,730,200 98% 91% 04%
NUMBER OF CLUSTERS - 32 32 -
APPROXIMATE RUN TIME - 00:00:45 00:00:12 00:08:25
Chromosome 21
NO. OF MARKERS IN MAP 281 65 45 20
NoO. OF MARKERS IN CORRECT ORDER | - 50 34 19
AGREEMENT WITH PHYSICAL MAP - 76% 75% 95%
COVERAGE OF PHYSICAL MAP 14,756,329 - 48,078,314 | 72% 72% 74%
NUMBER OF CLUSTERS - 24 24 -
APPROXIMATE RUN TIME - 00:00:13 00:00:11 00:04:31
Chromosome 22
NO. OF MARKERS IN MAP 268 98 51 21
No. OF MARKERS IN CORRECT ORDER | - 7 50 14
AGREEMENT WITH PHYSICAL MAP - 79% 98% 66%
COVERAGE OF PHYSICAL MAP 17,172,704 - 51,007,300 | 94% 94% 38%
NUMBER OF CLUSTERS - 19 19 -
APPROXIMATE RUN TIME - 00:00:21 00:00:09 00:04:27

of generated clusters and the total number of computational
nodes a user has.

Figure 8 shows the running time of the Carthagene map-
ping alone for different marker numbers to illustrate why a
divide and conquer approach is so important in this problem.

2:24:00
2:09:36
g 1:55:12 //

= 1:40:48
g 1:26:24 /
= /
=y 1:12:00 /
E 0:57:36 /
%0:43:12

/
= 0:28:48

0:14:24

0:00:00 ¥ . T T T 1
0 50 100 150 200

No. of Markers

Figure 8: Relationship between No. of markers and
mapping complexity in Carthagene.

Traditional approaches for removing unreliable markers
are based on resampling and have the complete mapping
process built in for all resampled datasets. Chromosomes 20,
21 and 22 have 317, 281 and 268 markers respectively, mak-
ing a resampling approach on their basis prohibitively slow.
The number of markers in a cluster for our approach is never
more than 18. Computation time is approximately doubled
for each additional 30 markers. That means that a single it-
eration would take approximately three orders of magnitude
longer for the complete chromosome in comparison with the
clusters that are ordered in our approach. The resampling
approach furthermore requires that mapping is run on mul-
tiple samples. For jackknife resampling that would require
as many runs as there are individuals, or 83 runs in the case
of chromosome 20. If 5% of the data set, or 16 markers

are to be filtered one iteration would be necessary for each.
While resampling runs can also be parallelized, the overall
result is clearly that any resampling-based approach would
take several orders of magnitude longer than our proposed
approach.

The running time for both the RHMapper and Multimap
packages does not scale well with both number of markers
and individuals. RHMapper generates framework maps in
two steps: the first step finds the solid triples markers; the
second step assembles the triples to form framework maps.
Finding the set of triple markers is a time consuming process:
a run based on one hundred markers takes several hours, and
having more markers increases the running time dramati-
cally [10]. We tried to generate framework maps using the
RHMapper package. Three jobs that were running on three
different machines for the three chromosomes 20, 21 and 22,
had not completed after 6 days. After that time the jobs had
only finished the first step of finding the strong connected
triples markers which took 7 hours. The Multimap package
takes n steps to construct a framework map of n markers,
where all unmapped markers are successively inserted in the
current framework map and if the added marker satisfies pre-
defined conditions then the new marker becomes a part of
the current framework. Each time only one marker is added
to its best interval in the map, checking all intervals for all
markers is a time consuming process. Both packages are far
more time consuming than our proposed approach.

S. CONCLUSION

Two fast methods have been proposed for constructing
Radiation Hybrid framework maps. Given a large number
of markers, the proposed methods aim to select a subset
of markers and build a solid framework map. The two pro-
posed methods efficiently construct high-quality frameworks
by applying parallel processing on the generated groups of
markers. The proposed methods work in three steps: 1) di-
vide the set of markers into smaller subsets and construct

a framework map for each subset, 2) merge all framework
maps, and 3) polish the map to fill the large gaps. The
two proposed methods differ in the first step, the way of
constructing a framework map for a subset of markers.

To validate our methods, we applied them to human radi-
ation hybrid data and compared the framework maps with
published physical maps. As comparison technique we con-
sidered the framework maps generated by the Carthagene
tool. We used two metrics in the comparison: the agree-
ment between the maps and the coverage of the frameworks.
The comparison results show that the proposed methods can
produce solid framework maps that have high marker order
agreement and good coverage. We show that the total com-
putation time is lower than for Carthagene and far lower
than for other approaches.

Acknowledgment

This work was supported by funding from the National Sci-
ence Foundation, Plant Genome Research Program (NSF-
PGRP) grant No. 10S-0822100 to SFK.

6. REFERENCES

[1] V. Kalavacharla, K. Hossain, O. Riera-Lizarazu,

Y. Gu, S. S. Maan, and S. F. Kianian. Radiation
hybrid mapping in crop plants. In Advances in
Agronomy, pages 201-222. Academic Press, 2009.

[2] P. H. Dear. Genome mapping. eLS.John Wiley and
Sons Ltd, 2001.

[3] S. J. Goss and H. Harris. New method for mapping
genes in human chromosomes. Nature,
255(5511):680-684, 1975.

[4] P. 1. Good. Resampling Methods A Practical Guide to
Data Analysis, 2nd edition. Birkhduser Boston, 2001.

[5] Y. Ronin, D. Mester, D. Minkov, and A. Korol.
Building reliable genetic maps: different mapping

[6]

7]

8]

[9]

(10]

(11]

(12]

(13]

strategies may result in different maps. Natural
Science, 02(06):576-589, 2010.

D. I. Mester, Y. I. Ronin, M. A. Korostishevsky, V. L.
Pikus, A. E. Glazman, and A. B. Korol. Multilocus
consensus genetic maps (mcgm): Formulation,
algorithms, and results. Computational Biology and
Chemistry, 30(1):12-20, 2006.

S. De Givry, M. Bouchez, P. Chabrier, D. Milan, and
T. Schiex. Carhta gene: multipopulation integrated
genetic and radiation hybrid mapping. Bioinformatics,
21(8):1703-1704, Apr. 2005.

N. E. MORTON. Sequential tests for the detection of
linkage. American journal of human genetics,
07:277-318, 1955.

O. A. Azzam, L. A. Nimer, C. Chitraranjan, A. M.
Denton, A. Kumar, F. M. Bassi, M. J. Igbal, and S. F.
Kianian. Network-based filtering of unreliable markers
in genome mapping. In ICMLA (1)’11, pages 19-24,
2011.

D. S. L. Stein, L. Kruglyak and E. Lander. Rhmapper,
unpublished software. Whitehead Institute/MIT
Center for Genome Research, 1995.

T. C. Matise, M. Perlin, and A. Chakravarti.
Automated construction of genetic linkage maps using
an expert system (multimap): a human genome
linkage map. Nature genetics, 6:384-90, 1994.

R. J. Kinsella, A. KAdhAd'ri, S. Haider, J. Zamora,
G. Proctor, G. Spudich, J. Almeida-King, D. Staines,
P. Derwent, A. Kerhornou, P. Kersey, and P. Flicek.
Ensembl biomarts: a hub for data retrieval across
taxonomic space. Database, 2011, 2011.

C. Amid. Major submissions tool developments at the
european nucleotide archive. Nucleic acids research,
21(8):D43-7, Apr. Jan 2012.

