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ABSTRACT
Engineering a city-wide ubiquitous computing system requires a
comprehensive understanding of urban infrastructure including phys-
ical motorways, vehicular traffic, and human activities. Many world
cities were built at different time periods and with different pur-
poses that resulted in diversified structures and characteristics, which
have to be carefully considered while designing ubiquitous com-
puting facilities. In this paper, we propose a novel technique to
study global urban infrastructure, with enabling city-wide ubiqui-
tous computing as the aim, using a massive data-driven network
of planet-scale online web-cameras and a location-based online
social network service, Foursquare. Our approach examines six
metropolitan regions’ infrastructure that includes more than 800
locations, 25 million vehicular mobility records, 220k routes, and
two million Foursquare check-ins. We evaluate the spatio-temporal
correlation in traffic patterns, examine the structure and connectiv-
ity in regions, and study the impact of human mobility on vehicular
traffic to gain insight for enabling city-wide ubiquitous computing.

Keywords
Urban Infrastructure, Vehicular Traffic, Network Science

Categories and Subject Descriptors
H.2.8 [[Database Management]]: Database Applications-Data min-
ing, Image databases, Spatial databases and GIS.

General Terms
Experimentation, Human Factors, Measurement.

1. INTRODUCTION
Ubiquitous computing is deemed vital for the development of

environment friendly and sustainable smart cities. It’s use has been
realized for example, in electronic road payment systems, computer-
driven mass transits, smart-postal, and mobile networks [1, 11]. On
the other hand, the urban infrastructure such as geographical spread
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and road networks will influence the design and deployment of such
ubiquitous computing systems on urban scale [11, 17]. Hence, this
tight coupling calls for a thorough understanding of urban infras-
tructure for the realization of city-wide ubiquitous computing ef-
fort. There are several factors that impact the understanding of
urban infrastructure. In general, the topological features to study
the infrastructure of an urban setting primarily involves it’s geo-
graphical spread and area, network of motorways, structures (such
as buildings and dams) and human population density. In this re-
gard, many studies have examined a stark difference among self-
organized cities that are evolved because of some historical pro-
cesses versus those that are the result of a single-plan, mostly pro-
ducing a grid-like structure. The historical cities have observably
more densely packed network of intersections and small motor-
ways, less fragmented and decentralized geographic expansion [3,
4, 16]. They are also more populated, inhabited, and demonstrate
more complex and dynamic eco-systems. On the other hand, man-
made designed cities are more structured with evenly distributed
spatial flows and sparse landscaping. Other meta-physical factors
such as globalization, socio-economic and financial viability, tech-
nological advancement, and politics also affect our understanding
of urban infrastructure. Moreover, these diversities bring a prin-
ciple challenge to design and develop practical tools [5] for mea-
suring and quantifying their interacting effects, popularly known
as emergent properties. In addition to this, the evaluation crite-
rion should be generic enough to apply to any setting (urban in-
frastructure). Essentially, a study of these activities will provide a
significant insight for enabling city-wide ubiquitous computing en-
vironment. For instance impact of aforementioned features are well
documented for Singapore and Korea in [1]. Several other studies
have also shown idiosyncrasies in deployed systems based on the
structure and function of urban infrastructure [8, 7].

Recently, Department of Transportation (DOTs) across several
metropolitan areas have started to deploy traffic web-cameras.
These cameras are strategically located and positioned towards mo-
torways to enable the monitoring of vehicular traffic. At a constant
interval, they capture snap-shots of traffic conditions, which are
then available for viewing on DOTs’ media servers. We have col-
lected and processed more than 25 million such images to generate
longitudinal time series dataset of traffic densities for more than
800 locations spread in six regions (Connecticut, London, Seattle,
Sydney, Toronto, and Washington D.C.) around the world. In this
paper, we harness the power of these cameras and use this dataset
to study vehicular traffic conditions and use cameras’ geo-graphical
spread to analyze the topological properties of these regions. In the
current scenario, Online Social Networks (OSNs) such as Facebook
and FourSquare are tightly integrated with our life-style. They pro-
vide numerous ways to share our diurnal patterns, presence and



movements with the rest of the world. In order to study the hu-
man dynamics in these six regions, we have collected anonymous
spatio-temporal footprints of human activities through FourSquare.
In this work, we integrate these two different datasets (Vehicular
and Human) and use generic tools such as network centrality to
comprehensively study and reason the urban infrastructure of these
six regions. By the way, these regions are a mix of planned man-
made cities and self-organized historical cities, as discussed before.

In our approach, we first examine the nature of vehicular traf-
fic. In that we study traffic patterns (regular or random), evalu-
ate traffic correlations across all location pairs and their stability
(auto-correlation) in their region. We also locate hotspots (conges-
tion prone zones) and similar traffic locations in individual regions.
Second, we examine the spatial features of these locations. In that
we correlate travel distance and time in these locations and reason
about reachability. Then we turn the geographical map of these
regions into network graphs. We employ various centrality mea-
sures [12] in order to access the structure and connectivity that have
a big impact on the behavior (topology) of the system. Finally, we
examine the human dynamics with vehicular traffic on these loca-
tions and reason and study their correlation in urban settings. To
summarize, our contributions are:

• We propose a novel data-driven technique to use global in-
frastructure of traffic cameras to perform a longitudinal study
of urban infrastructure.

• We provide a comprehensive study into the topological fea-
tures by integrating diversified data of vehicular traffic, urban
streets, and human dynamics. In future, we plan to release
this dataset to the research community.

• Our approach has involved the use of generic and systematic
techniques that can be scaled and used in any settings.

The rest of the paper is organized as follows: Section 2 has de-
tails of dataset and processing techniques. In Section 3, we examine
traffic patterns and in Section 4, we perform network evaluation of
urban street maps. In Section 5, we study human dynamics with ve-
hicular density patterns and finally Section 6 concludes our work.

2. MEASUREMENT AND VEHICULAR DEN-
SITY ESTIMATION

Table 1 summarizes the dataset used in this research; six re-
gions/cities, the time span of the samples, the sampling rate and
the number of camera’s/sample locations. On average, we down-
load 15 gigabytes of imagery data per day from over 2,700 traffic
cameras, with an overall dataset of 7.5 terabyte containing around
125 million images. In this paper, we have selected six regions with
similar time granularity of traffic snap shots, as shown in Table 1.
The subset of dataset used has 25M records. Figure 1 shows the
distributed system architecture for vehicular imagery collection on
planet-scale that we have built at Deutsche Telekom Labs, Berlin.
Figure 2 shows a geological snapshot of the cameras deployed in
London and Sydney, as an example. The area covered by the cam-
eras in London is 950km2 while that in Sydney is 1500km2. Fi-
nally, note that since these cameras do not have night vision, we
limit our study to the hours between 7am and 6pm.

2.1 Background Subtraction
The snapshots taken by every traffic camera (at intervals ranging

from 20-60 seconds) first pass a background estimation and sub-
traction phase. These are then used to estimate the traffic density
arriving per unit time as opposed to a car count. While a car count
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Figure 1: Distributed system architecture for vehicular im-
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Figure 2: Traffic cameras in London and Sydney. The red dots
show the location of cameras deployed giving an idea of their
distribution in the city.

might seem preferable to a traffic density measure, there are several
practical challenges. A car count requires a far greater computa-
tional cost due to the effort required to isolate each object. Traf-
fic congestion further complicates matters when cars occlude each
other, making it difficult to segregate cars based on edge structures.
In addition, vehicles at the far end of the road are small in the image
and cannot be detected by these algorithms.1

Background subtraction is a standard method for object localiza-
tion in image sequences with fixed cameras, where the frame rate is
lower than the velocity of the objects to be tracked (i.e. cars move
out of the scene typically at a rate exceeding 1 minute). The mod-
els of background are based on the observation that background
does not change significantly (in comparison to foreground/objects)
across time. Any part of an image that does not fit with that model
is deemed as foreground/object. These foreground regions are then
further processed for the detection of desired objects. The back-
ground model used here assumes that the distribution of background
pixel values may be modeled as a weighted sum of Gaussian distri-
butions. Our approach follows closely to those proposed by [2, 13,
14] because of their reliability and robustness to sensitive changes
in the lighting conditions. In our approach, the observed pixel value
is modeled by a weighted sum of Gaussian kernels. Let xt repre-
1Another solution could be to only count cars that are close to the
camera; while this is definitely an option for video data, for snap-
shot data it would result in those distant cars having left the scene
before the next snapshot; the net effect being that the maximum ob-
served car count at a junction is truncated causing problems in the
multivariate analysis later on.



Table 1: Global Webcam Dataset
Region # of Cameras Duration Interval Records Database Size Routes

Connecticut 120 21/Nov/10- 20/Jan/11 20 sec. 7.2 million 435 GB 74,801
London 182 11/Oct/10 - 22/Nov/10 60 sec. 1 million 201 GB 32,580
Seattle 121 30/Nov/10 - 01/Mar/11 60 sec. 8.2 million 600 GB 7,656
Sydney 67 11/Oct/10 - 05/Dec/10 30 sec. 2.0 million 350 GB 4,422
Toronto 89 21/Nov/10 - 20/Jan/11 30 sec. 1.8 million 325 GB 43,055

Washington 240 30/Nov/10 - 01/Mar/11 60 sec. 5 million 400 GB 59,809
Total 819 - - 25.2 million 2311 GB 222323

Table 2: Summary of regression analysis
Camera df β0(α = 0.95) β1(α = 0.95) R2 p ρ

1 100 -1.19±0.046 0.03±0.003 0.7922 0 0.91
2 100 -3.25±0.130 0.09±0.007 0.8579 0 0.92
3 100 8.16±0.045 0.10±0.005 0.9308 0 1.00
4 100 8.16±0.045 0.10±0.005 0.9308 0 1.00
5 100 8.16±0.045 0.10±0.005 0.9308 0 1.00
6 100 -2.13±0.112 0.07±0.008 0.7499 0 0.88

sent a pixel value in the tth frame, then the probability of observing
this value is assumed to be:

p(xt) =

K∑
i=1

wt
i ∗ N (µi,t,Σi,t) (1)

where N (µi,t,Σi,t) is the ith kernel with mean µi,t and covari-
ance matrix Σi,t, and wt

i is the weight applied to that kernel such
that

∑
i w

t
i = 1. We assume that RGB channels are uncorrelated

thus the covariance matrix for each kernel is diagonal.2 When a
new frame arrives, the pixel values are compared to the kernels to
determine if it is likely that this value was drawn from a distribution
with N (µi,t,Σi,t) (using for example a 95% confidence interval).
If so, µi,t, Σi,t and wi are updated using exponential filters; if not,
a new kernel is created and the existing kernel with the lowest wi

is eliminated (see [14] for specifics). Short lived kernels and their
associated pixels are deemed to be possibly foreground producing
a binary map. Morphological operations are then applied to this
map to remove noise and any blobs with area smaller than a certain
threshold. The view of most cameras used in this study is along the
direction of the road and this perspective skews the size of objects
on an image [6]. To counter this effect, we weigh each foreground
pixel with the exponent of it’s distance from the bottom of the im-
age. Thus a pixel in the bottom of the image will be weighted less
(objects appear larger at the bottom than on the top) than a pixel at
the top. While this weighting is not exact and does produce some
warping as we shall see in the ground truth validation section; the
warping is not excessive given the advantage that weighting is sim-
ple and does not require manually tuning at each camera.

2.2 Ground Truth for Validation
To test the performance of the car density capture, six cameras

were selected at random and 102 images from each were examined
by hand to produce a ground truth count for the number of cars.
This ground truth was then regressed against the measured car den-
sity to check if the relationship is linear. The regression from one
camera is shown in Figure 3 and shows a reasonable fit. There are
some outliers, especially at low levels of traffic and there also ap-
pears to be a slight non-linear relationship between the ground truth
and measured car density due to the warping effect of perspective
(discussed above). Table 2 shows the summary statistics for the
regression analysis including Spearman’s correlation coefficient, ρ,
which seems to imply that there is a perfect monotonic non-linear
2Thus reducing the number of unknown parameters.

Figure 3: A comparison of traffic densities with number of cars.

correlation for camera’s 3 to 5.3 Overall, the analysis shows that
while there are some errors, the relationship between the actual and
measured number of cars is statistically accurate.

3. SPATIO-TEMPORAL ANALYSIS
In this section, the characteristics of the traffic data are analyzed

across time and location; spatio-temporal analysis. To begin, Fig-
ure 4 shows the average density for all cameras for two cities; Syd-
ney and London. As can be seen there is an expected diurnal pat-
tern; a morning and evening rush hour. However, the time series
also exhibits a high variance as can be seen by the 95% confidence
intervals (dashed line). This underlies the fact that while a strong
diurnal pattern is evident on average days, this may not be the case
for some particular days. Comparing the two cities, it is interesting
to note that Sydney has a significantly lower average than London
but a higher variance. This is contrary to typical time series where
a higher mean is usually accompanied by a higher variance. The
most likely explanation is that in a city with high congestion there
is little room for maneuver; the city is quite simply congested ev-
ery day and so the traffic density every day looks broadly similar.
The implication of this behavior is that with future efforts to relieve
congestion, comes increased difficulty in predicting congestion.

The next step examines the daily patterns in the average density
for a city to see if the large variabilty observed in Figure 4 can be
explained. The data is decomposed into a 30 × 12 matrix of 30
daily patterns, each 12 hours long. A Kohonen neural network is
then used to classify these 30 daily patterns into groups called day-

3The other notation in Table 2 is standard regression notation: df
denotes the degrees of freedom. α and β are the regression coef-
ficients as y = αx + β, R2 is the % of variance explained, see
Equation eqn:r2, p is the p-value.
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Figure 5: Kohonen results: (a) Kohonen map for Sydney show-
ing 2 days (b) the 2 patterns associated with two peaks in (a).

types. A Kohonen neural network is composed of a grid of output
points (in this case a 2-D grid) where each grid point has an as-
sociated pattern; the patterns in adjacent grid points being similar.
When a pattern is presented as input to the network it is compared
to the grid patterns and the closest match is declared the winner.
The training algorithm consists of beginning with random patterns
on the grid points and adjusting the (at first random) winner and its
neighbors until the data has been sifted into its constituent groups.
The specific algorithm used here is explained in detail in [9]. Fig-
ure 5(a) shows the resulting map constructed from the Sydney data
set. As can be seen, there are two very distinct day-types in the
data covering approximately half the data each. The corresponding
patterns at those two grid locations are also shown in Figure 5(b);
these are the archetypal day-types. These show an intriguing re-
sult; for day-type one (solid black), the evening rush is roughly the
same as the morning rush with the expected lull in the middle; for
the second day-type however, the morning rush is dominant with a
larger peak than expected during the afternoon and an evening peak
that is much less than the morning rush. The second day-type can
be partially explained by the weekends but not completely so (as it
accounts for almost half the data), thus the traffic in this data set is
not as predictable as originally may have been assumed. For traffic
management it is obviously important to know the different day-
types that exist in the network and when they are likely to occur.

In general, it has been observed that vehicular traffic has certain
pattern and show periodicity in nature. In order to enable ubiqui-
tous computing, it is important to study and quantify them. Partic-
ularly, we ask following questions:

Q.1: What does the traffic distribution look like across several hours
for multiple days?
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Figure 7: A CDF showing the distribution of traffic densities
that are correlated across the locations.
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Figure 8: A CDF showing the distribution of average auto-
correlation (weekdays) for locations of six cities.

Q.2: How is the traffic distributed across several locations of a
region?

Q.3: How is the traffic correlated with itself? Is the traffic pre-
dictable?

In order to answer the first question, we hourly sample the traffic
dataset for a period of 42 days and study their density distribution
patterns. The results indicate that cameras have varying traffic dis-
tribution against the popular notion of ‘rush hours’. In Figure 6, we
show the traffic density distribution from four sampled cameras. It
is evident that Figure 6(a) has very low traffic throughout the 12-
hours period for all 42 days. In Figure 6(b), consistently high traffic
is recorded for a street in London, with relatively less traffic dur-
ing the weekends (day 7, 14, 21 on weekends). We also find the
periodicity in traffic during the morning and evening hours in case
of Sydney, as shown in Figure 6(c). Thus, here the temporal ac-
tivity reaches its maximum value during the morning and evening
hours while it is low during the afternoon hours. Finally, some ran-
dom patterns are observed in Figure 6(d). In general these results
reject the notion of one-size-fits-all and provide essential input in
deploying the ubiquitous system that conforms to periodicity.

To answer the second question, we perform correlation analy-
sis of traffic time series for all pairs of locations of a region. Our
results in Figure 7 indicate that traffic distribution across 50% of
Toronto’s locations is 75% correlated and 60% of Seattle’s location
is 50% correlated. It make sense that the correlations are high, since
many cameras that are deployed in these two regions are on high-
ways, which generate consistent traffic patterns. In case of Sydney
and London, we find that deployed cameras are within city limits
(business places and residential area) and believe to have uncorre-
lated traffic distribution patters. These results provide an important
insight into the categorization of various motorways based on the
distribution of traffic that is correlated to each other. In Figure 9,
we point out similar traffic patterns (same color bulbs) for Sydney



(a) Low Traffic Density (b) High Traffic Density (c) Periodic Traffic Density (d) Random Traffic Density

Figure 6: Several variations in traffic densities across six-weeks traffic monitoring is shown. Fig-(a) show relatively mild traffic
during various hours of the day, while (b) show high traffic recording for the full trace periods. In Fig-(c) we find a regularity
patterns during the morning and evening hours when the traffic is relatively higher than afternoon intervals. A random traffic
characterization is recorded in the last.

(a) Sydney (b) Toronto

Figure 9: (a) Sydney traffic similarity. (b) Hot-spots in Toronto.

Table 3: Parameter and Details
δ Driving distance between two locations
θ Driving time between two locations
β Betweenness score
χ Closeness score
π Page Rank score
µ Average
σ Std. Deviation
ρ Correlation

and high intensity traffic (hotspots) locations in Toronto.
Next, to answer the third question, we sample the traffic of each

location and calculate auto-correlation function to examine the vari-
ability in the patterns across several weekdays. The result of this
analysis is shown in the Figure 8. We find that for Seattle, Toronto,
and Connecticut the traffic is highly auto-correlated. While for
London, we have registered some variation during the weekdays,
and the least auto-correlated are Sydney and Washington D.C., where
the traffic is nearly 70% autocorrelated with 40% of their individual
locations (region wise).

These findings are very interesting for Seattle and Toronto, where
the distribution of traffic is not only correlated among its locations,
but also highly correlated with itself for individual locations (more
predictable). While Sydney and London demonstrate lot of vari-
ance in their auto-correlations and correlations across several loca-
tions. Overall, we believe, this study will provide lot of insight into
the deployment of ubiquitous systems such as self-driving vehicles
and transit systems.

4. NETWORK ANALYSIS
In this section, we perform spatial analysis of motorways and

intersections to study geographical spread, connectivity, and city
dynamics. The details of the routes used in this study are listed in
Table 1. For more information regarding route calculation, please
refer [15]. First, we examine travel distance and time among all
locations of individual regions. Second, we turn urban street map
of regions into network graphs, and use measures of centralities to
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Figure 12: A CCDF of distance and time between locations.

study the structure and function of networks. Here, we want to em-
phasize the use of travel distance and driving time in location pairs,
which helps to focus the analysis only on the motorways, which are
taken frequently. This provides an insight into the realistic nature
of traffic movements than examining entire cities with infrequent
routes [3, 4].

4.1 Distance and Time Analysis
In general the travel distance and time of commuters are signifi-

cantly influenced by the city size and its interconnection of motor-
way networks [10]. In case of slow connectivity and congestion,
movement shifts to carpooling and rider-sharing approaches.

The first glimpse of the distribution of travel distance and cor-
responding time in shown in Figure 10. In order to have a perfect
correlation between the travel distance and time across all locations
of a region, the scatter plot should be centered around the linear
fit as visible for Toronto, whose correlation coefficient is 0.97 and
shown in Table 4. A good correlation is also found for Connecticut
and Seattle where cameras are mostly deployed on highways that
have constant speed traffic for long distances. While most of the
cameras, which are deployed inside the city of Sydney and Wash-
ington D.C. might have more signals and business spots that tend
to have slow speed limits and therefore long time to travel short
distances, we expect traffic congestion to occur where slow and
fast distances meet in these network. We also quantify the cross-
correlation between the travel time and distances for the six regions,
and their results are shown in Table- 4. The table also provides an
insight into the average travel distances and time for these regions.
Many statistics can be learned from this Table, for example the av-
erage deviation in the distance and time. In Figure 12, we show the
CCDF of the travel distance and time for the six regions. We find
that except Toronto, all other regions have short travel distances,
while in Toronto’s the average distance is 5 km. In case of travel
time, all journeys occur in less than 100 minutes with an exception
of Toronto. These results indicate that locations with low correla-
tion are prone to traffic congestion.

4.2 Network Theory
We examine the structure of motorways using network theory.

We represent locations of a region by the vertices of a graph and
motorways connecting these locations are represented by the cor-
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(c) Seattle
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(e) Toronto
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(f) Washington D.C.

Figure 10: A scatter plot for distance vs. time for six regions with linear fit.

Table 4: Results for spatial, temporal and network analysis.
Region µδ σδ µθ σθ ρ(δ, θ) µβ σβ µχ σχ µπ σπ

Connecticut 60440 34219 42 23 0.88 2259 3679 124 55 0.003 0.0011
London 15605 9737 26 12 0.81 838 1211 98 36 0.005 0.002
Seattle 31126 16427 23 10 0.88 316 477 52 22 0.009 0.004
Sydney 32937 21026 34 16 0.78 127 179 45 16 0.015 0.005
Toronto 125596 148192 75 93 0.97 1879 2659 65 33 0.0048 0.0018

Washington D.C 14611 9040 17 8 0.74 781 1082 186 70 0.004 0.001

responding edges of the graph. In order to study the influence of
locations and certain motorways, we count the number of times a
motorway is adopted; then assigning the equivalent weight to the
corresponding edge in the network graph. Such a representation
helps to identify critical junctions and motorways that are prone to
congestion, infrequently taken routes and the overall structure of
motorway networks.

Network theory has been used in many different places, where
the relationships are modeled using network graph and many algo-
rithms are applied on the top of that in order to examine the con-
nectivity, structure, and function of such networks. In this paper,
we focus our analysis on measures of centralities that tells, which
locations are most central to the network. We are using thee main
measures: (i)Betweennness, (ii) Closeness, and (iii) Page Rank.
Betweenness centrality measures the extent to which a location lies
on a route when moving among other locations. The most visited
locations have a high betweenness score and have considerable in-
fluence on the connectivity of the road network. Such locations
when congested or closed may cause considerable disruption of
traffic across the motorway network. In this study, we use the be-
tweenness centrality to discover locations that are highly visited
and are deemed important for an efficient route discovery among
pairs of source and destination. Closeness centrality measures the
mean distance from one location to another. In our case, this cen-
trality helps to identify locations and motorway routes that are in-
frequently taken and henceforth can aid as alternate routes in case
of congestion on the most between locations. These routes are
important for evacuation route planning and identifying alternate
routes for a city where crisis can bring the traffic to a halt on ma-
jor routes. We use Page Rank centrality in order to examine the
nearest locations that contribute traffic as well as experience the

traffic load from nearby locations and motorways. Since formation
of congestion is an emergent process, Page Rank centrality can help
to identify the tipping points in the network that have the potential
to disrupt the traffic at the most between locations and motorways.
For more information, interested readers can refer [12].

4.3 Network Theory Analysis
We start our analysis by looking at the distribution of various

centralities for the city of Sydney in Figure 11. We find that loca-
tions 31 and 21 are the most visited locations and their betweenness
score is higher than the other locations. It turns out that the loca-
tion 21 is Sydney bridge that connects two different islands and
31 serves as a major highway (M2) that provides entry and exit
points inside the city. In Figure 11(b), the locations that are less
frequently visited are the end points of the graphs. Finally, using
the page rank centrality, we are able to identify locations that can
contribute traffic to most-between locations. As evident, location
64 that is directly connected to 21 and provides entry and exit to
the south eastern part of Sydney. We find similar results for other
regions as well. In Table 4, we provide the quantitative numbers
for the centralities. In general, we find large deviation from the av-
erage values indicating that the networks have skewed connectivity
and traffic distribution. We show the distribution of locations with
all three centralities in Figure 11. Our results show that in all cities
there are at least 2-3 locations that have high very high centralities
and henceforth are critical in maintaining the connectivity of the
network.

This analysis provides lot of insight into the connectivity of mo-
torways and locations. The results indicate that Sydney, London
regions have high betweenness scores and are prone to congestion.
On the same lines results of Page Rank centrality show that traffic
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Figure 11: Centrality distribution for Sydney
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(f) Washington D.C.

Figure 13: The scatter plots show the distribution of three centralities for six regions.
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Figure 14: A CDF plot show the distribution of vehicular traffic
density to FourSquare check-ins.

is emergent in nature and the evidence of traffic present at high be-
tweenness locations can be attributed to the traffic that has passed
through the location with high Page Rank centrality. We believe
our analysis will open new ways to study the traffic patterns for
futures cities and aid in the deployment of ubiquitous systems.

5. SOCIAL ANALYSIS
In this section, we study correlations between the density dis-

tribution of pedestrians (humans) through Online Social Networks
(OSN) and vehicular traffic. It can be argued that vehicular traffic is
a function of human activity in many places such as business cen-
ters, museums, and downtowns. Also, human crowd aggregation
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Figure 15: A bar plot that compares the traffic densities to
FourSquare check-ins for the city of London.

can aid in developing better prediction models for vehicular traf-
fic congestion. In order to get the data of human activity, we use
FourSquare OSN. FourSquare is a location-based social network-
ing website for mobile device users. FourSquare provides users
a facility to perform check-ins (mark spatio-temporal presence) at
venues (locations they visit, such as restaurants, museums, etc.)
in order to help keep up with friends and discover nearby places.
We count anonymous check-ins that have been occurred at venues,
which are near to the deployed camera locations. This activity helps
to quantify the number of humans present in vicinity of cameras.

We study the distribution of check-ins and vehicular traffic den-
sity for only those locations, where human activity can takes place.



Table 5: FourSquare Data
Region Number of Venues # Checkins
London 9055 1765181
Sydney 3350 20274

Washington D.C 11496 1982339

After filtering, we found that three regions, London, Sydney, and
Washington D.C. are better suited for this analysis, as most of the
cameras are situated in city limits and near business locations. In
Table 5, we give the total number of venues and check-ins recorded
for these regions. For a fair comparison, the time period of check-
ins matches the time period of recorded vehicular densities.

5.1 Analysis
We show the CDF distribution of vehicular density and corre-

sponding FourSquare check-ins at camera locations of London re-
gion in Figure 14 (Similar results were observed in Sydney and
Washington D.C.). Our results indicate that traffic density and
FourSquare check-ins are positively correlated for all the three re-
gions. Although, in case of London, locations around 110 and 150
show some deviation in correlation values and in Sydney some de-
viation occurs at locations 18 and 60, in general the aggregate re-
sults are representative of the assumption that FourSquare checkins
are corelated to the traffic densities in the selected urban areas of
all three regions. The histogram in Figure 15 gives a distribution
of traffic densities against the Foursquare checkins. We find that
the results show that human activity is highly correlated (80% for
London) with vehicular traffic.

6. CONCLUSION
In this paper, we study the urban infrastructure to enable city-

wide ubiquitous computing. We have used the power of global
traffic web-cameras, urban street maps and human dynamics to
quantify the urban settings of six metropolitan regions around the
world. Our vehicular data set has more than 25 million traffic den-
sity records, urban street data set has more than 200 thousand routes
and human dynamics data is comprised of more than 2 million
spatio-temporal check-ins. In this regard, our findings are (i) Ur-
ban traffic shows a multitude of traffic patterns beyond the normal
rush hour concept. We found regions that initially have no traffic
but end up with heavy traffic and vice versa. We also find that ve-
hicular traffic is relatively stable and predictable during weekdays.
Historical cities like London show a large deviation in travel dis-
tances and time indicating uneven distribution of traffic speed and
relatively higher number of signals and shorter routes with several
connections. (ii) The network analysis of urban streets indicates
that the centrality measures are able to detect frequently visited lo-
cations and routes that are prone to traffic congestion. We are also
able to detect locations that contribute to emergent traffic conges-
tion. (iii) We find a high correlation between spatio-temporal activ-
ity of humans and corresponding vehicular traffic in urban regions
such as London and Sydney. We believe our studies will provide a
significant insight into the data-driven study of urban infrastructure
for enabling city-wide ubiquitous computing. It helps to realize
future ubiquitous systems for example that enable vehicle to vehi-
cle and vehicle to road-side type of seamless communication and
in identifying where are the communication bottlenecks for a better
deployment of computing system. In future, we want to expand our
studies to more regions. We also look forward to develop a simu-
lator and provide engineering approaches to ubiquitous computing
system based on our experience.
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