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ABSTRACT
Frequent itemset mining is a well studied and important
problem in the datamining community. An abundance of
different mining algorithms exists, all with different flavor
and characteristics, but almost all suffer from two major
shortcomings. First, in general frequent itemset mining algo-
rithms perform exhaustive search over a huge pattern space.
Second, most algorithms assume that the input data fits
into main memory. The first problem was recently tackled
in the work of [2], by direct sampling the required number
of patterns over the pattern space. This paper extends the
direct sampling approach by casting the algorithm into the
MapReduce framework, effectively ceasing the memory re-
quirements that the data should fit into main memory. The
results show that the algorithm scales well for large data
sets, while the memory requirements are solely dependent
on the required number of patterns in the output.

1. INTRODUCTION
Pattern mining is one of the central topics in datamin-

ing, and frequent pattern discovery has been a fruitful and
active research area the past two decades. The most basic
setting, i.e. the frequent itemset mining case, has shown
its applicability for a wide range of traditional datamining
tasks: clustering, classification, data exploration and asso-
ciation rules [10]. However, due to the enormous growth
of available data to analyze, one of the traditional assump-
tions that data fits into main memory does no longer always
apply. For example, web accesses log data for a popular
internet portal in the Netherlands alone, consists of 200GB
for two months only. Let alone the multitude of datasets of
interest for popular social media services such as Facebook,
Twitter or Youtube. This ”big data” setting causes severe
problems for traditional frequent itemset mining algorithms
to be applied in this setting. The main reasons for this are:

1. Most frequent itemset mining algorithms assume that
the transactional database fits into main memory, which
is obviously invalid in the big data setting.

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
BigMine’13, August 11, 2013 Chicago, Illinois, USA.
Copyright 2013 ACM 978-1-4503-2324-6/13/08 ...$15.00.

2. In general, frequent itemset mining algorithms perform
an exhaustive search over a huge pattern space. Al-
though this is in principle possible for big data, it will
most likely lead to severe computational cost. One
popular approach to handle the high computational
costs is to use parallelized frequent itemset mining al-
gorithms.

Related to expensive enumeration of all frequent patterns,
is that for most applications only a few patterns can effec-
tively be utilized. Hence, the computational burden devoted
on enumerating all frequent patterns is wasted on patterns
that will be ignored. Moreover, deriving and storing all fre-
quent patterns can in case of big data leads to severe prob-
lems in order to manage these. This is caused by the fact
that the output size of all frequent patterns, provided and
interesting and hence low minimum support parameter is
used, is often multiple times the size of the input data.

The work by Boley et al. [2] recently proposed a sampling
algorithm that directly samples k desired patterns from the
pattern space. The advantage of this approach is that the
sampling algorithms achieve near optimal time complexity
per pattern as well as the ability to control the distribu-
tion of the produced patterns. However, as in case of most
frequent itemset mining algorithms the direct sampling ap-
proach assumes that the input data fits into main memory,
which makes it inapplicable for large datasets.

A popular paradigm two efficiently extract and compute
information from large datasets is the MapReduce frame-
work. Emerged from Google’s needs to efficiently compute
over extreme large sets of raw Internet data, MapReduce is
designed to efficiently distribute the task at hand over large
distributed computing facilities. In particular, MapReduce
provides the user with an abstraction layer over the physical
cluster and handles inter-machine communication, partition-
ing the data and job scheduling [5]. In a typical setting a
MapReduce task runs on a cluster of commodity machines,
which can be extended by adding resources on demand. In
this work we extend the direct sampling method by Boley et
al. [2], such that it is able to coop with large datasets. Specif-
ically, we transform the method into the Hadoop MapRe-
duce framework, resulting in a distributed parallel frequent
itemset mining algorithm with low memory demands. We
performed extensive empirical evaluation on real-world and
synthetic datasets to investigate the scalability and speedup
of the MapReduce implementation.

In this paper we will show that:

• The Hadoop map-reduce implementation of the fre-
quency and area based sampling algorithms obtain a
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good speedup, which make these approaches suitable
for big data.

• The memory requirements are only dependent on the
size of the output data.

The rest of this paper is organized as follows: In the next
section we describe the related work in more detail. In sec-
tion 3 basic concepts and notation are introduced, and a
brief description of the direct sampling algorithm is given. In
the following section we present our adaption of the sequen-
tial direct sampling algorithm into the MapReduce frame-
work and discuss the memory usage of the method. More-
over, we also discuss implementation details and point out
how these affects the performance of the system. Section 5 is
concerned with the extensive experimental evaluation of the
method. In particular we perform our method on synthetic
and real datasets on a large (up to 500 mappers) Hadoop
MapReduce cluster. In the final section we draw conclusions
and give directions for further research.

2. RELATED WORK

Because the enumeration of all frequent patterns in a
database is inherently a computational exhaustive task, par-
allelization of frequent itemset mining algorithms has been
an active research topic for a while, see for example [15].
The most effort has been put into so called shared mem-
ory parallelization, however this type of parallelization is
not scalable for huge datasets, due too the extensive mem-
ory requirements. Parallel frequent itemset mining in dis-
tributed environments, has been examined in a few papers,
see for example [8], which results in algorithms that are typ-
ical scalable up to a hundred different computers.

Recently, the focus of the research has been shifted to-
wards mining algorithms in the MapReduce framework. The
main motivation is to drastically increase the number of re-
sources and to have fault tolerance mechanisms automat-
ically incorporated into the system. Most related to our
work is the MapReduce implementation of the popular FP-
Growth [11] algorithm: parallel FP-growth (PFP). This al-
gorithm is described in the work by Li et al. [12]. The main
idea of PFP is to first group the transactions, and then build
a local FP-Tree for each group. The outcome of these trees is
aggregated, and the k most frequent patterns are reported.
The major difference with our approach is that PFP perform
an exhaustive search, although only the top k frequent items
are reported. Another important difference is the amount of
communication that is needed between mappers and reduc-
ers. In particular, the pre-processing step of PFP, i.e. the
grouping, requires multiple communication steps. In Sec-
tion 5 we experimentally compare PFP with our frequency
based sampling approach.

3. PRELIMINARIES

In this section we introduce the concepts and notations
used in the rest of this paper. Moreover, we will briefly
describe the sequential two steps direct sampling method
by [2].

Let P(X) denote the powerset of a finite set X and let
µ(X) denote the uniform probability distribution onX. More-
over, for positive weights w : X → R+ let w(X) denote the
distribution on X obtained by normalizing w.

Let I be a set of items, i.e. a set of binary elements.
Moreover let D = D1, . . . , Dm be the transaction database,
i.e. a bag of sets. Each record in D is a subset of I, i.e.
Di ∈ D : Di ⊆ I. For a dataset D over I, the pattern
space L(D) equals P(I). For a pattern F , the support set
of F in D denoted as D[F ] is defined as the multiset of all
records in D in which all elements of F are contained, i.e.
D[F ] = {D ∈ D : F ⊆ D}.

In order to derive the patterns of interest, we still need an
interesting measure over the pattern space. Following Bo-
ley et al. [2] this work we will consider three different types
of interesting measures: support, area and discriminativity.
Support is the most well known and used measure, and is
equivalent to the length of the support set of a pattern, i.e.
the number of records in which a pattern occurs. More for-
mally supp(D, F ) = |D[F ]|. Another interesting measure
considered is the so called area [9]: area(D, F ) = |F ||D[F ]|.
Intuitively this measure correspond to those patterns that
optimize for both the length of a pattern (i.e. contains many
items from I) and its support. The last measure considered
is applicable in a supervised setting: assumed that for every
record D ∈ D a binary class label is assigned, then let D⊕
denote the records that belong to the positive class and D	
the records with a negative class label. The discriminativity
measure favors patterns that have high support in one class
and low support in the other class. This type of patterns
is well studied, for example in the setting of emerging pat-
terns [6] and contrast set mining [1].The discriminativity is
then formally defined as: disc(D, F ) = |D⊕[F ]| |D	\D	[F ]|.

3.1 Sequential Sampling Algorithms
With the notation and concepts previously introduced, we

are now able to describe the sequential two step direct sam-
pling method [2]. The general outline of the algorithm is as
follows: first one select a data record (in case of discrimi-
nativity tuple of data records ) proportional to the proba-
bility distribution of interest, followed by a sampled subset
of the previously selected data record again proportional to
the probability distribution of interest. A important obser-
vation for this approach is that one first have to compute
the weights of all records, or tuples in case of discriminativ-
ity, and then sample the k records (tuples) from which the
subsamples are reported as patterns of interest. Hence, in
case of the interesting measure for support or area is used
a preprocessing that is linear w.r.t transaction database is
needed, while in case of discriminativity this preprocessing
step is quadratic. Obviously, when the data fits into main
memory this preprocessing can be easily solved.

Algorithm 1 Support and Area based direct sam-
pling

Input: dataset D, number of required patterns k, interest-
ing measure q

Output: k random sets R, with each R ∼ q(P(I))
1: calculate weights for each record D ∈ D according to q
2: for i← 1 to k do
3: draw a record D ∼ w(D)
4: draw a subset R ⊆ D according to q
5: Out ← Out ∪ {R}
6: end for
7: return Out



The pseudocode of the direct sampling algorithm for the
support and the area measure is shown in Algorithm 1. For
the support measure, the weight of data record D ∈ D
is defined as 2|D|, while the subset of the data record is
drawn with uniform probability over all the subset, i.e. R ∼
µ(P(D)). In case that the area measure is used, the weights

are defined as: |D|2|D|−1, and the subsets from the records
are sampled by first determining the size of the subset with
weights 1, . . . , |D| and then sample with uniform probability
over all subsets of the previously determined size.

Algorithm 2 Discriminativity based sampling

Input: datasets D⊕,D	, number of required patterns k
Output: k random sets R, with each R ∼ disc(P(I))
1: for all (D⊕, D	) ∈ D⊕ ×D	 do

2: w(D⊕, D	) = (2|D⊕\D	| − 1)2|D⊕∩D	 |
3: end for
4: for i← 1 to k do
5: draw (D⊕, D	) ∼ w(D⊕ ×D	)
6: draw F ∼ µ(P((D⊕ \D	) \ ∅)) and

F ′ ∼ µ(P(D⊕ ∩D	))
7: R← F ∪ F ′
8: Out ← Out ∪ {R}
9: end for

10: return Out

A detailed description of the direct sampling algorithm
with the discriminativity measure is given in Algorithm 2.
Lines 1–3 of the algorithm describe the computation of the
weights, while the actual sampling of the patterns is de-
scribed at lines 5–6. A more detailed description of the
direct sampling method, justification and correctness of the
method is provided in [2].

4. ALGORITHM

In this section we describe the adaptation of sequential
sampling algorithms into the MapReduce framework. First,
we discuss a method to efficiently draw k sample in one pass
over the data, then we combine the different algorithms in
the MapReduce framework. The major obstruction for ap-
plying Algorithm 1 and 2 to large datasets are the memory
requirements of the pre-processing step, i.e. the computa-
tion of the weights for every record in the dataset. In par-
ticular, under the realistic assumption that k << |D|, the
sampling of subsets from k records can be easily performed
into main memory, independent of the size of the dataset.
Moreover, the computational complexity of this last step is
equivalent to O(|I|k) [2], and hence can be smoothly com-
puted in a sequential setting.

Given the previous observations, the most straightforward
approach to adapt the sequential algorithms would be the
following procedure: first divide the records/tuples over the
m available nodes on the cluster. Then for each node com-
pute the weights of the records/tuples assigned to it, and
send over the partial results (weights + link where the record
is stored) to a central node. These results are then combined,
followed by sampling k records/tuples from this index file.
Finally a sample is taken to obtain the desired patterns from
these k records/tuples. Although this approach is pretty
simple, it has some serious drawbacks. First, the size of the

index file, i.e. the resulting weights and the link were the
data is stored, is dependent on the input size of the transac-
tion database. Hence, for large dataset it is unreasonable to
assume that it would fit into main memory. The resulting
solution would require additional disk access and involves
multiple communication steps between the nodes. A second
disadvantage is that this approach would require multiple
times access to the transaction database.

In this paper we resolve these issues by using a tech-
niques developed to derive k weighted samples from stream-
ing data [7]. In particular, whenever a data element, that
is either a tuple or a data record, arrives the A-RES [7] al-
gorithm determines whether this data element is stored in a
reservoir of size k or not. After the scanning of the complete
transaction database, the reservoir holds the k selected data
elements. From this point on, the pattern sampling can be
further solved pretty straightforward.

Algorithm 3 A-RES

Input: A population V = {v1, . . . , vn} with corresponding
weights {w1, . . . , wn}

Output: a weighted random sample of V without replace-
ment of size k

1: insert the first k items in R and calculate their keys
2: for i← k + 1, to n do
3: t← the smallest key in R

4: li ← r
1/wi
i , with ri ∼ µ(0, 1)

5: if li > t then
6: replace t and its corresponding item in R with re-

spectively li and vi
7: end if
8: end for
9: return the items in R

The A-RES [7] algorithm to sample k weighted items in
one pass over the data, is a so called ”reservoir” based ap-
proach. The pseudocode is given in Algorithm 3. The first
k data elements and their corresponding keys are inserted
into the reservoir. Then for every following data element
its corresponding key is computed (line 4). A data ele-
ment in the reservoir is replaced with a new one, when-
ever its corresponding key is lower then the key of the new
data element (line 5–6). As such, after the first k data el-
ements are processed, the reservoir contains at each mo-
ment the k data elements that have the largest key. Note

that, for two keys vi = r
1/wi
i and vj = r

1/wj

j it holds that:
P [vj ≤ vi] = wj/(wi + wj).

In its basic setting the A-RES algorithm requires the gen-
eration of n random numbers, were n is the number of
weighted items to sample from. In our case this is equal
to number of data elements, i.e. depending on the interest-
ing measure either |D| or |D⊕×D	|. This can be optimized
by making use of so called sampling with jumps. The main
idea behind sampling with jumps is that a random variable
determines what will be the next data element to enter the
reservoir. A detailed description is provided in Algorithm 4.
The crucial step consists of skipping items until the sum of
their weights is larger than the smallest key in the reservoir
(line 6 – 12). With this adjustment, and under the assump-
tion that the weights are independent random variables, the
number of random numbers generated is reduced from n to



k log(n/k) [7].

Algorithm 4 AJ-RES

Input: A population V = {v1, . . . , vn} with corresponding
weights {w1, . . . , wn}

Output: a weighted random sample of V without replace-
ment of size k

1: insert the first k items in R and calculate their keys
2: t← the smallest key in R
3: r ← µ(0, 1)
4: s← 0
5: for i← k + 1 to n do
6: if s > log(r)/log(t) then
7: ri ← µ(twi , 1)

8: li ← r
1/wi
i

9: replace t and its corresponding item in R with re-
spectively li and vi

10: t← the smallest key in R
11: s← 0
12: end if
13: s← s+ wi

14: end for
15: return the items in R

To use Algorithms 3 and 4 in the adjusted direct sam-
pling approach, we need to make a slight modification to
the weighted sampling over a stream methods. That is, in
the current setting, these algorithms sample k items with-
out replacement while the direct sampling requires sampling
with replacement. This obstacle can be trivially overcome
by running k instances of the A-RES/AJ-RES with reser-
voir size 1. Note that, this adjustment requires that for
each data element a decision has to be made for each of
the k reservoirs. As a result, the number of random num-
bers to generate in the A-RES/AJ-RES algorithm increases
respectively from n to kn, and from k log(n/k) to k log(n).

4.1 MapReduce Implementation
In order to use the MapReduce framework, the algorithm

must be decomposed into map and reduce steps. Map func-
tions are run in parallel on different parts of the input. The
output of these map function consists of key value pairs and
is passed on to one or more reducers. The reduce step pro-
cess unique keys, and applies a user defined function to pro-
duce the final output of the MapReduce algorithm.

The frequency and area based sampling algorithms, i.e.
the algorithms with linear pre-processing time (Algorithm 1),
the adaptation into the MapReduce framework is given the
precious algorithms now pretty straightforward. The pseu-
docode of these Linear pre-processing time algorithms is
given in Algortihm 5. In particular, each mapper draws
according to the interesting measure k records from its part
of the transaction database (line 3), this is done by using
Algorithm 4. Given that there are m mappers, the total
number of sampled records equals mk. The reduce step se-
lects from the overall output the k records with the largest
key, this step is accomplished by one reducer. Finally, the
reducer continues with sampling the k patterns from the se-
lected records, as is done in Algorithm 1 (line 4). Once that
the data is divided over the mappers, the required commu-
nication cost are low: only the output of the m mappers
must be send over the network. MR-DPSL requires that

each mapper and the reducer can store k data records in
main memory. Hence the memory requirements of the fre-
quency and area based direct sampling algorithm are only
dependent on the number of patterns of interest and the size
of the largest transaction number, that is |maxD∈D |.

Algorithm 5 frequency and area based mapReduce direct
pattern sampling

Input: dataset D, number of required patterns k, interest-
ing measure q

Output: k random sets R, with each R ∼ q(P(I))
1: MapFunction
2: for i← 1 to k do
3: run Algorithm 4, with sample size =1 and weights

according to q
4: end for

Output: k (key,record) pairs
5: ReduceFunction
6: select the k pairs with the largest key
7: for i← 1, to k do
8: Out ← Out ∪{subsample from recordi

according to q}
9: end for

Output: Out

Direct sampling with the discriminativity measure of in-
terest is however more problematic to integrate into the
MapReduce framework. A major obstacle in this setting
is to generate all tuples of records. That is, for every record
from D⊕ all records of D	 must be scanned. Preliminary
experiments indicated that this adaptation was timewise not
doable for moderate datasets on the cluster we used. How-
ever, the amount of tuples to be generated can be drastically
reduced. In particular, for a tuple (D⊕, D	) ∈ D⊕ × D	 a

weight w(D⊕, D	) = (2|D⊕\D	| − 1)2|D⊕∩D	 | is computed
that determines with which probability that this tuples is
sampled. However, a trivial upper bound—that is only de-
pendent on D⊕—is 2|D⊕|. Hence, in the reservoir based
approach (Algorithm 3) this upper bound can be used to
apriori determine that the tuple will not be inserted into
the reservoir. And as a result, the algorithm can skip the
data record D	. If however, the upper bound is larger than
the minimum key in the reservoir, then the record should be
scanned and the exact key should be determined. However,
a downside of this approach is that the AJ-RES algorithm
cannot be used to sample the k records. This is because
the algorithm with jumps requires that every weight is com-
puted. Therefore, the A-RES algorithm (Algorithm 3) to
sample k elements from the input is used. A high level
description of the MapReduce direct pattern sampling ap-
proach with discriminativity as interesting measure is pro-
vided in Algorithm 6. Notice that, also in this case the
memory requirements are only dependent on the number of
patterns and the maximal transaction length.

A further important (implementation) issue is which datatype
to use for real numbers. In particular, the required ar-
rhythmic precision is dependent on the number of items in
a record. That is, both Algorithm 5 and Algorithm 6 re-
quire the computation of 2|D|. In order to be applicable to
datasets that contain large transaction (e.g. |D| > 64), spe-
cialized arbitrary precision arrhythmic libraries are needed.
In our implementation we used as default the native java



Algorithm 6 discriminativity based mapReduce direct pat-
tern sampling

Input: datasets D⊕ and D	, number of required patterns
k

Output: k random sets R, with each R ∼ disc(P(I))
1: MapFunction
2: for i← 1, to |D	| do

3: if r1/2
|D⊕|

> lowest key in reservoir, with rµ(0, 1)
then

4: D	 ← read next record from D	
5: run Algorithm 3, sample size =1, weights according

to disc
6: else
7: skip record in D	
8: end if
9: end for

Output: k (key,record) pairs
10: ReduceFunction
11: select the k pairs with the largest key
12: for i← 1, to k do
13: Out ← Out ∪{subsample from recordi}
14: end for
Output: Out

double representation.

5. EXPERIMENTAL EVALUATION

In this section we experimentally evaluate the MapRe-
duce implementations of the direct sampling approach. In
particular, we conduct experiments with Algorithm 5 and
the frequency interesting measures and with Algorithm 6 to
derive discriminating patterns. We did not performed sep-
arated tests for Algorithm 5 with the area measure. This
is because there is no fundamental computational difference
between the two flavors of the same algorithm, and hence
the computational results of one variant is also representa-
tive for the other variant.

The overall goal of the experimental evaluation is to exam
whether the proposed algorithms are suited to mine large
datasets. In particular, the main question to investigate is:
given enough computational resources, are the algorithms
able to extract a limited number of patterns on arbitrary
large datasets ? Although, it is not feasible to run the al-
gorithm on ’arbitrary’ large datasets, we test the scalability
by measuring the speedup. That is, how much faster is the
algorithm when more computing units are added ? The
underlying idea is, if the speedup is good, arbitrary large
datasets can be processed by adding a sufficient amount of
nodes to the cluster. Another important characteristic of
our algorithm to evaluate is its dependency on the input
parameter k, that is the number of patterns to mine. In
particular, as stated in section 4, the number of random
numbers to generate is linearly dependent on the k parame-
ter, and moreover is independent of the number of mappers
that is being used. Hence, in the worst case is the compu-
tation time negatively effected by a factor k. Finally, we
compare our direct sampling implementation with the pop-
ular and publicly available MapReduce implementation of
parallel FP-growth [12]. In particular, we will report the
run time for different support thresholds and discuss the

results.
The experiments were conducted on the Sara Hadoop clus-

ter1. The cluster is deployed with Hadoop-0.20.2; the block
size is 128M; the replication factor is 3; and the speculative
task execution feature is disabled. This cluster consists of
82 nodes, and in each node there are respectively 8 slots
of mappers and reduces, leading to totally 656 mappers and
656 reducers. However, since the cluster is shared with many
users, and is being heavily used, the execution time of a job
can vary quite a bit. In particular, if different I/O intensive
jobs are scheduled in the same nodes, the different tasks can
drastically reduce each other performance. In order to ob-
tain a proper estimate on the scalability of the algorithms,
we conducted all experiments three times, and report the
average value.

5.1 Test Collection
Because of the high computational burden of the discriminativity-

based sampling approach and the limited resources, we used
smaller datasets for the discriminativity measure. For the
frequency-based sampling, the following two datasets were
used:

• Weblog dataset A web accesses log dataset from a
popular Dutch portal website. Each visit to this web-
site was recorded and enriched with derived features
when available. The logs are taken over a period of
two months and consists of more than 461M records
(i.e. page views). The average record length is 22,
while the maximum record length equals 30. In total,
there are over 20M distinct items, while the overall
size of the dataset is over 200GB

• Synthetic dataset An artificially dataset generated
using the generator from the IBM Almaden Quest re-
search group. This dataset contains 100M records (9.15GB)
with an average length of 20, and a maximum of length
of 55. The number of distinct items is equal to 1000.

For the discriminativity-based sampling two much smaller
datasets were used for evaluating the performance:

• Weblog one day dataset A one day snapshot of the
Weblog dataset. It contains 9.5M records, and its total
size is 4.4GB. To split this dataset into two classes for
the discriminativity-based sampling, we assumed that
in 1% of the records the user clicked on one of the
displayed links. The goal is to derive patterns that
describes the different groups, i.e. users that click on
a link and those that didn’t.

• Census income [13] It is a dataset storing the income
information with census data. We treat records with
a salary larger than 50K as the positive ones, and the
remaining as the negative ones. This leads to 18, 568
records in the positive set, and 280, 717 records in the
negative set. All records are of equal length: 41.

5.2 Speedup Evaluation
In order to evaluate the speedup of our distributed sam-

pling algorithms, we fixed the sample size and varied the
number of mappers. Speedup refers to how many times a
parallel algorithm is faster than the corresponding sequential

1https://www.surfsara.nl/project/hadoop

https://www.surfsara.nl/project/hadoop
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Figure 1: Speedup for the frequency based sampling for the Weblog dataset (left) and the synthetic
dataset(right). The blue line indicates the ideal speedup, the red line shows the obtained speedup.

algorithm, hence the optimal speedup that can be obtained
is equivalent to the number of mappers used. In our exper-
iments, however, we did not measure the running time of
our sampling algorithms when using only one mapper due
to the large sizes of the datasets. Instead, we took 10 map-
pers for the frequency-based sampling and 100 mappers for
the discriminativity-based sampling as the baselines, and
computed the speedup with respect to this baseline. In all
experiments we fixed the number of patterns to sample to
100.

5.2.1 Frequency based sampling
Figure 1 shows the speedup results of the frequency-based

sampling on the weblog dataset (left plot) and the synthetic
datasets (right plot). The speedup for the frequency based
sampling on the weblog data is close to the optimal speedup
when the number of mappers is below 200. After this point,
the overhead of involving more mappers and the limited
computation time (489 seconds with 100 mappers), results
in a less optimal speedup. This is also reflected when in-
vestigating the efficiency, defined as the speedup divided by
the number of mappers, which drops from 0.97 with 100
mappers to 0.68 with 500 mappers. The overall computa-
tion time to sample 100 patterns from the weblog datasets
varies from 4, 748 seconds when 10 mappers are used till
138 seconds with 500 mappers. The same observations can
be made for synthetic dataset, although for this dataset the
ideal number of mappers is around 40. Obviously, this is
because the synthetic dataset is relatively small, and the
computation time is low. When more mappers are involved
the efficiency drops from 0.9 with 40 mappers to 0.51 when
100 mappers are used. The computation time varies between
741 and 121 seconds. The speedup and efficiency obtained
indicates that Algorithm 5 scales up pretty well for large
datasets.

5.2.2 Discriminativity based sampling
Figure 2 shows the speedup results of the discriminativ-

ity based sampling on the one day snapshot of the weblog
dataset (left) and the census dataset (right). The speedup
obtained on the weblog snapshot is nearly ideal before the
number of mappers reaches 300, but diminishes afterwards.

The average running time of the baseline with 100 map-
pers is 2 hours and 25 minutes and drops to 46 minutes
with 500 mappers. When 300 mappers are used the effi-
ciency is 0.96, while for 500 mappers the efficiency is merely
0.63. The results are remarkably different for the census
dataset. Although this dataset is considerably smaller, both
the speedup and the efficiency are close to optimal when
more mappers are involved. In particular, the running time
drops from 77 minutes with 100 mappers to 16 minutes with
500 mappers, at the same time obtaining an efficiency of
0.93. A plausible explanation for this difference is that the
transaction length of the census data is twice the average
transaction length of the weblog dataset, hence the compu-
tation of the weights require more computation time in case
of the census dataset. Another remarkable observation is
that for the census data with 300 mappers, so called super
linear speedup is achieved. That is, the computation time
with 300 mappers is less than three times the computation
time with 100 mappers. However, this phenomenon is often
observed when performing experimental evaluation of paral-
lel algorithms and is likely caused by caching behavior of the
nodes. Although the computation time is large for relative
small samples, the speedup and efficiency scores acquired
suggests that discriminativity based sampling is able to de-
rive interesting patterns from large datasets when enough
computing resources are available. However, the number of
mappers needed for large dataset is huge, and is likely to
grow fast as the data size increases.

5.3 Scalability in the number of patterns
Since the sampling algorithms need to maintain as many

reservoirs as the user defined sample size, the question arises
how heavily dependent the computation time is on this user
specified parameter. In order to evaluate this, we fixed the
number of mappers and varied the sample size. In partic-
ular, for both frequency as well as discriminativity based
sampling we set the the number of mappers to 100, and var-
ied the sample size between 100 and 800. The run time for
the different sample sizes is compared with the time needed
to sample 100 patterns, this ratio was taken and plotted
versus the number of samples. Moreover, since the expected
run time should roughly be linear to the size of samples,
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Figure 2: Speedup for discriminativity based sampling, the left plot contains the results obtained on the one
day snapshot of the Weblog data, while the right one displays the results obtained on the census dataset.
The blue line indicates the ideal speedup, the red line shows the obtained speedup.

we drew a line indicating the expected ratio of the compu-
tation time needed. The results are displayed in Figure 3,
left for the Weblog dataset with the frequency based sam-
pling algorithm, right for census dataset with the discrimi-
nativity based sampling. The time needed for the frequency
based sampling increases along approximately half as fast
as the the sample size, while for the discriminativity based
sampling the computation increases approximately at the
same pace as the sample size. Note that for the later case,
the experiments with k = 300 and k = 400 indicate that
the computation time increases faster than the sample size.
However, this is most likely caused because of the heavy
workload on the cluster, resulting in a wide variety of time
measurements for these experiments. For example, in the
run with 300 samples the maximal difference between two
runs was more than three hours on a total computation time
of seven hours on average.

5.4 Comparison with parallel FP-growth
A publicly available MapReduce implementation of paral-

lel FP-growth (PFP) [12] is available in the popular Apache
Mahout2 machine learning library. Although the setting in
which PFP operates differs from the direct sampling ap-
proach, i.e. given a minimum support threshold PFP mines
all patterns that satisfy this threshold and then reports the
k requested patterns, we think that the comparison is inter-
esting from an end user point of view.

We run PFP, with various minimum support thresholds,
on the Hadoop cluster with the number of mappers fixed to
100. The results are summarized in Table 1. Besides the
run time, we also show the number of frequent items, that
is singleton itemsets, and the number of frequent patterns.
Note that the number of frequent itemsets is limited by the
user specified parameter k (in our case k = 50), that defines
the maximum number of frequent itemsets to show per item.

The first noteworthy observation is that PFP needs far
more computation time in its pre-processing step, i.e. count-
ing the single items, than the frequency based sampling ap-
proach need to derive 100 patterns. In particular, 406 versus

2http://mahout.apache.org/

Minsup Time Singletons Patterns

Synthetic
99% 406 0 0

5.6% 1, 518 63 63

Weblog
99% 4, 118 3 3
1% 5, 625 128 4, 543

0.1% 6, 325 304 10, 825

Table 1: Run time, number of frequent items, and
number of frequent itemsets obtained by PFP for
the synthetic and the weblog datasets. The results
are shown for various minimum support thresholds.

144 seconds for the synthetic dataset and 4, 118 vs. 489 for
the Weblog dataset. Another issue is that for the synthetic
dataset we were not able to mine 100 frequent patterns, we
were only able to derive 63 frequent singletons. Lowering
the frequency threshold resulted for this dataset in out of
memory errors. For the weblog dataset, we were able to
obtain the desired number of patterns by lowering the fre-
quency threshold, but the resulting computation time for
PFP is multiple times the time needed for the frequency
based sampling algorithm. Although, the results presented
in Table 1 suggests that frequency based sampling approach
is superior in terms of run time than PFP, there are many
different parameter that influences the computation time.
As we have previously shown, the computation time for fre-
quency based sampling is both dependent on the number
of samples and on the average transaction length. On the
other hand, for PFP the computation time is dependent
on the minimum support threshold and the density of the
data. Provided that PFP does not run out of memory, it
is likely that it in some settings PFP outperforms the fre-
quency based sampling when a large number of patterns is
demanded.

6. CONCLUSION
In this work, we successfully casted the recently proposed

algorithms to directly sample local patterns [2] into the mapRe-
duce framework. The theoretical analysis show that the

http://mahout.apache.org/
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Figure 3: The ratio of the computation needed for different sample size and the baseline, plotted in red.
Results for the Weblog dataset (left) with frequency based sampling and the census data with discriminativity
based sampling (right). Additionally, the blue line displays the ratio expected.

memory requirements of both proposed algorithms are lim-
ited to the number of patterns in the output. Extensive
experimental evaluation showed the scalability of the fre-
quency based sampling approach, and hence its applicability
for ”big” data. Although, discriminativity based sampling
scales reasonably well for small samples, it is doubtful wether
this algorithm will scale for large dataset, mainly because
its intensive usage of computational resources. For both ap-
proaches we showed that the computation time is roughly
linear dependent on the number of patterns to sample, which
makes the algorithm suitable in most practical settings. Fur-
thermore, we compared the frequency based sampling with a
state-of-the-art mapReduce implementation of parallel FP-
growth, and showed that our approach outperforms PFP
in term of computation time. Further research is involved
with speeding up the quadratic pre-processing step needed
for discriminativity based sampling. In particular, a recent
followup paper by Boley et al. [3], addressed this prob-
lem and used coupling from the past to avoid the com-
putational bottleneck, it is however still open how to inte-
grate the coupling from the past technique into an mapRe-
duce framework. The source code is publicly available at:
http://www.win.tue.nl/~mpechen/projects/capa/.
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direct pattern sampling using coupling from the past.

In ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2012.

[4] J. Cheng, Y. Ke, and W. Ng. A survey on algorithms
for mining frequent itemsets over data streams.
Knowledge and Information Systems, 16(1):1–27, 2008.

[5] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. Communications of
the ACM, 51(1):107–113, 2008.

[6] G. Dong and J. Li. Efficient mining of emerging
patterns: Discovering trends and differences. In ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 43–52, 1999.

[7] P. Efraimidis and P. Spirakis. Weighted random
sampling with a reservoir. Information Processing
Letters, 97(5):181 – 185, 2006.

[8] M. El-Hajj and O. Zaiane. Parallel leap: large-scale
maximal pattern mining in a distributed environment.
In IEE International Conference on Parallel and
Distributed Systems, 2006.

[9] F. Geerts, B. Goethals, and T. Mielikäinen. Tiling
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