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ABSTRACT
Identifying patterns in temporal data supports complex anal-
yses in several domains, including stock markets (finance)
and social interactions (social science). Clinical and bio-
logical applications, such as monitoring patient response to
treatment or characterizing activity at the molecular level,
are also of interest. In particular, researchers seek to gain in-
sight into the dynamics of biological processes, and potential
perturbations of these leading to disease, through the dis-
covery of patterns in time series gene expression data. For
many years, clustering has remained the standard technique
to group genes exhibiting similar response profiles. However,
clustering defines similarity across all time points, focusing
on global patterns which tend to characterize rather broad
and unspecific responses. It is widely believed that local pat-
terns offer additional insight into the underlying intricate
events leading to the overall observed behavior. Efficient
biclustering algorithms have been devised for the discov-
ery of temporally aligned local patterns in gene expression
time series, but the extraction of time-lagged patterns re-
mains a challenge due to the combinatorial explosion of pat-
tern occurrence combinations when delays are considered.
We present heuristic approaches enabling polynomial rather
than exponential time solutions for the problem.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms, Problem Complexity]:
Nonnumerical problems—pattern matching ; G.2.1 [Discrete
Mathematics]: Combinatorics; I.5 [Pattern Recogni-
tion]; J.3 [Computer Applications]: Life sciences
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1. INTRODUCTION
Gene expression is a dynamic process, reflecting changes

orchestrated by the underlying regulatory mechanisms in-
volved in cellular control. Temporal gene expression pro-
filing enables to monitor the responses of a large number
of regulatory players over time and is recognized as a key
strategy to gain insight into the intricate circuitry of gene
regulation. Ultimately, the analysis of time series gene ex-
pression data is critical to advance our understanding of
complex biological mechanisms involved in processes such
as growth and development, disease susceptibility and pro-
gression, and response to treatment [2, 4]. When studying
gene expression measured over time, local transcriptional
patterns assume a major relevance, as genes are expected to
behave coherently with different subsets of partners mostly
within the time frames of the biological tasks in which they
participate together. Biclustering is a suitable solution for
the discovery of local patterns, but its general formulation
has been shown NP-hard upon reduction to the maximum
edge biclique problem [13]. Many general purpose biclus-
tering algorithms have been proposed in the literature [9].
However, most are unsuitable for the analysis of time series
data given that they disregard important temporal proper-
ties, such as time point dependency and biological process
inherent time contiguity. Notably, in the case of tempo-
ral data, the assumption that biological processes last for a
contiguous period of time motivates the discovery of local
patterns spanning consecutive time points. This observa-
tion leads to a reasonable restriction in the search space of
local patterns, enabling a linear time solution for the tem-
poral biclustering problem [12]. Although the most efficient
temporal biclustering algorithm to date and also effective in
unraveling biologically meaningful biclusters in real data [10,
12], this approach finds only local patterns that are tempo-
rally aligned.

Patterns exhibiting time-lagged relationships among the
expression profiles of different genes are an important aspect
of gene regulation, as target genes are often activated with
a certain time delay rather than simultaneously. Temporal
programs of expression in which genes are activated one by
one in a predefined order are well-known and can be gener-
ated by widespread network topologies, including regulatory
cascades [1]. The identification of time-lagged patterns has
been addressed before [8, 11], but the approaches put for-
ward are hampered by the potential explosion of pattern
combinations which makes exhaustive enumeration unfeasi-
ble. In this work, we discuss the exponential complexity of
a solution for identifying and exhaustively reporting occur-



rences of time-lagged local patterns in temporal data [11].
We further propose heuristic approaches achieving a signif-
icant reduction of the result space. Finally, we show that
the heuristic approaches lead to polynomial solutions which
identify meaningful time-lagged patterns in real data.

2. METHODS
In this section, we first introduce some important concepts

and describe the original CCC-Biclustering algorithm [12]
devised to identify instances of local expression patterns oc-
curring in the same time frame across a subset of temporal
profiles. We then describe an extension of CCC-Biclustering
to enable the identification of instances of local temporal
expression patterns occurring at potentially different start-
ing time points. Finally, we describe interesting heuristic
approaches that prune the result space and thus avoid the
potentially exponential number of maximal CCC-Biclusters
with time-lags that can emerge with exhaustive enumera-
tion.

2.1 Time series gene expression matrix
Let M ′ be an expression matrix defined by a set of genes

(rows), G, and a set of time points (columns), T , where M ′ij
represents the expression of gene i at time point j. Real val-
ues in M ′ are discretized to a set of symbols, Σ, representing
activation levels in a new matrix M . Any discretization is
eligible. A popular approach in the analysis of time series
data [8, 12] consists in converting matrix M ′ into M , where
Mij ∈ Σ reflects the trend between the expression states of
gene i in time points j and j + 1, respectively. In this case,
we use alphabet Σ = {D,N,U}, where D, N , and U denote
down-regulation, no-change and up-regulation (Fig. 1).

T1 T2 T3 T4 T5
G1 0.07 0.73 -0.54 0.45 0.25
G2 -0.34 0.46 -0.38 0.76 -0.44
G3 0.22 0.17 -0.11 0.44 -0.11
G4 0.70 0.71 -0.41 0.33 0.35
G5 0.70 0.17 0.70 - 0.33 0.75

(a) Original matrix.

T1 T2 T3 T4 T5
G1 N U D U N
G2 D U D U D
G3 N N N U N
G4 U U D U U
G5 U D U D U

(b) Discretized matrix.

Figure 1: Time series expression matrices. Illustra-
tive (a) time series expression matrix, together with
its (b) discretized version, using alphabet {D,N,U}.

2.2 Finding Temporally Aligned Local Patterns
We briefly describe CCC-Biclustering, an efficient algo-

rithm for mining temporally aligned local patterns in a time
series gene expression matrix.

2.2.1 (Maximal) CCC-Bicluster
A CCC-Bicluster, MIJ , is defined as a subset of genes I ⊆

G and a subset of contiguous time points J ⊆ T such that
Mij = Mlj , ∀i, l ∈ I and ∀j ∈ J . This means that every gene
in I shares the same expression pattern spanning the time
points in J . A CCC-Bicluster is maximal (Fig. 3) if adding
rows to I violates the coherence of the expression pattern
(row-maximality) and adding a symbol to the beginning or
end of the expression pattern induces changes in I (left-
/right-maximality). CCC-Biclusters pertaining a single row
are biologically uninteresting and are thus discarded.

T1 T2 T3 T4 T5
G1 N1 U2 D3 U4 N5
G2 D1 U2 D3 U4 D5
G3 N1 N2 N3 U4 N5
G4 U1 U2 D3 U4 U5
G5 U1 D2 U3 D4 U5

(a) Transformed matrix.

G1 N1 U2 D3 U4 N5 $1
G2 D1 U2 D3 U4 D5 $2
G3 N1 N2 N3 U4 N5 $3
G4 U1 U2 D3 U4 U5 $4
G5 U1 D2 U3 D4 U5 $5

(b) Strings for suffix tree.

Figure 2: Transformed matrix and strings used in
suffix tree construction: (a) discretized matrix from
Fig. 1(b) after alphabet transformation; (b) strings
obtained from matrix (a) and used to build the tree.
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(a) Maximal CCC-Biclusters in the suffix tree.

T1   T2   T3   T4  T5

G1       N1   U2   D3   U4 N5   

G2       D1   U2   D3   U4 D5 

G3       N1   N2   N3   U4 N5 

G4       U1   U2   D3   U4 U5 

G5       U1   D2   U3   D4 U5 

B4=({G{1,2,4}}, {T{2,3,4}})

PB4 = [U D U]

T1    T2    T3    T4   T5

G1       N1 U2    D3    U4   N5   

G2       D1 U2    D3    U4   D5 

G3       N1 N2    N3    U4   N5 

G4       U1 U2    D3    U4   U5 

G5       U1 D2    U3    D4   U5

B3=({G{1,3}}, {T{4,5}})

PB3 = [U N]

T1   T2   T3   T4    T5

G1      N1   U2   D3   U4   N5   

G2      D1   U2   D3   U4   D5 

G3      N1   N2   N3   U4   N5 

G4      U1   U2   D3   U4   U5 

G5      U1   D2   U3   D4   U5 

B1=({G{4,5}}, {T1})

PB1 = [U]

T1   T2   T3   T4   T5

G1       N1   U2   D3   U4   N5  

G2       D1   U2   D3   U4 D5 

G3       N1   N2   N3   U4 N5 

G4       U1   U2   D3   U4 U5 

G5       U1   D2   U3   D4 U5

B2=({G{1,2,3,4}}, {T4})

PB2 = [U]

T1   T2    T3   T4   T5

G1      N1   U2    D3    U4   N5   

G2      D1   U2    D3    U4   D5 

G3      N1   N2    N3    U4   N5 

G4      U1   U2    D3    U4   U5 

G5      U1   D2    U3    D4   U5 

B5=({G{4,5}}, {T5})

PB5 = [U]

T1    T2    T3    T4   T5

G1      N1 U2    D3    U4   N5   

G2      D1 U2    D3    U4   D5 

G3      N1 N2    N3    U4   N5 

G4      U1 U2    D3    U4   U5 

G5      U1 D2    U3    D4   U5 

B6=({G{1,3}}, {T1})

PB6 = [N]

(b) Maximal CCC-Biclusters in the transformed matrix.

Figure 3: Maximal CCC-Biclusters identified in the
transformed matrix from Fig. 2(a). These are shown
in: (a) the suffix tree built for the strings in Fig. 2(b),
and (b) the matrix from Fig. 2(a).

2.2.2 CCC-Biclustering
To find all maximal CCC-Biclusters, CCC-Biclustering

first performs a simple alphabet transformation that ap-
pends the column number to each symbol in the discretized
matrix (Fig. 2). This transformation ensures that patterns
match only when both the symbol and time point match,
and therefore when the patterns are temporally aligned.
Additional adaptations can be introduced, namely to allow
support for missing values [10]. Regarding the rows of the
transformed matrix as strings, denoting gene expression pro-
files, a generalized suffix tree T [7] is then built to match



the common local patterns in the profiles and identify the
maximal CCC-Biclusters. Such identification relies on the
following relationship between maximal CCC-Biclusters and
nodes in T : every right and row-maximal CCC-Bicluster
with at least two rows corresponds to one internal node in
T and every internal node in T corresponds to one right and
row-maximal CCC-Bicluster with at least two rows. Right-
and row-maximality of the CCC-Bicluster identified by an
internal node v are guaranteed by generalized suffix tree con-
struction. Left-maximality of a CCC-Bicluster identified by
an internal node v is guaranteed when either v has no in-
coming suffix links [7] or it has incoming suffix links only
from nodes for which the number of leaves in their subtree
is equal to the number of leaves in the subtree rooted at v.
CCC-Biclustering uses efficient string matching techniques
to find these nodes and report all maximal CCC-Biclusters
in time linear on the size of the expression matrix.

2.3 Finding Time-Lagged Local Patterns
We address the goal of finding occurrences of the same

pattern which might not necessarily be temporally aligned.
We shall focus on the general case of unbounded time lags,
although alternative definitions are also possible. For com-
pleteness, in this section we present a sample matrix with
some missing values (Fig. 4).

2.3.1 (Maximal) CCC-Biclusters with time lags
We first introduce key concepts and definitions of time

lag, starting pattern and CCC-Bicluster with time lags.

Definition 1 (Time Lag). Absolute difference between
the left-most time points of two distinct occurrences of a
given pattern.

Definition 2 (Starting Pattern). The left-most oc-
currence amongst all occurrences of a given pattern.

Definition 3 (CCC-Bicluster with time lags). A
CCC-Bicluster with time lags MIJ is a CCC-Bicluster such
that Mij = MlJl , for all rows i, l ∈ I and contiguous columns
jl ∈ Jl, where Jl is the set of contiguous columns correspond-
ing to a single occurrence of the pattern in row l and such
that jl = j + lagl and lagl is the time lag between the occur-
rence of the pattern in row l and the starting pattern.

Definition 4 (Maximal CCC-Bicluster time lags).
A CCC-Bicluster with time lags MIJ is maximal if no rows
can be added to I and no contiguous columns can be added
to any Jl, for all l ∈ I, while maintaining the coherence
property in Definition 3. A CCC-Bicluster is maximal if it
is row-maximal, left-maximal and right-maximal.

In an unbounded time lag setting, the range of possible
time lags is artificially bounded by the number of time points
in the time series gene expression matrix, thus [0, |T | − 1].
We further note that the pattern denoted by a given CCC-
Bicluster with unbounded time lags MIJ may occur multiple
times in the expression profile of any gene in I. However,
only one occurrence per gene is considered in the definition
and computation of MIJ .

2.3.2 Maximal CCC-Bicluster node identification
We propose and describe below the three steps of an effi-

cient algorithm enabling the identification of all nodes car-
rying maximal CCC-Biclusters with unbounded time lags in
a time series gene expression matrix.

T1 T2 T3 T4 T5
G1 U D U N
G2 D U U
G3 N U N
G4 U D U U
G5 U U D U

(a) Discretized matrix.

G1 U D U N $1
G2 D U $2

U $2
G3 N $3

U N $3
G4 U $4

D U U $4
G5 U $5

U D U $5

(b) Set of strings.

Figure 4: Discretized matrix and strings for use in
CCC-Biclustering with unbounded time lags: (a) il-
lustrative discretized matrix with missing values; (b)
strings obtained from matrix (a) and used in the suf-
fix tree for CCC-Biclustering with time lags.

Step 1 - Matrix preprocessing and set of strings.
When focusing on local temporal patterns potentially oc-

curring with a time lag, we want any resembling patterns
to match regardless of their starting point. In this context,
alphabet transformation becomes unnecessary and is there-
fore not performed (Fig. 4). Consider that each row of the
discretized matrix is regarded as a string, corresponding to
a temporal gene expression profile. We further deal with
missing values as follows. The string is split into multiple
substrings, taking the symbol denoting a missing value as
the separator character. We append to each substring the
terminator characters denoting the row it originated from.

Step 2 - Pattern matching (suffix tree construction).
Similar to the original CCC-Biclustering algorithm, the

extended version allowing for unbounded time lags also builds
a generalized suffix tree T to find similar variations/values
across consecutive time points in the gene profiles, here
termed temporal local patterns, leading to the identification
of maximal CCC-Biclusters with unbounded time lags.

Step 3 - Identification of promising (maximal) nodes.
We briefly introduce the relationship between internal nodes

in T and maximal CCC-Biclusters with unbounded time lags
in the discretized matrix, based on which the identification
algorithm is constructed (Fig. 5). It can be shown that an
internal node v in T identifies at least one maximal CCC-
Bicluster with (unbounded) time lags if, in addition to the
conditions necessary for a node to identify a maximal CCC-
Bicluster (outlined in section 2.2.2), the number of different
genes (rows) in the subtree rooted at v is at least 2, as set
out in the following definition:

Definition 5 (MaxNode with Time Lags). An inter-
nal node v of T is a MaxNode with time lags iff it satisfies
one of the following conditions:

• It does not have incoming suffix links;

• It has incoming suffix links only from nodes ui such
that, for each ui, L(ui) < L(v);

together with the following condition:

• The number of distinct genes in the subtree rooted at
v is at least two, G(v) ≥ 2.

We motivate the necessity of adding the last condition
as follows. Without the alphabet transformation, a given
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(a) Valid nodes and pattern occurrences in the suffix tree.

T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5

G1 _ U D U N _ U D U N _ U D U N

G2 D U _ U _ D U _ U _ D U _ U _

G3 _ N _ U N _ N _ U N _ N _ U N

G4 U _ D U U U _ D U U U _ D U U

G5 U _ U D U U _ U D U U _ U D U

V3=({G{1,2,3,4,5}}, {T1})

PV3=[U]

V4=({G{1,5}}, {T{2,3,4}})

PV4=[U D U]

V5=({G{1,3}}, {T{4,5}})

PV5=[U N]

T1 T2 T3 T4 T5 T1 T2 T3 T4 T5

G1 _ U D U N _ U D U N

G2 D U _ U _ D U _ U _

G3 _ N _ U N _ N _ U N

G4 U _ D U U U _ D U U

G5 U _ U D U U _ U D U

V1=({G{1,2,4,5}}, {T{1,2})

PV1=[D U]

V2=({G{1,3}}, {T2})

PV2=[N]

(b) Pattern occurrences per valid node in the matrix.

Figure 5: Promising internal nodes and correspond-
ing pattern occurrences in CCC-Biclustering with
unbounded time lags: (a) valid internal nodes in the
suffix tree built for the set of strings in Fig. 4; (b)
occurrences of the pattern denoted by each valid in-
ternal node in the discretized matrix (a).

expression profile (row) can match with itself if the same
pattern occurs at different time points in the profile. As a
result, in the time-lagged setting there can be multiple leaves
associated with the same gene (row) under a given internal
node v in T . Therefore, we can no longer assume that the
branches (guaranteed to be at least two) descending from
an internal node belong to different genes and automati-
cally satisfy the quorum, as in the temporally aligned CCC-
Biclustering case. Alternatively, we calculate and test the
real number of different genes G(v) represented in the leaves
in the subtree rooted at v. CCC-Biclustering with time lags
is based on the identification of all MaxNodes with Time
Lags. The relationship between these nodes and the maxi-
mal CCC-Bicluster with unbounded time lags they identify
is specified by Theorem 1, here presented without proof:

Theorem 1. Every maximal CCC-Bicluster with unbounded
time lags and at least two genes (rows) can be identified using
an internal node in the generalized suffix tree T that satisfies
Definition 5, and each of these internal nodes identifies at
least one maximal CCC-Bicluster with unbounded time lags
and at least two genes (rows).

Based on Theorem 1, all internal nodes of interest v in T
can be identified using a limited number of properties which
are straightforward to compute, namely the number of leaves
and distinct genes in the subtree rooted at v (Fig. 5).

2.3.3 Complexity of node identification
Constructing the generalized suffix tree T for the set of

strings can be done in O(|G||T |) time. Since there are
O(|G||T |) nodes in T , computing the number of leaves and
different genes (rows) under every node v in T also takes
O(|G||T |) time. Likewise, identifying all the internal nodes
corresponding to at least one maximal CCC-Bicluster with
unbounded time lags and at least two genes (rows) can be
performed in O(|G||T |) time. Consequently, the algorithm
is able to find all nodes containing maximal CCC-Biclusters
with unbounded time lags in O(|G||T |) time.

2.4 Reporting Time-Lagged Local Patterns
In the original version of CCC-Biclustering, dealing with

temporally aligned patterns, there could be at most a single
occurrence of the pattern per gene. Since the number of
maximal CCC-Biclusters is O(|G||T |) and the information to
report per CCC-Bicluster is O(|G|), the time necessary for
reporting all maximal CCC-Biclusters would be O(|G|2|T |).

In the time-lagged setting, however, it is possible to find
multiple occurrences of a pattern within the profile of a
given gene at different starting time points. In such case,
the number of maximal CCC-Biclusters with time lags cor-
responds to the number of all possible combinations of the
existing occurrences of the pattern for the different genes. In
the worst case, the number of maximal CCC-Biclusters with
time lags that can be obtained for a given temporal pattern
is therefore O(|T ||G|). This means that the number of max-
imal CCC-Biclusters with time lags can grow exponentially
with the number of genes, |G|, which makes exhaustive enu-
meration unfeasible in most cases of interest. We describe
the complexity of exhaustively generating all possible CCC-
Biclusters with time lags and introduce three alternatives for
delivering the information under each valid internal node v
in T , such that the reporting step becomes tractable.

2.4.1 Exhaustive lagged-CCC-Bicluster enumeration
Exhaustive enumeration takes O(|G|2|T |1+|G|) time in the

worst case, considering that: (i) there can be O(|T ||G|) max-
imal CCC-Biclusters with time lags to report per each of the
O(|G||T |) potentially valid internal nodes in T ; (ii) for each
maximal CCC-Bicluster with time lags, we have to report
O(|G|) genes together with the starting point of the pattern
occurrences for each gene. This combinatorial explosion is
practically challenging and possibly unfeasible. Take the
rather small (5× 5) illustrative matrix in this section as an
example (Fig. 4 and 5), for which we obtain 40 maximal
time-lagged CCC-Biclusters with two genes (rows) (Fig. 6).

2.4.2 Lagged pattern occurrences under valid nodes
If we disregard the definition of maximal CCC-Bicluster

with time lags, we may report only the information con-
tained in the leaves of the subtree rooted at each internal
node marked as valid. We consider two options. First, we
can report the gene identifier for each of the O(|G|) genes in
the subtree of each valid internal node in T , without speci-
fying the starting time points of all the O(|T |) occurrences
of the pattern. This type of reporting takes O(|G|2|T |).



T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5

G1 _ U D U N _ U D U N _ U D U N _ U D U N _ U D U N

G2 D U _ U _ D U _ U _ D U _ U _ D U _ U _ D U _ U _

G3 _ N _ U N _ N _ U N _ N _ U N _ N _ U N _ N _ U N

G4 U _ D U U U _ D U U U _ D U U U _ D U U U _ D U U

G5 U _ U D U U _ U D U U _ U D U U _ U D U U _ U D U

B1=({G{1,2,4,5}}, {T{1,2})

PB1=[D U]

B2=({G{1,3}}, {T{4,5}})

PB2=[N]

B3=({G{1,2,3,4,5}}, {T1})

PB3=[U]

B4=({G{1,2,3,4,5}}, {T1})

PB4=[U]

B5=({G{1,2,3,4,5}}, {T1})

PB5=[U]

G1 _ U D U N _ U D U N _ U D U N _ U D U N _ U D U N

G2 D U _ U _ D U _ U _ D U _ U _ D U _ U _ D U _ U _

G3 _ N _ U N _ N _ U N _ N _ U N _ N _ U N _ N _ U N

G4 U _ D U U U _ D U U U _ D U U U _ D U U U _ D U U

G5 U _ U D U U _ U D U U _ U D U U _ U D U U _ U D U

B6=({G{1,2,3,4,5}}, {T1})

PB6=[U]

B7=({G{1,2,3,4,5}}, {T2})

PB7=[U]

B8=({G{1,2,3,4,5}}, {T2})

PB8=[U]

B9=({G{1,2,3,4,5}}, {T1})

PB9[U]

B10=({G{1,2,3,4,5}}, {T2})

P10=[U]

G1 _ U D U N _ U D U N _ U D U N _ U D U N _ U D U N

G2 D U _ U _ D U _ U _ D U _ U _ D U _ U _ D U _ U _

G3 _ N _ U N _ N _ U N _ N _ U N _ N _ U N _ N _ U N

G4 U _ D U U U _ D U U U _ D U U U _ D U U U _ D U U

G5 U _ U D U U _ U D U U _ U D U U _ U D U U _ U D U

B11=({G{1,2,3,4,5}}, {T2})

P11=[U]

B12=({G{1,2,3,4,5}}, {T1})

PB12=[U]

B13=({G{1,2,3,4,5}}, {T1})

PB13=[U]

B14=({G{1,2,3,4,5}}, {T1})

PB14=[U]

B15=({G{1,2,3,4,5}}, {T1})

PB15=[U]

G1 _ U D U N _ U D U N _ U D U N _ U D U N _ U D U N

G2 D U _ U _ D U _ U _ D U _ U _ D U _ U _ D U _ U _

G3 _ N _ U N _ N _ U N _ N _ U N _ N _ U N _ N _ U N

G4 U _ D U U U _ D U U U _ D U U U _ D U U U _ D U U

G5 U _ U D U U _ U D U U _ U D U U _ U D U U _ U D U

B16=({G{1,2,3,4,5}}, {T2})

PB16=[U]

B17=({G{1,2,3,4,5}}, {T2})

PB17=[U]

B18=({G{1,2,3,4,5}}, {T1})

PB18=[U]

B19=({G{1,2,3,4,5}}, {T2})

PB19=[U]

B20=({G{1,2,3,4,5}}, {T2})

PB20=[U]

G1 _ U D U N _ U D U N _ U D U N _ U D U N _ U D U N

G2 D U _ U _ D U _ U _ D U _ U _ D U _ U _ D U _ U _

G3 _ N _ U N _ N _ U N _ N _ U N _ N _ U N _ N _ U N

G4 U _ D U U U _ D U U U _ D U U U _ D U U U _ D U U

G5 U _ U D U U _ U D U U _ U D U U _ U D U U _ U D U

B21=({G{1,2,3,4,5}}, {T1})

PB21=[U]

B22=({G{1,2,3,4,5}}, {T1})

PB22=[U]

B23=({G{1,2,3,4,5}}, {T1})

PB23=[U]

B24=({G{1,2,3,4,5}}, {T1})

PB24=[U]

B25=({G{1,2,3,4,5}}, {T2})

PB25=[U]

G1 _ U D U N _ U D U N _ U D U N _ U D U N _ U D U N

G2 D U _ U _ D U _ U _ D U _ U _ D U _ U _ D U _ U _

G3 _ N _ U N _ N _ U N _ N _ U N _ N _ U N _ N _ U N

G4 U _ D U U U _ D U U U _ D U U U _ D U U U _ D U U

G5 U _ U D U U _ U D U U _ U D U U _ U D U U _ U D U

B26=({R{1,2,3,4,5}}, {C1})

PB26=[U]

B27=({R{1,2,3,4,5}}, {C1})

PB27=[U]

B28=({R{1,2,3,4,5}}, {C2})

PB28=[U]

B29=({R{1,2,3,4,5}}, {C2})

PB29=[U]

B30=({R{1,2,3,4,5}}, {C1})

PB30=[U]

G1 _ U D U N _ U D U N _ U D U N _ U D U N _ U D U N

G2 D U _ U _ D U _ U _ D U _ U _ D U _ U _ D U _ U _

G3 _ N _ U N _ N _ U N _ N _ U N _ N _ U N _ N _ U N

G4 U _ D U U U _ D U U U _ D U U U _ D U U U _ D U U

G5 U _ U D U U _ U D U U _ U D U U _ U D U U _ U D U

B31=({G{1,2,3,4,5}}, {T1})

PB31=[U]

B32=({G{1,2,3,4,5}}, {T1})

PB32=[U]

B33=({G{1,2,3,4,5}}, {T1})

PB33=[U]

B34=({G{1,2,3,4,5}}, {T3})

PB34=[U]

B35=({G{1,2,3,4,5}}, {T4})

PB35=[U]

G1 _ U D U N _ U D U N _ U D U N _ U D U N _ U D U N

G2 D U _ U _ D U _ U _ D U _ U _ D U _ U _ D U _ U _

G3 _ N _ U N _ N _ U N _ N _ U N _ N _ U N _ N _ U N

G4 U _ D U U U _ D U U U _ D U U U _ D U U U _ D U U

G5 U _ U D U U _ U D U U _ U D U U _ U D U U _ U D U

B36=({G{1,2,3,4,5}}, {T1})

PB36=[U]

B37=({G{1,2,3,4,5}}, {T3})

P37=[U]

B38=({G{1,2,3,4,5}}, {T1})

PB38=[U]

B39=(G{1,5}}, {T{2,3,4}})

PB39=[U D U]

B40=({G{1,3}}, {T{4,5}})

PB40=[U N]

Figure 6: Exhaustive enumeration of maximal CCC-Biclusters with unbounded time lags.



T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5

G1 _ U D U N _ U D U N _ U D U N _ U D U N _ U D U N

G2 D U _ U _ D U _ U _ D U _ U _ D U _ U _ D U _ U _

G3 _ N _ U N _ N _ U N _ N _ U N _ N _ U N _ N _ U N

G4 U _ D U U U _ D U U U _ D U U U _ D U U U _ D U U

G5 U _ U D U U _ U D U U _ U D U U _ U D U U _ U D U

B1=({G{1,2,4,5}}, {T{1,2})

PB1=[D U]

B2=({G{1,3}}, {T2})

PB2=[N]

B3=({G{1,2,3,4,5}}, {T1})

PB3=[U]

B4=({G{1,5}}, {T{2,3,4}})

PB4=[U D U]

B5=({G{1,3}}, {T{4,5}})

PB5=[U N]

(a) Maximal time-lagged CCC-Biclusters using heuristic 1.

T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5

G1 _ U D U N _ U D U N _ U D U N _ U D U N _ U D U N

G2 D U _ U _ D U _ U _ D U _ U _ D U _ U _ D U _ U _

G3 _ N _ U N _ N _ U N _ N _ U N _ N _ U N _ N _ U N

G4 U _ D U U U _ D U U U _ D U U U _ D U U U _ D U U

G5 U _ U D U U _ U D U U _ U D U U _ U D U U _ U D U

B1=({G{1,2,4,5}}, {T{1,2})

PB1=[D U]

B2=({G{1,3}}, {T2})

PB2=[N]

B3=({G{1,2,3,4,5}}, {T4})

PB3=[U]

B4=({G{1,5}}, {T{2,3,4}})

PB4=[U D U]

B5=({G{1,3}}, {T{4,5}})

PB5=[U N]

(b) Maximal time-lagged CCC-Biclusters using heuristic 2.

Figure 7: Maximal CCC-Biclusters with unbounded time lags obtained using: (a) heuristic approach 1 -
choosing the earliest (left-most) pattern occurrence per gene; and (b) heuristic approach 2 - choosing the
earliest starting time point per gene larger than the most frequent starting time point among all occurrences
of the pattern (if non existant, choose the closest starting point smaller than the most frequent one).

Second, we can report the gene identifier for each of the
O(|G|) genes in the subtree together with the starting time
points of all occurrences of the pattern in each gene expres-
sion profile. Reporting this information takes O(|G|2|T |2)
and would allow us to draw a representation such as that in
Fig. 5(b).

2.4.3 Single lagged CCC-Bicluster per valid node
A third alternative consists in reporting a single CCC-

Bicluster per valid internal node in T . In this case, the
reporting step takes O(|G|2|T |) time to generate a maximal
CCC-Bicluster with time lags containing O(|G|) genes, to-
gether with a single time point per gene, for each of the
O(|G||T |) potentially valid internal nodes in T . We present
two distinct heuristic approaches for choosing a single maxi-
mal CCC-Bicluster with unbounded time lags per valid node
in T . Fig. 7 shows the output expected when applying each
of these heuristic approaches to the matrix of Fig. 4.

Heuristic 1 - Left-most occurrence per gene.
Consider the left-most time point among the starting po-

sitions of all the occurrences of the pattern in the subtree
rooted at a valid node v in T as the starting point of a cas-
cade of delayed activations/inhibitions. In this context, it
is reasonable to store for each gene only the starting time
point of the left-most occurrence of the pattern.

Heuristic 2 - Most frequent starting time point.
Consider the most frequent time point among the start-

ing positions of all the occurrences of the pattern in the
subtree rooted at a valid internal node v in T , denoted as
p, as the starting time point of a cascade of delayed activa-
tions/inhibitions. In this context, we propose the following
heuristic approach: for each gene, we always store the start-
ing point of the first occurrence starting at or after p; when-

ever such occurrence does not exist, we store the starting
point of the closest occurrence before p.

2.5 Ensuring Pattern Occurrence Maximality
Using only the information in the subtree rooted at a valid

internal node v in T to compute the CCC-Biclusters with
unbounded time lags may lead to combinations of genes
(rows) and time points (columns) defining non-left maxi-
mal CCC-Biclusters with unbounded time lags. Take as an
example the CCC-Bicluster with unbounded time lags in
Fig. 5, defined by the occurrences of the pattern N at time
point T5 in the expression profiles of genes G1 and G3 found
under node V 2. This CCC-Bicluster with unbounded time
lags is non left-maximal, given that node V 5 defines another
CCC-Bicluster with unbounded time lags with a larger pat-
tern UN occurring in the profiles of the same genes, G1 and
G3, and spanning time points T4 and T5.We must therefore
guarantee that the generated sets of starting points can ef-
fectively be used to compute maximal CCC-Biclusters with
unbounded time lags, in all the cases where we need to re-
port not only the genes but also the starting points of the
occurrences of the pattern.

This is achieved by storing a bit array per internal node,
colors(v), such that each position of the array is set to 1 if
the corresponding occurrence in the subtree rooted at node
v can be used to compute row and column combinations
leading to maximal CCC-Biclusters with unbounded time
lags. Since the size of a colors array is O(|G||T |) and there
are O(|G||T |) nodes in the suffix tree T , computing all colors
arrays takes O(|G|2|T |2) time using a depth-first traversal of
T and computing a bitwise OR of the bit arrays. An update
procedure, also O(|G|2|T |2) is further applied to colors(u),
whenever u has an outgoing suffix link pointing to internal
node v, such that L(u) < L(v) and L(v) > G(v).



Table 1: CCC-Biclusters with unbounded time lags, obtained using heuristic 1 (choosing the left-most oc-
currence per gene under each valid internal node, section 2.4.3). We show only the 10 CCC-Biclusters with
unbounded time lags, obtained using heuristic 1 and yielding the largest number of highly significant Gene
Ontology terms. The CCC-Biclusters are sorted in decreasing order of the number of highly significant terms.

Rank Bicluster ID Pattern #Genes #Time points Starting points #Highly Sig. Terms Best p-value

1 169 NNU 1088 4 {5′, 10′, 15′, 20′, 30′} 35 4.29× 10−23

2 184 NNUU 385 5 {5′, 10′, 15′, 20′} 35 2.67× 10−25

3 224 NNUUN 292 6 {5′, 10′, 15′} 35 2.73× 10−26

4 441 DNNUU 156 6 {5′, 10′, 15′} 32 4.60× 10−10

5 166 NUU 633 4 {5′, 10′, 15′, 20′, 30′} 23 7.90× 10−14

6 176 NUUN 443 5 {5′, 10′, 15′, 20′} 22 4.57× 10−17

7 383 DNN 1269 4 {5′, 10′, 15′, 20′, 30′} 22 8.32× 10−27

8 444 DNNNU 383 6 {5′, 10′, 15′} 22 1.87× 10−15

9 308 NNNUUN 161 7 {5′, 10′} 21 7.25× 10−14

10 399 DNNU 360 5 {5′, 10′, 15′, 20′} 20 8.78× 10−9

3. RESULTS
In order to show the usefulness of the proposed heuristic

approaches, we applied CCC-Biclustering with time lags to
a real expression time series dataset. We used data from
Gasch et al. [5], concerning Saccharomyces cerevisiae’s re-
sponse to heat shock. This data set comprises expression lev-
els of 6142 genes measured at eight distinct time points (5’,
10’, 15’, 20’, 25’, 30’, 40’, 60’ and 80’) for over an hour of ex-
posure to 37◦C. Similar to previous analyses of this kind [12],
we first filtered all genes with missing values and normalized
the expression levels per gene to zero mean and unit stan-
dard deviation. We also discretized the preprocessed matrix
using a technique based on transitions between time points,
proposed by Ji and Tan [8], as previously done in the appli-
cation of CCC-Biclustering to real datasets [12].

3.1 Exhaustive vs heuristic approach
We applied CCC-Biclustering with unbounded time lags

using both exhaustive enumeration (section 2.4.1), and the
heuristic approach choosing the left-most starting point among
all the pattern occurrences per gene (corresponding to heuris-
tic 1, as described in section 2.4.3). Our tests were per-
formed in a machine equipped with an Intel R© i7-3632QM
CPU and 8GB of RAM running Windows 8 64-bit, which can
be considered a reasonably accessible user setting in a mod-
ern biology lab. To provide estimates in a real-world context,
we integrated and tested the algorithms in BiGGEsTS, our
freely available software providing methods for biclustering
analysis of time series gene expression data [6]. The exhaus-
tive version rapidly reached the amount of memory available
in the system and did not finish computing due to an out of
memory error (maximum heap size limit exceeded). For the
same input, the heuristic version completed its computation
in less than 5 minutes (including time for additional opera-
tions, such as bicluster counting and function analysis), with
the software staying always under 1GB of memory usage.

3.2 Heuristic results
We provide a brief overview of the results obtained using

CCC-Biclustering with unbounded time lags. In this case,
we chose to report only one CCC-Bicluster with unbounded
time lags per valid internal node according to heuristic 1
(section 2.4.3). This means reporting only the left-most oc-
currence of the temporal expression pattern per gene under

each valid internal node (MaxNodewithT imeLags). We re-
stricted the search to CCC-Biclusters with at least 10 genes
and 4 time points, in order to focus on reasonably sized bi-
clusters which are more interesting from the biological per-
spective. The algorithm delivered 569 CCC-Biclusters with
unbounded time lags and at least 10 genes and 4 time points.

3.2.1 Statistical significance of functional annotations
We further assessed the agreement of the functional an-

notations of the genes in each CCC-Bicluster by computing
the statistical overrepresentation of Gene Ontology (GO)
terms [3]. Using the Ontologizer package [14], we calculated
a p-value expressing the significance of the ratio of genes
annotated with the term in the CCC-Bicluster against the
ratio of genes annotated with the term in the population,
based on the hypergeometric distribution. To the result-
ing p-value we applied a Bonferroni correction for multiple
testing. For this purpose, we used the most recent ontol-
ogy and annotation files downloaded from the Gene Ontol-
ogy repository on May 20, 2013. For approximately 1/6 of
the CCC-Biclusters, there was at least one highly signifi-
cant function (corrected p-value < 0.01). Table 1 presents
the 10 CCC-Biclusters with unbounded time lags yielding
the largest number of highly statistically significant terms,
sorted in decreasing order of this number. This can promote
biclusters with shorter and therefore less specific patterns,
aggregating genes annotated with a large number of GO
terms, to the top. We note, however, that biclusters can
alternatively be sorted according to a wide range of crite-
ria, such as pattern length and pattern p-value, among oth-
ers [6]. Each row corresponds to a given CCC-Bicluster and
the different columns show the following information: ‘Rank’
denotes the CCC-Bicluster rank in the sorted list, ‘Biclus-
ter ID’ denotes the sequential CCC-Bicluster ID attributed
by the algorithm, ‘#Genes’ denotes the number of genes in
the CCC-Bicluster, ‘#Time points’ denotes number of time
points in the CCC-Bicluster, ‘Starting points’ contains the
time points where occurrences of the CCC-Bicluster pattern
start (without specifying in the profiles of which genes), and
‘#Highly Sig. Terms’ denotes the number of highly signif-
icant terms. In the last column, ‘Best p-value’, the table
shows the best corrected p-value calculated for a term an-
notated with the genes in each CCC-Bicluster. Note that,
due to the discretization based on variations between time



(a) Pattern UUNNND starting 5’,10’, and 15’. (b) Pattern UUNDN starting at 5’ and 10’.

(c) Pattern NDUDN starting at 5’,10’, and 15’. (d) Pattern NNNUUN starting at 5’ and 10’.

(e) Pattern DNNUU starting at 5’,10’, and 15’. (f) Pattern DNNNU starting at 5’,10’, and 15’.

Figure 8: Expression profiles of the genes in several CCC-Biclusters with unbounded time lags.



points, each symbol in the pattern denotes a variation be-
tween two consecutive time points and therefore the number
of time points is always one unit larger than the number of
symbols in the pattern.

3.2.2 Temporal expression cascades
We isolated the expression profiles of the genes in the

CCC-Biclusters with unbounded time lags obtained using
heuristic 1 (section 2.4.3). Within each CCC-Bicluster with
time lags, we further restricted the expression of each group
to the time points where the temporal pattern of the CCC-
Bicluster with time lags has been identified by the algorithm
(Fig. 8). In Fig. 8, we can clearly observe the coherence of
expression profiles among the genes within a given CCC-
Bicluster with time lags. The expression charts further ex-
pose the existence of temporal delays between the patterns
of different sets of genes within a bicluster, confirming that
the proposed heuristic approach effectively captures this well
known phenomenon of temporal cascades in gene regulation.
A more thorough biological analysis is out of the scope of
this paper, but is envisioned as future work.

4. CONCLUSIONS
In this work, we discussed the complexity of identifying

and reporting all maximal CCC-Biclusters with unbounded
time lags in a time series gene expression matrix. Essen-
tially, using exhaustive enumeration, the mentioned biclus-
ters are obtained by identifying and computing all valid com-
binations of instances of local temporal patterns potentially
occurring with a time lag in the expression profiles of multi-
ple genes. Due to the combinatorial explosion of the result
space, this computation is unfeasible in most cases of inter-
est. For the same reason, available algorithms exhibit expo-
nential time complexity [8, 11]. We addressed this issue by
proposing heuristic approaches for time-lagged biclustering,
which are biologically reasonable and enable a significant
reduction in the result space. Any of the new strategies pro-
posed in this document to report occurrences of time-lagged
local patterns found in gene expression time series guaran-
tees that the algorithm runs in polynomial, rather than ex-
ponential, time on the size of the input. Using real data,
we further showed that the heuristic version was able to: (i)
compute successfully in a regular desktop machine for an
input that the exhaustive version could not handle without
quickly exceeding the total amount of memory available in
the system; (ii) retrieve interesting cascades of time-lagged
patterns, whose genes were found to be functionally related.
As future work, we aim to: fully integrate these heuristic
approaches into our software BiGGEsTS [6] (only exhaus-
tive enumeration has been made available to date); and test
the different heuristics more extensively and on additional
datasets, potentially relating to distinct domains of knowl-
edge.
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