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ABSTRACT
In this work, we tackle the problem of evaluating complexity
methods and measures for finding interesting signals in the
whole genome of three prokaryotic organisms. In addition to
previous complexity measures, new measures are introduced
for representing Open Reading Frames (ORF). We apply dif-
ferent classification algorithms to determine which complex-
ity measure results in better predictive performance in dis-
criminating genes from pseudo-genes in ORFs. Also, we in-
vestigate whether positions and lengths of windows in ORFs
have significant impact on distinguishing between genes and
pseudo-genes. Different classification algorithms are applied
for classifying ORFs into genes and pseudo-genes1.

General Terms
Classification Algorithms, Measurement

Keywords
Signal Detection, Biological Sequences, Complexity Mea-
sures

1. INTRODUCTION
One of the challenges of modern molecular biology is to

analyze large amounts of experimental data. Due to the
complexity of biological systems, it is not a trivial task.
For acquiring complete and comprehensive knowledge, dif-
ferent techniques should be used for analyzing the input data
and capture different types of signals in biological sequences.
These techniques can be used to recognize specific regions
with particular structures and specific functions in a long
sequence. For example, they can be used to analyze phy-
logenetic networks, discriminating coding, non-coding and
regulatory regions and recognizing repeated sequences [12,
15, 3, 2].

1This paper is an extended version of [7].
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The genome of an organism is a sequence of a four let-
ter alphabet. The alphabet consists of four nucleotides: A
(Adenine), C (Cytosine), G (Guanine) and T (Thymine).
For detecting different signals and patterns in the genome
sequence, different methods can be applied. These meth-
ods involve the use of a variety of complexity and entropy
measures [5]. One of the most important properties of DNA
sequences is their high repetitiveness. Different combina-
tions of frequencies and repetitiveness in specific parts of
genomic sequences indicate the presence and density of bi-
ological messages. Thus, diverging from an expected fre-
quency or repeated pattern in both directions of DNA is
assumed to be a possible presence of a biological signal [16].

In this work, the performance of different methods and
measures in discriminating genes from pseudo-genes in the
genome sequences of three prokaryotic organisms is evalu-
ated. These three organisms include Escherichia coli, Staphy-
lococcus epidermidis and Streptococcus pyogenes. In prokary-
otic organisms genes and pseudo-genes belong to Open Read-
ing Frames (ORFs). We will describe how to represent
ORFs using different complexity measures. The measures
applied in this work include frequency based, distance based,
Pearson’s chi-square, linguistic complexity and entropy mea-
sures. Previous work focused on linguistic complexity and
entropy measures. We propose novel ORF representation
methods that use a vector to present an ORF (such as the
frequency-based and distance-based methods) and compare
such representation methods to single value representation
methods (such as the linguistic complexity and entropy mea-
sures). We evaluate the effectiveness of different representa-
tion methods by applying statistical and machine learning
classification methods to the represented ORFs to distin-
guish genes from pseudo-genes.

Recently, it has been shown that the area around the start
codon position of ORFs has the best performance for dis-
criminating genes from pseudo-genes among other positions
of an ORF [12]. Thus, we only consider this specific re-
gion of ORFs for our discriminating test. However, we test
three parts of the area near the start codon position (i.e.
before the start codon, in the middle of the start codon and
after the start codon) to show which part has the best per-
formance among the three parts. In order to observe the
changing pattern of measures, we also apply the measures
in some specific genome sequences.

The contributions of the paper can be summarized as fol-
lows:

1. We propose novel methods for representing ORFs us-
ing vectors. The vectors are defined based on frequen-



cies of nucleotide combinations of different lengths or
the positions of the nucleotide combinations in a win-
dow.

2. We compare the proposed measures with the linguistic
complexity and entropy-based measures by applying
classification learning algorithms to ORFs to see which
representation methods (i.e., measures) can better dis-
tinguish genes from pseudo-genes.

3. Shannon and CM entropy measures are considered us-
ing words of three different lengths (i.e. lengths 1, 2,
3).

4. We investigate which part of the start codon (before,
middle and after) is more suitable for discriminating
genes from pseudo-genes.

5. We investigate the effect of the size of the window
for representing ORFs on discriminating genes from
pseudo-genes.

6. To improve the reliability of the results, the methods
are applied to three prokaryotic organisms.

7. We show that a good performance in statistical tests
such as Mann-Whitney, does not necessarily imply a
good performance in discrimination when the measure
is used in a classification algorithm.

The rest of this paper is organized as follows. Section 2
reviews the related work. General structure of the methods
are presented in section 3. Different methods for represent-
ing ORFs are introduced in section 4. Statistical and classi-
fication learning algorithms are briefly presented in section
5. Experimental evaluations and discussions are provided in
section 6. Section 7 concludes the paper.

2. RELATED WORK
Structure and dynamics of living organisms are affected

by the evolution, properties and complexity of genome se-
quences [8]. The complexity of sequences is useful in repro-
ducing phylogenetic trees, compacting biological sequences,
identifying the genomic structures and studying genomic
evolution [9]. Since there is no unique definition for sequence
complexity, various complexity measures have been defined
for analyzing biological sequences. In contrast to complexity
measures, low complexity regions have a well defined defi-
nition. Low complexity zones are produced in the presence
of dispersed or tandem repeats, palindromic structures, bi-
ased nucleotide composition and also a combination of these
properties [14].

Menconi et al. represented the complexity of a DNA se-
quence as the information content per nucleotide [8]. It
is calculated using Lempel-Ziv data compression algorithm.
They distinguished among genomes of different domains of
life using the statistics of the complexity values of the func-
tional regions. They also demonstrated that three domains
of life (Archaea, Bacteria and Eukarya) might be plotted in
separate zones within the two dimensional space. In that
case, the axes are the skewness coefficient and the kurtosis
coefficient of the aforementioned distribution.

The application of statistical methods such as Pearson’s
chi-square test to detect the signals in the whole genome
of the Escherichia coli is presented in [12]. The efficiency

Sequence A C A T G G T C A T 

Position 1 2 3 4 5 6 7 8 9 10 

Figure 1: An example sequence of size 10.

of the method is evaluated by comparing the Pearson’s chi-
square test with linguistic, CE and CWF complexity on the
complete genome of E. coli. They showed that Pearson’s chi-
square test distinguishes genes (coding regions) from pseudo-
genes (non-coding regions). They also demonstrated which
parts of the ORF have significant effect on discriminating
genes from pseudo-genes. These parts are 100 nucleotides
before the start codon position, around the start codon po-
sition, the middle position of an ORF and around the stop
codon position. They concluded that the region around the
start codon has the best performance in discriminating genes
from pseudo-genes.

The efficiency of detrended fluctuation analysis and rescaled
range analysis in discriminating coding DNA, regulatory
DNA and non-coding non-regulatory DNA is evaluated in
[15]. The authors applied the measures on the genome se-
quence of Drosophila melanogaster. They estimated the
degree of sequential persistence or dependence among nu-
cleotides. They demonstrated that these methods can dis-
tinguish the three types of DNA in eukaryotes. It is also
reported that the performance of rescaled range analysis
is better than detrended fluctuation analysis. In addition,
the region of coding DNA is classified as anti-persistent and
the regulatory regions have intermediate sequential depen-
dency. The degree of sequential persistence of non-coding,
non-regulatory DNA is higher than the other DNA types.
They concluded that rescaled range and detrended fluctua-
tion analysis are useful tools for refined functional and struc-
tural segmentation of DNA in eukaryotic organisms.

None of the above work has used a vector-based measure
in comparison to complexity measures. Also, none of them
has applied chi-square on weighted distance vectors. In ad-
dition, in this work we consider the words of length 1, 2 and
3 for calculating Shannon and CM entropy measures.

3. FINDING AND REPRESENTING ORFS
In this section we describe our method for identifying

ORFs from a DNA sequence and our process of computing
the measures based on identified ORFs.

3.1 Finding Open Reading Frame Regions
In molecular biology and genetics, an open reading frame

(ORF) is a portion of an organism’s genome which contains
a sequence of bases that could potentially encode a pro-
tein. If an ORF codes a protein, it is a gene; otherwise it
is a pseudo-gene. Theoretically, the DNA sequence can be
read in six reading frames in organisms with double-stranded
DNA; three on each strand. Each frame contains some genes
and proteins. In prokaryotes, ORFs start with the start
codon (ATG) and end with one of three stop codons (TAA,
TAG and TGA). The longest sequence without a stop codon
usually determines the ORF. In our work, we simply use this
rule (which was used in [12]) to identify ORFs in the genome
sequences of three prokaryotic organisms. Note that this



simple method is not applicable to eukaryotes. The process
of finding ORFs in eukaryotic genomes is difficult because
of the existence of introns, exons and gaps in their genomes.

3.2 Process of Computing the Measures
There are several positions in an ORF which might have

important signals that could be useful for discriminating
genes from pseudo-genes. These positions are the start codon
position, the middle of the ORF and the stop codon posi-
tion. Since authors in [12] showed that the region near the
start codon has the best performance in discriminating genes
from pseudo-genes, we concentrate on this position in this
work. However, considering the region near the start codon
position, there are three areas to study. These areas are:
before the start codon, in the middle of the start codon and
after the start codon. We consider these three areas to see
which one is more effective in representing an ORF than oth-
ers. For each area, we consider a window of size n, where n
is the number of nucleotides in the window (i.e., the subse-
quence or substring in the area). A window S of size n is
shown as S = (s1, s2, . . . , sn).

For each ORF and each area, a measure of interest is
calculated in the window (as described in the next section).
It is expected that the distribution and order of nucleotides
are different in genes and pseudo-genes. Thus, the measure
can be used to divide ORFs to two categories: genes and
pseudo-genes.

4. REPRESENTATION OF ORFS WITH DIF-
FERENT MEASURES

In this section, we present how we use different complex-
ity measures to represent an ORF. The measures include
frequency based, distance based, Pearson’s chi-square, lin-
guistic complexity and entropy measures.

4.1 Frequency-based Measures

4.1.1 Vector-based Frequency Measure
The frequency of a word X of length one in window S

is simply defined as freqX =
∑i=N

i=1 {1|(si) = X}. It is
extendable to words of length two or three. The frequency
of word Y of length two and word Z of length three are
defined as freqY =

∑i=n−1
i=1 {1|(sisi+1) = Y } and freqZ =∑i=n−2

i=1 {1|(sisi+1si+2) = Z}. Since the alphabet size is
four ({A, C, G, T}), there are 4 combinations of nucleotides
of length one, 16 combinations of nucleotides of length two
and 64 combinations of nucleotides of length three. Thus, we
can use a 4 dimensional vector of length-1 word frequencies
to represent an ORF in a window as follows:

−−−→
freq1 = 〈freqA, freqC , freqG, freqT 〉. (1)

Similarly, a 16 or 64 dimensional vector of length-2 or length-
3 word frequencies can be used to represent an ORF as well:

−−−→
freq2 = 〈freqAA, freqAC , freqAG, . . . , freqTT 〉 (2)

−−−→
freq3 = 〈freqAAA, freqAAC , . . . , freqTTT 〉. (3)

4.1.2 Single Value-based Frequency Measure
Existing complexity measures for ORFs produce single

values instead of vectors. To make a comparison, we also de-
fine single-value measures based on Equations 1, 2 and 3. We

will compare the single-value measures with the vector-based
measures in the experiment section. To define a single-value
frequency-based measure, we use the angle between each
vector and the average vector. The average vector is the vec-
tor whose frequencies are the average frequency of windows
of length n in the whole genome sequence. The average vec-
tor of words of length one, two and three are represented by−−−→
Avg1,

−−−→
Avg2 and

−−−→
Avg3 respectively. This measure is called

frequency ratio and is denoted by freq ratio1, freq ratio2
and freq ratio3 for words of length one, two and three re-
spectively. Since the purpose is to see how far each vector
is from the average vector, the measure, which is based on
the cosine of the angle between two vectors, is defined as
follows:

freq ratioi = 1 −
−−−→
freqi • −−−→Avgi

‖−−−→freqi‖ × ‖−−−→Avgi‖
(4)

where i ranges from 1 to 3 representing the word length,−−−→
freqi • −−−→

Avgi is the dot product of two vectors
−−−→
freqi and−−−→

Avgi, and ‖−−−→freqi‖ and ‖−−−→Avgi‖ are the magnitude of the
vectors.

4.2 Weighted Distance Measures
In this section we define new measures based on where a

word occurs in a window. These measures are based on the
distances from the beginning of the window to each occur-
rence of a word in the window.

4.2.1 Weighted Distance
Assume that the first nucleotide in a window is at position

1 , the second nucleotide is at position 2, and so on (see Fig-
ure 1). We define the distance of a nucleotide X at position
i to be the number of the nucleotides from the beginning of
the window to position i, which is i. To measure the distri-
bution of a nucleotide X in the window, a summed distance
weighted by the frequency of X in the window can be used:

WDX = freqX × (

i=n∑

i=1

{i|(si) = X}). (5)

We call this measure weighted distance of X. 2 For ex-
ample, Figure 1 shows a window of size 10. Nucleotide A
occurs three times at positions 1, 3 and 9. The weighted
distance of A is WDA = 3 × (1 + 3 + 9) = 39.

Similarly, the weight distance of a length-2 word Y is de-
fined as

WDY = freqY × (

i=n−1∑

i=1

{i|(sisi+1) = Y }) (6)

and the weighted distance of a length-3 word Z is defined as

WDZ = freqZ × (

i=n−2∑

i=1

{i|(sisi+1si+2) = Z}). (7)

4.2.2 Vector-based Distance Measure
Since there are four nucleotides, i.e., X ∈ {A, C, G, T}

in Equation 5, we can use a 4 dimensional vector of the

2This measure is inspired by a measure of divergence defined
in [1].



weighted distances of the 4 nucleotides to represent the dis-
tribution of the length-one words in a window as follows:

−−−→
WD1 = 〈WDA, WDC , WDG, WDT 〉 (8)

For example, the weighted distance vector of length-one
words for the sequence in Figure 1 is 〈39, 20, 22, 63〉 because
WDA = 3×13 = 39, WDC = 2×10 = 20, WDG = 2×11 =
22 and WDT = 3 × 21 = 63.

Similarly, the weighted distance vector of length-2 or length-
3 words is defined using a 16 or 64 dimensional vector, re-
spectively, as follows:

−−−→
WD2 = 〈WDAA, WDAC , . . . , WDTT 〉 (9)

−−−→
WD3 = 〈WDAAA, WDAAC , . . . , WDTTT 〉 (10)

4.2.3 Single-valued Distance Measure
Similar to the frequency-based measures, we define single-

value weighted distance measures as follows. Let
−−−−−−→
WDAvg1,−−−−−−→

WDAvg2 or
−−−−−−→
WDAvg3 denote the average weighted distance

vector for length 1, 2 or 3 words respectively, which is com-
puted by taking the average values of the weighted distance
vectors for windows of size n in the whole genome sequence.
We define the weighted distance ratio of length-i words to be
the cosine of the angle between the weighted distance vector
and the average vector of length-i words:

WD ratioi = 1 −
−−−→
WDi • −−−−−−→WDAvgi

‖−−−→WDi‖ × ‖−−−−−−→WDAvgi‖
(11)

where i ranges from 1 to 3.

4.3 Pearson’s Chi-square Measure
Pearson’s chi-square test (χ2) is a statistical measure which

tests a null hypothesis that the relative frequencies of occur-
rence of observed events have an expected frequency distri-
bution. In addition, the events should be independent and
follow the same distribution [12]. In the previous section, the
frequency vector and the average vector were introduced for
words of length one, two and three. The purpose is to find
the regions that the distribution of nucleotides is different
from the ones for whole genome sequence. For comparing
these two frequencies, Pearson’s chi-square test is applied
and calculated as follows:

χ2 =

M∑

i=1

(freqi − Avgi)
2

Avgi
(12)

where freqi and Avgi are the observed and the average
frequencies of the i-th word. M is total number of words and
equals 4, 16 and 64 for combinations of nucleotides of length
one, two and three respectively. Pearson’s chi-square test for
words of length one, two and three are shown by χ2

1, χ2
2 and

χ2
3 respectively. The chi-square test for weighted distance

measures is defined in the same manner and is represented
by WDχ2

1, WDχ2
2 and WDχ2

3 for words of length one, two
and three respectively.

4.4 Linguistic Complexity Measure
One of the complexity based measures is linguistic com-

plexity. Linguistic complexity is represented by the ratio of
the number of subsequences that occur in the sequence of

interest to the maximum number of subsequences for a se-
quence of the same length over a same alphabet [16]. Since
the sequence is a DNA, the alphabet is defined as A, C, G
and T. The maximum number of subsequences (also called
maximum vocabulary) can be computed as follows:

maximum vocabulary =
N∑

L=1

min(AL, N − L + 1) (13)

where A is the alphabet size, L is the subsequences length
and N is the size of the window. The complexity measure
(referred to as Ling in this paper) is defined as

Ling =
n

maximum vocabulary
, (14)

where n is the number of subsequences that occur in the
sequence of interest.

4.5 Entropy Measures
Shannon’s entropy is defined based on the probability of

occurrence of the symbols [9]. The entropy of a subsequence
(window) S is calculated based on the following relation:

Shannon′s entropy = −
M∑

i=1

[mi/(N−m+1)] log2[mi/N−m+1]

(15)
where N is the window size, m is the length of the word (in

this work one, two or three), M = Am is the total number
of words with length m, A is the alphabet size (in this work
it equals 4) and mi is the number of i-th word in a window.

In this work, we used words of lengths one, two and three.
Thus, the Shannon’s entropy for these different word lengths
are called Shannon1, Shannon2 and Shannon3 respectively.

The entropy of high order Markov model (CM) which is
similar to Shannon’s entropy is given as [10]:

CM = −
M∑

i=1

[mi/(N − m + 1)] logM [mi/N − m + 1] (16)

the parameters are the same as Shannon’s entropy in rela-
tion 15. Like Shannon’s entropy, the CM entropy for these
different word lengths are called CM1, CM2 and CM3.

5. CLASSIFICATION ALGORITHMS
To determine which of the above measures can better

distinguish gene and pseudo-genes, we apply classification
learning algorithms to learn classification models from the
ORFs represented by the measures and use the learned mod-
els to classify some other ORFs into genes or pseudo-genes.
In this section we briefly introduce the classification learning
algorithms that we use for evaluating different complexity
measures.
Logistic Regression. In statistics, logistic regression predicts
the probability of occurrence of an event by fitting data to
a logistic curve. It is a generalized linear model used for
binomial regression. It uses one or more predictor variables.
The variables can be either numerical or categorical. Unlike
some other statistical methods such as discriminant analy-
sis, logistic regression does not assume the data follow the
normal distribution. Since the values of the complexity mea-
sures for genes and pseudo-genes do not usually have normal
distribution, we use logistic regression in this work.
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Figure 2: The percentage of the datasets that have significantly different distribution between genes and
pseudo-genes using Mann-Whitney test.

C4.5 Algorithm. C4.5 is a decision tree learning algorithm
[13]. A decision tree is a flowchart-like tree structure, where
each internal node represents a test on an attribute, each
branch represents an outcome of the test, and each leaf node
is assigned to a class label. A decision tree can be used for
classification. In C4.5, an information theoretic measure,
information gain ratio is used as a criterion for attribute
selection in the decision tree induction process.
RIPPER Algorithm. RIPPER is an inductive rule learner
[4]. It learns a set of propositional rules from a set of data
by first generating overfitting rules from a subset of train-
ing data and then post-pruning the rules using an optimized
incremental reduced error punning technique based on a re-
maining set of the training data. The algorithm was shown
to be an efficient rule learner that produces competitive re-
sults with C4.5 with respect to predictor error rates [4].
K-Nearest Neighbors Algorithm. The k-nearest neighbors
algorithm (k-NN) is a classification method that classifies a
new example x by finding the k examples that are closest to
x from the training data and uses the most common class
among the k examples to classify x. The method does not
learn a general model; instead it stores all the training exam-
ples for use in the classification phase. In k-NN, parameter
k is usually set to a small odd number such as 3, 5 or 7 [6].
Bayesian Belief Networks. A Bayesian belief network [11] is
a direct acyclic graph whose nodes represent variables and
edges represent probabilistic dependencies. Each variable in
the network is conditionally independent of its nondescen-
dants in the graph, given its parents. Each node is associated
with a probability function that takes as input a particu-
lar set of values for the node’s parent variables and gives
the probability of the variable represented by the node. A
Bayesian network can be learned from a set of training data
and used to predict the class membership probabilities for a
given object.
Support Vector Machines. Support vector machines (SVMs)
make use of a nonlinear mapping to transform the origi-
nal training data into a higher dimension. Within this new
dimension, it finds a decision boundary that separates the
objects of one class from other classes. Using a proper non-
linear mapping to a sufficiently high dimension, different
objects that belongs to different classes can be separated
by a hyperplane. The SVM produces this hyperplane using
margins and support vectors [6].
Neural Networks. A neural network consists of a set of in-
terconnected computing units. Each connection (edge) has

a weight associated with it. A neural network can be used
to predict class labels for the input objects. In the learning
phase, the network tries to improve its performance by ad-
justing the weights of the edges of the network. Training a
neural network may take a long time, but a neural network
usually has good predictive performance in the presence of
noise. There are different types of neural networks and neu-
ral network training algorithms. In our experiment, we use
the backpropagation algorithm [6].

6. RESULTS AND DISCUSSION
In this section the results of different complexity measures

for discriminating genes from pseudo-genes are presented.
The results are obtained from three different prokaryotic or-
ganisms. These three organisms include Escherichia coli,
Staphylococcus epidermidis and Streptococcus pyogenes. The
complexity measures are calculated in three different loca-
tions near the start codon position of ORFs. These loca-
tions include before the start codon, in the middle of the
start codon and after the start codon. In addition, the com-
plexity measures are calculated in windows of size 50, 100,
200 and 500.

Two evaluation methods are used to evaluate the com-
plexity measures. First, we determine whether a measure
can result in values whose distributions are significantly dif-
ferent among genes and pseudo-genes. The results of this
evaluation are presented in Section 6.1. Second, we ap-
ply classification methods to the ORFs represented by the
complexity measures and use cross-validation to determine
whether a complexity measure can lead to a good classifi-
cation performance. The results of this evaluation are pre-
sented in Sections 6.2-6.6. In the evaluation, we also inves-
tigate whether locations and window sizes in an ORF have
significant impacts on the predictive performance. Since the
number of genes is much less than the number of pseudo-
genes (for example, the ratio of genes to pseudo-genes in
ecoli are around 1/5), we apply down-sampling to the sets
of ORFs to balance the data before learning classification
models from ORFs. This is to improve the performance of
classification algorithms. Down-sampling is performed by
randomly removing some pseudo-genes from the dataset un-
til we have the same number of genes and pseudo-genes for
each organism.

It should be noted that all of the results are obtained
using appropriate statistical methods. All of the statistical
tests and the logistic regression method are performed using



SPSS 15.0 for Windows. Other classification algorithms are
performed using Weka 3.6.

6.1 Value Distribution of Complexity Measures
To see how values of the complexity measures are dis-

tributed among genes and pseudo-genes, one-sample Kolmogorov-
Smirnov test is performed. This is a non parametric test.
This test suggests that none of the complexity measures,
when applying to any of the three organisms with any win-
dow size at any location, has a normal distribution (p-value
< 0.05). Thus, to determine whether the values from a
complexity measure have significantly different distributions
among genes and pseudo-genes, we use Mann-Whitney test.
This is also a non parametric test. The significance level is
set to 0.05. Since there are three organisms, four different
window sizes and three different locations, we have 36 differ-
ent pairs of value sets for each measure, one set for genes and
the other for pseudo-genes in each pair. For each measure
the percentage of pairs that have significant different distri-
butions between genes and pseudo-genes is used as a crite-
rion for evaluating the performance of the measure. We call
such a percentage difference percentage. A higher difference
percentage implies a better ability for the measure to distin-
guish genes and pseudo-genes through its values. Figure 2
illustrates the difference percentages of all the measures. For
example, for measure count ratio1, 9 out of 36 pairs of value
sets for genes and pseudo-genes do not have significant dif-
ferent distributions between genes and pseudo-genes. Thus,
the difference percentage of count ratio1 is 75%. The results
in Figure 2 show that some frequency, distance and Shan-
non measures have better performance than others in terms
of difference percentage. In particular, freq A, freq C and
WD C always have significantly different distributions for
genes and pseudo-genes.

To show the difference between the average value of a
measure on genes and the one on pseudo-genes, we illustrate
the average values of each measures for genes and pseudo-
genes for E. coli with window size 100 and the middle of the
start codon location in Figure 3. Since different complexity
measures have different value ranges, all the average values
are normalized to fall between 0 and 1.

6.2 Predictive Performance of Different Com-
plexity Measures

In Figure 4, the performance of different complexity mea-
sures in discriminating genes from pseudo-genes using lo-
gistic regression is presented. Since 3 organisms, 4 differ-
ent window sizes and 3 different locations are examined, we
obtained a set of 36 performance results (in terms of clas-
sification accuracy) for each complexity measure. As this

figure suggests, the performance of vector measures (
−−−→
freqi

and
−−−→
WDi) are significantly better than the performance of

other measures (p-value < 0.05).
By increasing the size of the frequency and weighted dis-

tance vectors, the performance of them increase too. On the
other hand, by increasing the vector size, the running time of
the algorithms increases. The performance of freq ratio1,
freq ratio2, freq ratio3, WD ratio1, WD ratio2, WD ratio3,
χ2

1, χ2
2, χ2

3, WD χ2
1, WD χ2

2 and WD χ2
3 is poor and is

around 55%. Increasing the length of words does not change
the performance very much. The performance of the linguis-
tic method is also poor. The performance of Shannon and
CM are very close together. Their performance are around

Table 1: Classification accuracy of different window
sizes using logistic regression method

Measure name 50 100 200 500−−−→
freq1 74.73 % 73.83 % 72.81 % 71.72 %−−−→
freq2 77.62 % 76.57 % 76.32 % 75.68 %−−−→
freq3 81.88 % 81.38 % 80.68 % 79.21 %
freq ratio1 55.42 % 54.53 % 53.32 % 51.80 %
freq ratio2 54.63 % 53.72 % 53.53 % 52.11 %
freq ratio3 58.52 % 58.58 % 56.94 % 53.67 %−−−→
WD1 73.79 % 73.63 % 73.10 % 72.42 %−−−→
WD2 75.50 % 75.87 % 76.12 % 76.19 %−−−→
WD3 78.93 % 79.56 % 79.99 % 79.52 %
WD ratio1 54.04 % 53.21 % 52.93 % 52.01 %
WD ratio2 56.20 % 55.71 % 54.63 % 53.20 %
WD ratio3 57.93 % 57.98 % 56.96 % 54.77 %
χ2

1 56.26 % 55.40 % 53.56 % 51.49 %
χ2

2 54.63 % 52.91 % 52.86 % 51.92 %
χ2

3 57.47 % 51.38 % 54.70 % 53.08 %
WD χ2

1 55.01 % 53.72 % 53.21 % 51.62 %
WD χ2

2 53.54 % 52.96 % 52.69 % 51.93 %
WD χ2

3 53.03 % 52.19 % 52.54 % 52.16 %
Ling 56.30 % 56.10 % 56.09 % 52.21 %
Shannon1 62.78 % 61.50 % 59.42 % 55.74 %
Shannon2 59.89 % 59.82 % 58.84 % 55.68 %
Shannon3 57.48 % 57.67 % 57.62 % 55.78 %

60%. By increasing the length of word, the performance of
Shannon and CM decreases.

6.3 The Effect of Different Window Sizes on
the Performance of Complexity Measures

The performance of different window sizes using logistic
regression is presented in Table 1. Since the performance of
Shannon and CM are very close, the CM results are not
shown. For analyzing the results, one-way analysis of vari-
ance (one-way ANOVA) is used. This statistical test sug-
gests that except measures freq ratio3, χ2

1 and χ2
3 which

have significant different performance for different window
sizes (p value < 0.05), other measures does not have signif-
icant different performance for different window sizes.

For comparing a pair of window sizes, we used Bonfer-
roni’s method. This method is useful for small datasets.
This method reveals that there is not a significant differ-
ence between any pair of window sizes except for windows
of size 50 and 500. For windows of size 50 and 500, there
is a significant difference between measures χ2

1 and χ2
3 (p

value < 0.05). Other measures for these window sizes have
the same performance distribution. Although the average
performance of windows of size 50 and 100 are higher than
that of windows of size 200 and 500, in most cases there is
not a significant difference between them.

6.4 The Effect of Different Locations on the
Performance of Complexity Measures

The performance of different locations using logistic re-
gression is presented in table 2. Since the performance of
Shannon and CM are very close, the CM results are not
shown. For analyzing the results, one-way analysis of vari-
ance (one-way ANOVA) is used. For comparing a pair of
locations, we used Bonferroni’s method. The results of one
way ANOVA and Bonferroni’s method are shown in Table 4.
The significant differences are shown in bold numbers. The
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Figure 3: The normalized average of different complexity measures for organism E. coli, window size 100 and
the middle of the start codon location.

results suggest that the middle and before locations have
better performance than the after location for discriminat-
ing genes from pseudo-genes.

Table 2: Classification accuracy of different locations
using logistic regression method

Measure name before middle after−−−→
freq1 73.09 % 76.76 % 69.96 %−−−→
freq2 75.93 % 79.97 % 73.73 %−−−→
freq3 79.83 % 83.49 % 78.98 %
freq ratio1 54.38 % 54.97 % 51.97 %
freq ratio2 53.16 % 53.73 % 53.61 %
freq ratio3 57.25 % 58.67 % 54.85 %−−−→
WD1 75.01 % 76.12 % 68.56 %−−−→
WD2 77.21 % 78.67 % 71.86 %−−−→
WD3 80.92 % 81.42 % 76.15 %
WD ratio1 53.96 % 53.14 % 52.04 %
WD ratio2 55.48 % 55.95 % 53.39 %
WD ratio3 58.11 % 58.62 % 53.98 %
χ2

1 55.34 % 55.43 % 51.75 %
χ2

2 53.11 % 53.22 % 52.90 %
χ2

3 54.35 % 55.24 % 52.87 %
WD χ2

1 54.90 % 53.95 % 51.33 %
WD χ2

2 54.36 % 52.80 % 51.16 %
WD χ2

3 53.43 % 52.68 % 51.32 %
Ling 56.35 % 56.46 % 52.70 %
Shannon1 61.50 % 62.55 % 55.53 %
Shannon2 59.95 % 61.04 % 54.67 %
Shannon3 58.23 % 59.47 % 53.70 %

6.5 The Performance of Windows with Small
Size

The performance of vectors
−−−→
freq1,

−−−→
freq2,

−−−→
WD1 and

−−−→
WD2

in windows with small sizes are presented in Table 3. The
performance of windows of size 10 and 20 are compared to
windows of size 50 and 100. Since the vector measures have
better performance, we only evaluated them here. The re-
sults suggest that by decreasing the window size 20 or 10,
we lose some information since the predictive performance
decreases significantly. On the other hand, increasing the
window size to 200 or 500 also decreases the predictive per-
formance although not significantly (as shown in Table 2).

Table 3: The Performance of Windows with Small
Size

Measure name 10 20 50 100−−−→
freq1 65.53 % 73.63 % 74.76 % 73.83 %−−−→
WD1 63.41 % 71.74 % 73.78 % 73.60 %−−−→
freq2 69.37 % 76.87 % 77.62 % 76.57 %−−−→
WD2 67.32 % 73.92 % 75.50 % 75.87 %

Thus, for discriminating genes from pseudo-genes, a sug-
gested window size is between 50 and 100.

6.6 The Performance of Different Classifica-
tion Algorithms in Discriminating Genes
from Pseudo-Genes

The performance of different classification algorithms in
discriminating genes from pseudo-genes is presented in Fig-
ure 5. The methods include C4.5, RIPPER, kNN, Bayesian
network, SVM and neural network. The input data are
taken from organism E. coli, with window size 100 and the
location is set to the middle of the start codon. Similar to
the result for the logistic regression method, the performance
of vector-based measures is higher than the performance of
single values. In C4.5, by increasing the size of vector, from
4 to 64, the performance of the algorithm decreases. By
increasing the word length from 1 to 3, the performance
of freq ratio, WD ratio and χ2 decreases. On the other
hand, the performance of WD χ2 increases. In addition,
Shannon2 and Shannon3 has worst performance.

It should noted that Shannon measures have good per-
formance in the Mann-Whitney test as presented in Section
6.1. Their poor performance in classification accuracy sug-
gests that a good performance in Mann-Whitney does not
imply good performance with classification algorithms.

7. CONCLUSION
The performance of different complexity measures for dis-

criminating genes from pseudo-genes is presented in this
work. First, we introduce new vector-based measures based
on frequency and weighted distance. We also introduce some
new single-valued measures by converting a vector into a sin-
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Figure 4: The classification accuracy of different complexity measures in discriminating genes from pseudo-
genes using the logistic regression method.
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Figure 5: The classification accuracy of Bayesian network, SVM, neural network, C4.5, RIPPER and kNN
(5) in discriminating genes from pseudo-genes for organism E. coli, window size equals 100 and the middle
of the start codon location is used

gle value using cosine or chi-square statistics. These mea-
sures are compared with linguistic complexity, Shannon and
CM entropy measures. In addition, Shannon and CM en-
tropies are calculated using words of length 1, 2 and 3. To
evaluate the accuracy and reliability of the results, the meth-
ods are applied on three prokaryotic organisms. All of these
measures are applied on different locations near the start
codon positions of ORFs with different window sizes. Sta-
tistical tests such as Mann-Whitney suggest that the distri-
bution of most of these measures are different in genes and
pseudo-genes. However, when classification algorithms are
applied to classify ORFs to two groups, the performance
of single value measures is poor. On the other hand, the
performance of vector-based measures is significantly better
than the performance of single value measures. By increas-
ing the size of a vector from 4 to 16 and from 16 to 64, the
performance of classification algorithms increases. These re-
sults suggest that the high significant level of statistical tests
does not imply a reasonable performance when the data are
used as input to classification algorithms. In addition, the
statistical analysis reveals that in most cases, there is not a

significant difference between windows of size 50, 100, 200
and 500. However, the performances of windows of size 50
and 100 are better than those of the windows of size 200 and
500. In addition, the performance of windows with small
sizes (such as 10 and 20) is not comparable to that of win-
dows of size 50 and 100. Using statistical tests, we conclude
that the location before the start codon position or in the
middle of the start codon position has better performance
in comparison to the location after the start codon position.
In this work, we used several classification algorithms with
different approaches to see the performance of the proposed
methods. The results show that the performance of different
algorithms are very closet o each other.
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