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ABSTRACT 
Log files provide important information for troubleshooting 
complex systems. However, the structure and contents of the log 
data and messages vary widely. For automated processing, it is 
necessary to first understand the layout and the structure of the 
data, which becomes very challenging when a massive amount of 
data and messages are reported by different system components in 
the same log file. Existing approaches apply supervised mining 
techniques and return frequent patterns only for single line 
messages. We present CAPRI (type-CAsted Pattern and Rule 
mIner), which uses a novel pattern mining algorithm to efficiently 
mine structural line patterns from semi-structured multi-line log 
messages. It discovers line patterns in a type-casted format; 
categorizes all data lines; identifies frequent, rare and interesting 
line patterns, and uses unsupervised learning and incremental 
mining techniques. It also mines association rules to identify the 
contextual relationship between two successive line patterns. In 
addition, CAPRI lists the frequent term and value patterns given 
the minimum support thresholds. The line and term pattern 
information can be applied in the next stage to categorize and 
reformat multi-line data, extract variables from the messages, and 
discover further correlation among messages for troubleshooting 
complex systems. To evaluate our approach, we present a 
comparative study of our tool against some of the existing popular 
open-source research tools using three different layouts of log 
data including a complex multi-line log file from the z/OS 
mainframe system.   

Categories and Subject Descriptors 
I.5.3 [Clustering] and I.5.4 [Applications]: Algorithms and text 
processing tool for line, term and value pattern mining. 

General Terms 
Algorithms, Design, Experimentation. 

Keywords 
Line, term, value pattern mining, type-casting, association rule. 

1. INTRODUCTION 
Log data analysis is crucial to retrieve knowledge regarding the 
system status when troubleshooting performance issues. With the 
evolution of various sensors and system monitoring tools, we 
come across many different log files with varying data layouts. 
The files are often very large and contain a mixture of many 
different pieces of information. The analysis of the data, therefore, 
has become more challenging than ever and involves multiple 
steps based on the information requirements and data contents. 
The first step in a complex log data analysis process naturally 
leads to discovering line patterns and understanding frequent data 
values in the log files to enable further processing in an automated 
or semi-automated manner. The application of line pattern mining 
has recently been quite prevalent in IDS (Intrusion Detection 
System) alert filtration [11][9] and event categorization for 
software maintenance and error diagnosis [3][5][7]. Other 
application areas include autonomic systems management [4][12], 
decision support systems [13]; anomaly detection by identifying 
abnormal system behavior [3]; fault detection by comparing with 
predefined fault characteristics [10], and prediction of error 
situations using techniques such as case-based reasoning, 
sequence mining or statistical approaches [3].  

The work described here is a part of a larger research effort [14], 
which is aimed at providing a decision support framework for 
database administrators (DBA) to help troubleshoot problems in 
complex real world systems such as the z/OS mainframe DB2. 
Fig.1 shows an example of complex multi-line log messages from 
a z/OS mainframe DB2 JES (Job Entry Subsystem) master log file 
where many different monitoring agents report events in various 
formats [14]. The DBAs often have to inspect such large files 
manually for troubleshooting purposes. A mandatory step in 
automating the analysis of complex log files is to first understand 
the structural aspect of the line patterns in the data, which should 
include both frequent and rare line patterns; the contextual 
relationship between different line patterns, and frequent value 
patterns. This knowledge can then be used to automate the next 
step of data processing and knowledge discovery such as 
reformatting, content analysis, message classification, variable 
identification, and correlation analysis as necessary for specific 
application domains [3].  

Although frequent itemset mining and text data mining have been 
popular areas of research in the last decade, a literature study 
reveals that most of the existing data mining approaches for semi-
structured text data such as log files apply supervised learning 
methods [3] for job-specific limited size log files. Some of the 
more recent works demonstrate application of unsupervised 
learning methods [11]. However, the common assumptions in the 
existing approaches are that the messages are single line with a 
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time stamp and the formats of the parameters are known from 
heuristics. In this research, we address the challenges in 
processing complex multi-line messages in large log data. 

The JES log file in z/OS mainframe is used by the DBAs as an 
important reference. We use the JES log file in Fig. 1 containing 
multi-line messages as a running example in the paper. The end of 
the first line of a multi-line message contains a line number that 
appears in the beginning of the subsequent lines of the same 
message, for example lines 4-8 excluding line 7. Additional 
complexity arises from the facts that a) day and time are expressed 
in separate messages (date in line 2 and time as hh:mm:ss in the 
beginning of each message); b) messages can be in table format 
(lines 9-11); c) the parameters can be of various formats, and d) 
the lines may be ordered incorrectly as lines 7 and 8 due to 
multiple reporting agents writing concurrently in the same file.  

Existing research tools such as SLCT [10], LogHound [11], and 
IPLoM [7] have the following shortcomings: they fail to identify 
rare line patterns, they cannot process large multi-line log data, 
and they do not retrieve the frequent term patterns or the 
contextual relationship between commonly occurring pairs of line 
patterns. Our research is, therefore, motivated towards resolving 
these shortcomings. 

We propose CAPRI (type-CAsted Pattern and Rule mIner), a 
novel algorithm and tool [2] that makes a minimal number of 
passes over semi-structured log data to detect line patterns using 
unsupervised clustering and a type-casting technique [ref. Sec. 
3.1]. It has the following features: 
a) Processes both single and multi-line messages. 
b) Generates a compact list of frequent, rare, and interesting line 

patterns expressed in a type-casted format.  
c) Generates a list of frequent term and value patterns given the 

minimum support values.  
d) Generates rules that identify contextual relationships between 

subsequent line patterns.  
e) Performs incremental mining for big data and uses a bitmap 

matrix to compute the support counts in a single pass over the 
data making efficient use of system resources. 

The next section of the paper describes the related work. 
Definitions of some key concepts are presented in Section 3. 
Section 4 presents our approach in detail. We evaluate CAPRI 
against existing popular line pattern mining tools. Experimental 
results are provided in Section 5 to demonstrate the discovered 
line, term and value patterns and the rules from a set of test data. 
Section 6 concludes the paper summarizing the contributions and 
our future work plan. 

2. RELATED WORK 
Frequent pattern and association rule mining for semi-structured 
text data has been explored by many researchers [3]. 
Classification and clustering techniques for mining frequent 
patterns have been used for troubleshooting systems [4], anomaly 
detection [12], and software maintenance [5]. Most of these 
approaches apply supervised learning based on labelled training 
data, which is effective when there are a limited number of 
message formats that can be labelled. In complex systems and the 
big data paradigm this is infeasible. Hellerstein et al. [4] propose a 
framework to mine event bursts, periodic and dependent event 
patterns, and event attributes and correlations from logs that can 
be used to take corrective actions for systems management. Xu et 
al. [12] demonstrate a console log mining approach where 
message patterns are extracted by analyzing source code which is 
generally not accessible. In the anomaly detection paradigm, Fu et 
al. [3] propose an algorithm to categorize log messages by a 
generated text key without application specific knowledge. The 
approach assumes single line log messages each having a 
timestamp, a thread ID and a request ID. Jiang et al. [5] propose a 
clone detection based log abstraction technique using heuristics to 
identify parameters from constant terms, and thereby, understand 
the structures of log messages.  

Some of the more recent line pattern mining approaches use 
unsupervised learning techniques but assume only single line 
messages with timestamps. Applications of these approaches can 
be found in categorizing and filtering important messages from 
IDS event logs [11][9], which contain a huge number of alerts. 
Vaarandi [10] proposes SLCT (Simple Log Clustering Tool) and 
LogHound tools to find only frequent message clusters in log 
data. Stearly [8] proposes the Sisyphus toolkit combining 
Teiresius and other components, which enables automated 
generation of maximal message patterns for categorization and 
grouping of time-correlated messages and interactive reviewing of 
the results. The approach requires some knowledge about the data 
and generates a separate output for the outliers. Both Teiresius 
and LogHound require that the data reside completely in memory. 
SLCT avoids the memory problem by requiring multiple passes 
over the data. Makanju et al. [7] propose IPLoM (Iterative 
Partitioning Log Mining), which uses a repeated data partitioning 
approach to first create clusters with messages having equal 
number of data items in each line and then repartitioning the 
clusters based on other criteria.  

All of the above approaches apply value-based clustering. We 
move up a level in abstraction by introducing a type-casting 
mechanism and generating a more condensed set of type-casted 
line patterns using unsupervised learning and incremental mining 
techniques. CAPRI also generates a list of frequent term and value 
patterns and rules that state how the patterns are correlated in 
multi-line log messages.  

3. DEFINITIONS 
3.1 The Type-casting Technique 
We identify 3 types of characters: alphabetic characters (a-z, A-
Z), numeric characters or numbers (0-9) and symbols (anything 
other than the above two types). Literals refer to any combination 
of the above character types. The Type Casting Technique uses 
the type and the number of characters to map a word (space 
delimited data) to a type-casted format but leaves the symbols 
intact because they typically stand out in the pattern. We convert a 

1 J E S 2  J O B  L O G  --  S Y S T E M  Z P 0 1  --  N O D E  U S I L 0 P 0 1 
2 19.00.25 STC10799 ---- SATURDAY,  18 DEC 2010 ----  
3 03.58.05 STC09048   DSNJ110E  !SS11 LAST COPY 1 ACTIVE LOG DATA 

SET IS 95 PERCENT FULL  
4 12.46.21 STC10799  DSNP010I  !PB11 END OF MESSAGES.  744 
5 744 CONNECTION-ID=SERVER 
6 744 CORRELATION-ID=PB1BTC008 
7 12.17.58  STC10799  DSNV512I  !PB11 DSNVMON - AGENT 1:  771 
8 744 LUW-ID=ODCA4760.EC77.C737D7D90AA5=181319 
9 771 NAME     ST A   REQ ID           AUTHID   PLAN     ASID TOKEN 
10 771 ----     -- -   --- --           ------   ----     ---- ----- 
11 771 SERVER   RA * 10879 PB1DIA025 PB1ADM DISTSERV 0070 67702 
12 771 LONG 9728K VLONG 436K 64BIT 28784K 

Figure 1. Data type A- z/OS mainframe DB2 JES master log 
file containing multi-line messages 

 
 



number to “i?” where “?” indicates the number of digits in that 
number. Similarly alphabetic literals are converted to “c?”. 
Symbols are not modified. Therefore, “03.58.05 STC09048 
DSNJ110E” in Fig. 1 line 3 is type-cast to “i2.i2.i2 c3i5 c4i3c1”. 
This conversion allows us to represent data such as date and time, 
which do not have any frequent values, in a common format and 
thus capture additional semantic information about the data items. 

3.2 Line, Term, and Value Patterns 
A Term is a sequence of characters (alphabetic, numeric or 
symbol or any combination of these types) that is delimited by a 
space, or an end of line character depending on the position of the 
sequence in a line of data. A Term Pattern denotes the pattern of a 
type-cast term such as “i2.i2.i2” for all timestamp values like 
“19.00.25” in Fig. 1. A Value of a Term denotes a concrete 
instance of the term as it appears in the data such as “19.00.25”. A 
term or term pattern can have multiple values such as the time 
data. A Value Pattern is a sequence of frequent characters in a 
term and ‘?’, where a frequent character remains as is in its 
position and an infrequent character is replaced by a “?”. For 
example, “12.??.??”  is a value pattern for the term “i2.i2.i2”. A 
Line is a sequence of terms which are separated by one or more 
spaces and is terminated by a line feed in the text data. A Line 
Pattern is a line composed of its term patterns where frequent 
terms remain the same at their positions but infrequent terms get 
replaced by “*”. Consecutive “*”s are merged into one “*” to 
provide a concise representation of the line pattern. An example 
line pattern for line 3 of Fig. 1 would be “i2.i2.i2 c3i5 *“, 
considering that the terms after “c3i5” are not frequent. More 
examples are given in Sections 4 and 5.  

3.3 Frequent Patterns and Support Values 
The support value of a pattern P in a dataset D containing semi-
structured text data is: 

Support (P) =     ……… (1) 

where D = {L1, L2,…,Ln} the set of all lines Li in the data, and i∈ 
(1, n), n=the maximum number of lines in the data. LTi = {Ti1, 
Ti2,…,Tij,…, Tim}  is the set of all type-casted term patterns in line Li, 
where, j∈ (1, m), m=the maximum number of terms in line i. If 
Support (P) > ε, where ε is a user defined minimum support 
threshold then P is called a frequent pattern.  

A line pattern Pl ⊆ LTi and it is composed of one or more type-
casted term patterns.  In the context of semi-structured text data, 
the position of the term in the line must be considered in 
computing its support. Therefore, a term pattern Ptj = <Tij, j>, 
where Tij∈LTi represents a term at the jth position of ith data line. 
The support for value patterns are computed in the same way as 
the term patterns. Here Li = {Vi1, Vi2, …, Vim} which represents 
actual values of the terms instead of type-casted terms and a value 
pattern Pvj = <Tij, Vij, j>. However, the absolute support counts 
are often used instead of fractions as we use in Sections 4 and 5. 

3.4 Closed Frequent Pattern 
A pattern ∝ is a Closed Frequent Pattern (CFP) in a dataset D if 
∝ is frequent in D and there exists no proper super-pattern β 
such that ∝⊂β and β has the same support as ∝ in D [3]. If a 
pattern is frequent, each of its sub-patterns is also frequent. CFPs 
restrict the number of sub-patterns of a frequent pattern without 
losing any information.  

3.5 Association Rule Mining 
Rules comprise two parts namely, a condition and an implication. 
Given a set of items I = {i1, i2, i3,…}, a rule is generally expressed 
as ∝⇒β, where ∝ ⊂ I, β ⊂ I, and ∝ ∩ β = Ø. ∝ is called 
the antecedent and β is called the consequent of the rule. In 
information retrieval, association rule mining is very effective in 
discovering the knowledge about relationships among different 
information pieces and establishing correlations between different 
data dimensions i.e., data items in a data set. We take each pair of 
patterns that occur together and find which terms have the same 
values to explore the contextual relationship. Our rule, therefore, 
resembles (px-py,)⇒(lxi=lyj). We also derive the support and 
confidence values to determine the acceptability of the rules.  

3.6 Support and Confidence of Rules 
In general the support for a rule ∝⇒β is: 

Support (∝⇒β) =     … (2) 

Confidence (∝⇒β) =     ………….. (3) 

where Support(∝) is computed using equation (1). For each pair 
of lines lx and ly occurring together in the data where ly follows lx, 
we mine association rules between their corresponding line 
patterns px and py to understand the contextual relationships 
between the different terms of these line patterns. We express the 
rule as (px-py,)⇒(lxi=lyj), which states that if the line pattern py, 
follows the line pattern px, then the value of the ith term, lxi of the 
former line lx matches the value of the jth term lyj of the following 
line ly. The support for (px-py,) is calculated by the ratio of the 
total number of times py follows px, and the total number of line 
pairs in the data, which is (|D|-1), |D| being the total number of 
lines in the data set. The confidence of a rule is calculated using 
Eq. 3. For example, if (p1-p2) is true 10 times in 101 lines of data 
in total, then the support of the rule is 0.1. If out of these 10 times, 
every time term p1.T1=p2.T2 then the confidence of the rule is 
1.0. A small deviation (5%) in the confidence of a rule indicates 
possible incorrect ordering of lines or incorrect data formats, and 
helps in correcting the data. 

4. OUR APPROACH – CAPRI  
4.1 Overview 
Given the fact that most event reports contain messages that have 
an initial header part with a timestamp and some other ID, 
followed by a body part containing the detailed message, we 
devise a technique that sorts type-casted data to generate clusters 
of similar line formats. The type-casting technique abstracts the 
variation in data but maintains the structural data pattern.  
CAPRI uses incremental mining to handle large data files, mines 
frequent line, term and value patterns including the rare and 
interesting line patterns, and the contextual relationships between 
subsequent line patterns in the data. In this paper, we define a 
simple criterion for interestingness, which is the subsequent 
appearance of three or more symbols in a line pattern because up 
to two symbols (e.g. “::”) are used in the text or in parameter 
values. In Fig.1 line 1 is rare as it appears only once in a file, and 
line 2 is rare and also interesting as it contains “---“. CAPRI 
successfully identifies the line patterns, categorizes and labels 
each line of data with a line pattern ID and optionally rewrites 
labeled lines in an output file. In the following sections we 
describe the algorithm in detail focusing on its key features.  



4.2 Pattern Extraction 
4.2.1 Generating Type-Casted and Sorted Data 
As the data is read, it is converted into the type-casted format, and 
both the original and converted data are stored in a vector array in 
memory. Fig. 2 shows the type-casted data of Fig. 1. The type-
casted data of Fig. 2 in the vector array is then sorted as in Fig. 3. 

4.2.2  Bitmap Matrix Generation  
A bitmap matrix, as shown in Fig. 4, is used in our algorithm to 
compute the support for discovering closed frequent patterns in 
one pass over the data in memory. It is created by comparing the 
terms tij and t(i+1)j of subsequent rows i and (i+1) in the jth column 
of the sorted array (Fig. 3) as stated in Eq. (5). Mij is the resulting 
0 or 1 as shown in the bitmap matrix of Fig. 4.   

Mij =  (tij == t(i+1)j)  …….. (5) 
For example, line 2 of the matrix in Fig. 4, 1100…0, is the result 
of the comparison of the terms in lines 2 and 3 in Fig. 3. Since 
two lines of the data generate one line of the bitmap matrix, the 
total number of lines in the matrix would be one less than that of 
the vector array. We use the last row of the matrix to store the 
result of the bit-multiplication as explained next. 

4.2.3 Bit Multiplication and Counting Support 
As stated in Eq. (6), starting with the first row of the bitmap 
matrix, we multiply the bits Mij and M(i+1)j in the subsequent rows 
in the same column j using a logical “AND” operation and the 
result is stored in MMj in the last row. Line 12 in Fig. 4 shows the 
result of multiplying lines 2 and 3.  

MMj = Mij * M(i+1)j …….. (6) 

MMj=1 indicates that last 3 consecutive terms in j in Fig. 3 are the 
same. We use a one dimensional array to save the count of 1s in 
the multiplication results for each column of the matrix as shown 
by the last column labeled Counter(CC) in Fig. 4. The count is 

increased if the multiplication result MMj is 1 as shown below.  

If MMj==1 then CCj += 1 else checkSave() …….. (7) 
The algorithm is shown in Fig. 5. In Fig. 4, the result of the 
multiplication of lines 2 and 3, is shown in the last row and CCj is 
“1100…” as the previous multiplication result was all 0s. For 
lines 3 and 4, the multiplication result is “111100…”. Therefore, 
CCj is updated to “221100…”. CCj=n indicates that (n+2) terms 
at column j are the same in consecutive rows in the sorted type-
casted data. In Fig. 4 line 4 when MMj=0, CC1=2 means 4 terms 
at column 1 are the same up to the next line (see Fig. 3 lines 2-5).  
In Eq. (7), when MMj=0 the counter is checked to see if its value 
exceeds the minimum line (minLineSup) and term support 
thresholds (minTermSup). If a minimum threshold is reached or 
exceeded, an appropriate save pattern operation is invoked (Fig. 5 
lines 19-27) as described in the next section. Otherwise, the 
counter is reset (Fig. 5 line 26) to 0.  

1 i1 c1 c1 c1 i1 c1 c1 c1 c1 c1 c1 -- c1 c1 c1 c1 c1 c1 c1 c1 i1 i1 -- c1 c1 c1 
c1 c1 c1 c1 c1 i1 c1 i1 i1 

2 i2.i2.i2 c3i5 ---- c8, i2 c3 i4 ---- 
3 i2.i2.i2 c3i5 c4i3c1 !c2i2 c3 c2 c8. i3 
4 i2.i2.i2 c3i5 c4i3c1 !c2i2 c4 c4 i1 c6 c3 c4 c3 c2 i2 c7 c4 
5 i2.i2.i2 c3i5 c4i3c1 !c2i2 c7 - c5 i1: i3 
6 i3 ---- -- - --- -- ------ ---- ---- ----- 
7 i3 c10-c2=c6 
8 i3 c11-c2=c2i1c3i3 
9 i3 c3-c2=c4i4.c2i2.c1i3c1i1c1i2c2i1=i6 
10 i3 c4 c2 c1 c3 c2 c6 c4 c4 c5 
11 i3 c4 i4c1 c5 i3c1 i2c3 i5c1 
12 i3 c6 c2 * i5 c2i1c3i3 c2i1c3 c8 i4 i5 

Figure 3. Sorted type-casted line vector of data in Fig. 2. 

1 i1 c1 c1 c1 i1 c1 c1 c1 c1 c1 c1 -- c1 c1 c1 c1 c1 c1 c1 c1 i1 i1 -- c1 c1 c1 
c1 c1 c1 c1 c1 i1 c1 i1 i1 

2 i2.i2.i2 c3i5 ---- c8, i2 c3 i4 ---- 
3 i2.i2.i2 c3i5 c4i3c1 !c2i2 c4 c4 i1 c6 c3 c4 c3 c2 i2 c7 c4 
4 i2.i2.i2 c3i5 c4i3c1 !c2i2 c3 c2 c8. i3 
5 i3 c10-c2=c6 
6 i3 c11-c2=c2i1c3i3 
7 i2.i2.i2 c3i5 c4i3c1 !c2i2 c7 - c5 i1: i3 
8 i3 c3-c2=c4i4.c2i2.c1i3c1i1c1i2c2i1=i6 
9 i3 c4 c2 c1 c3 c2 c6 c4 c4 c5 
10 i3 ---- -- - --- -- ------ ---- ---- ----- 
11 i3 c6 c2 * i5 c2i1c3i3 c2i1c3 c8 i4 i5 
12 i3 c4 i4c1 c5 i3c1 i2c3 i5c1 

Figure 2. Type-casted line data corresponding to Fig. 1 

1 2 3 4 5 6 7 8 9 ........                 Counter (CC) 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0000… 
2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1100… 
3 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2211… 
4 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2211…  
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0000… 
6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000… 
7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2000… 
8 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3000… 
9 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4000… 
10 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5000… 
11 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
12 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  MMj 

Figure 4. Bitmap matrix for the data shown in Fig. 3. Bit 
multiplication result is temporarily stored in the last row 

MM, where MMj = Mij * M(i+1)j. CC keeps the count of 
consecutive 1’s in each column 

Algorithm: Extract Patterns 
1 Sort type-casted data stored in the vector array 
2 Create the Bitmap-Matrix where Mij =  (tij == t(i+1)j)  
3 Reset CCj = 0 
4 saveFlag = 0 
5 For each row of matrix until (totrows-2) 
6 saveFlag = 0 
7 For each column  
8 Compute Bit Multiplication (MMj = Mij * M(i+1)j ) 
9 If  (MMj == 1) 
10 Increment bit counter CCj += Mij* M(i+1)j 
11 If ( lastLine )  
12 If ( checkSave(CCj, Mij, MMj, minTermSup) >0) 
13 Save frequent term pattern 
14 Check and save frequent value pattern 
15 Endif 
16 saveFlag = (checkSave(CCj,Mij,MMj,minLineSup)>0) 
17 Endif 
18 Else 
19 If ( checkSave(CCj, Mij, MMj, minTermSup) >0) 
20 Save frequent term pattern 
21 Check and save frequent value pattern 
22 Endif 
23 If (checkSave(CCj,Mij,MMj,minLineSup)>0) 
24 saveFlag = 1 
25 else 
26 Reset CCj =0 
27 Endif 
28 Endif 
29 Endfor 
30 saveLabelLinePatterns  
31 Endfor 
32 saveLabelRareInterestingLinePatterns 

Figure 5. Extracts line, term and value patterns. 



Note that each line of the bitmap matrix is created from two lines 
of data. An additional check is made when MMj=1 (Fig. 5 line 11-
17) for the last row (lastline=totrows-2 where totrows=total 
number of data lines) because if a column contains all 1’s until the 
last line, MMj is never 0 and the line pattern does not get saved 
(Fig. 5 line 11). Also the bit multiplication compares 3 
consecutive lines or more. Therefore, the last two lines of data 
have to be checked separately for frequent 2 term or line patterns.  

4.2.4 Saving Term, Value and Line Patterns 
The algorithm maintains frequent line, term and value pattern lists 
in memory. The checkSave() function returns 1 (Fig.5 lines 12, 
16, 19, 23) if the support count (CCj+2) equals or exceeds the 
minimum threshold (for terms minTermSup and for lines 
minLineSup) to indicate that a frequent pattern must be saved. If 
the pattern does not exist already, it is added to the corresponding 
pattern list, otherwise only its support count is updated. A 
frequent term pattern FTP is represented as <ft, tp, ts> where ft is 
the type-casted term pattern, tp is its position in the line and ts is 
its support. For FTPs, the actual values are inspected further to 
find the frequent value patterns (Fig. 5 line 14). 

A frequent value pattern FVP is represented as <ft, tp, VP> where 
ft is the frequent term pattern and tp is its position in the line. VP 
= {<fv1,vs1>, <fv2,vs2>,…, <fvn,vsn>} is the set of all value 
patterns listed as a pair <fvi,vsi>, fvi being the value pattern and vsi 
being its corresponding support. To check frequent value patterns, 
the process starts at the row of the vector array where the term 
match started; extracts all the different values for that term from 
the corresponding row of unmapped data into an array; sorts the 
values, and follows the same strategy as described above using the 
bitmap matrix and bit multiplication technique. The counter value 
CCj here indicates the number of times a character appears in 
subsequent rows in the jth column. If the character count (CCj+2) 
equals or exceeds the minValueSup then a closed frequent value 
pattern is saved. 

A frequent line pattern FLP is represented as <pid, lp, ls> where 

pid is the pattern ID, lp is the type-casted line pattern and ls is the 
support count. A line pattern is generated once all its terms have 
been examined and if flagged for saving by checkSave() based on 
the minLineSup threshold. Any term that equals or exceeds the 
minLineSup is included as is and the others are replaced by a “*”. 
Consecutive “*”s are merged into one to minimize the length of 
the pattern for very long data lines.  

For line and value patterns, we create closed frequent patterns 
{cfp1, cfp2, …} in multiple iterations from an item set I = {i1, i2,.., 
in} and their corresponding support values {is1,is2, …, isn} until 
there exists no ist≥ minSup where t={1..n}. In each iteration we 
find the smin≥minSup and create cfpu= {(j1, j2,…) | (jx ∈I) ∨ (jx 
=“*”) ∨ (jx =“?”)} and∀(jx = iy)⇒ isy≥smin}, where x={1..n}, 
y={1..n} and u={1,2,..}. In the next iteration isy  is set to 0 where 
isy =smin so as to not include that item again. We use “?” in value 
patterns and “*” in line patterns to indicate any character or term. 
For log data, the order of the items is preserved in the generated 
patterns. Fig. 6 shows the algorithm. For line patterns we merge 
multiple consecutive “*” to minimize the length of the pattern for 
very long data lines. New line patterns are saved using the 
findSaveLinePattern procedure (Fig. 6 line 17) which checks 
against existing patterns for a) exact match, or b) closest matching 
super patterns when saving rare or interesting patterns (that have 
support less than minLineSup) using a binary search algorithm. 
The objective is to avoid creating redundant line patterns. The 
assignLineLabel procedure in Fig. 6 line 18 categorizes the data 
lines by assigning them pattern IDs. 

In Fig. 4 line 4, CC2=2. Given a minTermSup=3, the term c3i5 
will be saved as a frequent term = <c3i5, 2, 4> with support (CC2 
+2). From its sorted actual values the frequent value patterns 
<c3i5, 2, {<STC10799,3>, <STC?????,4>}> are saved given 
minValueSup=3. If minLineSup=3, the line patterns are also saved 
since terms 1-4 in line 4 Fig. 4 have support values 4, 4, 3, 3 
corresponding to CC= 2211…. In the first iteration smin=3 and the 
pattern “i2.i2.i2 c3i5 c4i3c1 !c2i2 *” is saved as <P1, “i2.i2.i2 
c3i5 c4i3c1 !c2i2 *”, 3>. In the next iteration, support counts of 
value 3 are reset to 0 and the new smin=4, and another super 
pattern is saved as <P2, “i2:i2:i2 c3i5 *”, 4>. 

4.2.5 Saving Rare and Interesting Line Patterns  
The extract pattern algorithm makes a final pass over the data in 
memory to check for Interesting patterns and unlabeled data lines 
(Fig. 5 line 32). In this work we assert a line is interesting if it 
contains 3 or more successive symbols (up to two symbols are 
used in data as “::”). The getMatchingPattern in Fig. 7 first looks 
for an exact match from existing patterns and then from closest 
super-patterns. If a match is not found, it looks for a partial match 
from which to construct a pattern. In the case of interesting 

Algorithm: saveLabelLinePatterns 
1 While (saveFlag=1) 
2 CCmin = -1 
3 linePattern = “” 
4 saveFlag = 0 
5 For each term in the line  
6 If (term_support>=minLineSup)  
7 If (term_support < CCmin) or (CCmin <0) 
8 CCmin = term_support 
9 Endif 
10 linePattern = linePattern + term 
11 Else 
12 If linePattern does not end with “*” 
13 linePattern = linePattern +  “*”  
14 Endif 
15 Endif 
16 Endfor 
17 Pid = findSaveLinePattern(linePattern, CCmin) 
18 assignLineLabel(current_linenum, CCmin, Pid) 
19 For each term in the line 
20 If (term_support== CCmin) 
21 Reset term_support=0 
22 Else if (term_support >CCmin) 
23 saveFlag=1 
24 Endif 
25 Endfor 
26 CCmin = 0 
27 Endwhile 

Figure 6. Creates and saves closed frequent line patterns. 

Algorithm: saveLabelRareInterestingLinePatterns 
1 For each line 
2 If (noLineLabel(line)) or isInterestingPattern(pattern) 
3 pat = getMatchingPattern(pattern) 
4 If (noLineLabel(line)) or isNew(pat) or  

(!isNew(pat) and (llabel!=pat.pid)) 
5 Pid = findSaveLinePattern (pattern, 1) 
6 assignLineLabel(current_linenum, 1, Pid) 
7 Endif 
8 Endif 
9 Endfor 

 
Figure 7. Creates and saves rare and interesting line 

patterns and labels the corresponding data lines. 



patterns, the matching pattern is augmented with the interesting 
tokens from the line. In Fig. 3, line 1 is a rare pattern as it occurs 
only once and lines 2 and 6 are interesting as they contain 3 or 
more consecutive symbols. Extract pattern categorizes line 2 
under “i2.i2.i2 c3i5 *”.  In the final pass, algorithm in Fig. 7 
identifies it as an interesting pattern and augments the above to 
create a new pattern “i2.i2.i2 c3i5 --- *” for line 2.  

4.3 Find Pattern Correlation Rules 
Once the data is labeled with pattern IDs (PIDs), another pass is 
made over the data to a) count the support for each pair of PIDs 
that appear together in a specific order and b) find the relationship 
between pairs of terms in the lines with regards to position and 
value. When stating the rule, p1-p3 means a pair of consecutive 
line patterns p1 and p3, where p1 and p3 represent PIDs and p3 
follows p1 as shown in Fig. 8 lines 3 and 4. The support is 
calculated the way as explained in Section 3.6. In Fig. 9, p1-p3 
has support 18.18% (=2/11). Terms in a line are expressed as Tn 
where n is the term position in the line starting with 0. The last 
term is expressed as TL, because of the different sizes of the lines. 
CAPRI compares the values of each pair of terms of a pair of 
PIDs, and generates rules of the form p1-p3⇒TL=T0 for lines 3 
and 4 of Fig. 8. Here the antecedent of the rule TL belongs to p1 
and the consequent, T0, belongs to p3. The confidence of the rule 
is calculated using Eq. 4. The support of (p1-p3 and TL=T0) is 
1/11 and the support of p1-p3 is 2/11. Therefore, 
confidence=50%.  
For large data files, rules that have low support and confidence 
values can be filtered out. Lines that violate rules having high 
confidence values indicate possible error in the data. In Fig. 8, 
line 7 violates the p1-p3 rule and has an error in line order.  

4.4 Tool Output 
Optionally (if the user enters an output file name) CAPRI writes 
data labeled with PIDs as shown in Fig. 8 to facilitate subsequent 
data processing. The discovered line, term and value patterns 
including the rules are written out to a default text file called 
"LTVPatterns.txt" as shown in Fig. 9.  

4.5 Implementation 
The CAPRI tool and test data sets with some results are available 
online [2]. It was developed using Java 1.6.0_26 on a 64-bit 
Windows platform. A set of Java class files can be extracted from 
a downloadable compressed rar file. It is executed as follows from 
a command prompt using the Java 1.6 runtime libraries.  

java Capri <inputfile> [outputfile] 

5. EXPERIMENTAL EVALUATION 
We evaluate the effectiveness of CAPRI based on the following 
criteria using a machine having an Intel core i7 processor with a 
2.67 GHz CPU and 4GB memory, running a 64-bit Windows 7 
operating system:  

I. Ability to categorize all lines including rare and interesting 
line patterns, and find frequent term and value patterns, and 
rules that state relationships between pairs of line patterns. 

II. The effect of minimum support thresholds on the result of 
moderate size data files. 

III. Comparative performance analysis with other similar tools for 
both small and large data sets of various types.  

5.1 Test Data Types 
We use three different data layouts A, B, and C; A is a z/OS 
mainframe DB2 JES master log data with multi-line messages 
(example shown in Fig. 1); B is a distributed DB2 log with 
paragraph style messages, and C is a Squid web access log file 
with single line messages. Samples of the B and C data sets are 
presented in Fig. 10. Data sets of Fig. 1 (type A), B, and C with 
some experimental results are also available online with the tool.  

5.2 Pattern and Rule Discovery 
Our small running example dataset A of Fig. 1 and the outputs 
from CAPRI in Fig. 8 and 9 demonstrate that CAPRI not only 
finds the closed frequent patterns, it also accurately categorizes 
the lines with the PIDs of the closest matching patterns. It finds 

0 p4 1 J E S 2 J O B L O G -- S Y S T E M Z P 0 1 -- N O D E U S I L 0 P 0 1  
1 p5 19.00.25 STC10799 ---- SATURDAY, 18 DEC 2010 ----  
2 p1 03.58.05 STC09048 DSNJ110E !SS11 LAST COPY 1 ACTIVE LOG 

DATA SET IS 95 PERCENT FULL  
3 p1 12.46.21 STC10799 DSNP010I !PB11 END OF MESSAGES. 744  
4 p3 744 CONNECTION-ID=SERVER  
5 p3 744 CORRELATION-ID=PB1BTC008  
6 p1 12.17.58 STC10799 DSNV512I !PB11 DSNVMON - AGENT 1: 771  
7 p3 744 LUW-ID=ODCA4760.EC77.C737D7D90AA5=181319  
8 p3 771 NAME ST A REQ ID AUTHID PLAN ASID TOKEN  
9 p6 771 ---- -- - --- -- ------ ---- ---- -----  
10 p3 771 SERVER RA * 10879 PB1DIA025 PB1ADM DISTSERV 0070 

67702  
11 p3 771 LONG 9728K VLONG 436K 64BIT 28784K 

Figure 8. Data of Fig. 1 categorized with line pattern ID. 

Data Type B: Distributed DB2 log file 
1 2010-12-01-10.34.15.693000-300 I1F955             LEVEL: Event 
2 PID     : 3740                 TID  : 4148        PROC : DB2STOP.EXE 
3 INSTANCE: DB2                  NODE : 000 
4 Information in this record is only valid at the time when this file was 
5 created (see this record's time stamp) 
6 2010-12-01-10.34.15.693000-300 I959F1671       LEVEL: Event … 

Data Type C: Squid access log file 
1 1286536308.779    180 192.168.0.224 TCP_MISS/200 411 GET 

http://liveupdate.symantecliveupdate.com/minitri.flg - 
DIRECT/125.23.216.203 text/plain 

2 1286536309.586    921 192.168.0.68 TCP_MISS/200 507 POST http://rcv-
srv37.inplay.tubemogul.co...eiver/services - DIRECT/174.129.41.128 
application/xml ... 

Figure 10. Data types 
 

Line patterns: (Total 6 patterns from 12 lines) 
p4 : i1 c1 * : 1 
p2 : i2.i2.i2 c3i5 * : 4 
p5 : i2.i2.i2 c3i5 ---- * : 1 
p1 : i2.i2.i2 c3i5 c4i3c1 !c2i2 * : 3 
p3 : i3 * : 7 
p6 : i3 ---- * : 1 
Term patterns: (Total 5 patterns ordered by position) : Position in line : Value 
patterns (Total 9 patterns) 
i2.i2.i2 : pos 1 : 4 [1?.??.?? : 3, ??.??.?? : 4] 
i3 : pos 1 : 7 [771 : 4, 744 : 3, 7?? : 7] 
c3i5 : pos 2 : 4 [STC10799 : 3, STC????? : 4] 
c4i3c1 : pos 3 : 3 [DSN??1?? : 3] 
!c2i2 : pos 4 : 3 [!??11 : 3] 
Rule list (having support>0.1 and confidence>0.5) 
p3-p3 (cnt:3, sup:0.2727272727272727) => {T0=T0=0.6666666666666666} 
p1-p3 (cnt:2, sup:0.18181818181818182) => {TL=T0=0.5} 
Total 2 rules generated. 

Figure 9. Extracted line, term and value patterns and 
rules for the data of Fig. 1 for minLineSup=25% (=3), 

minTermSup=25% and minValueSup=25%. 



rare and interesting line patterns, all term and value patterns, and 
rules given a minimum support threshold.  

5.3 Effect of Support Thresholds  
In general, greater support values result in fewer and more general 
patterns. We define the test cases shown in Table 1 to examine the 
effects of different parameters on CAPRI’s performance for each 
data type. We apply CAPRI on moderate size log files of type A, 
B and C. The results are shown in Table 2. For rule count, each 
consequent of the same antecedent is counted separately.  

Table 1: Test-case parameters for CAPRI  
Test case minLineSup minTermSup minValueSup minRuleSup minRuleConf 

1 30 20 10 5 80 

2 20 20 20 10 90 

3 40 25 20 7 95 

Note: Support thresholds are in percentile 
Table 2: Study of the effect of parameters on results 

Data  
type 

File Size 
in KB 

Lines 
of data 

Test 
case 

Number of patterns Number of 
rules Line Term Value 

A 106 1679 
1 7 20 139 4 
2 13 20 46 1 
3 7 19 45 3 

B 176 2826 
1 88 14 29 69 
2 101 14 17 66 
3 76 11 13 66 

C 16 113 
1 9 15 55 16 
2 11 15 31 10 
3 7 13 29 10 

5.3.1 Observations and Inferences 
Data type A: Comparing rows A.1 and A.2 in Table 2, we see 
that a lower minLineSup results in more line patterns and 
consequently a lower support value for each rule. So, with a lower 
minLineSup and slightly higher minRuleSup threshold, only 1 rule 
is extracted leaving out an important rule. Therefore, higher 
minLineSup allow CAPRI to efficiently mine closed frequent 
patterns and rules from larger data sets. A higher minValueSup 
helps in reducing the many different value patterns extracted for 
date and line numbers and still maintains other important value 
patterns. Overall, A.3 gives the most concise and effective set of 
patterns and rules for the data set. 

Data type B: This block style data layout includes many lines 
with 3 or more consecutive symbols in binary data, and rare line 
patterns due to the unstructured message in each block. For 
interesting patterns, CAPRI looks for partial match in super 
patterns and then adds terms up to the interesting term.   
Therefore, many similar interesting patterns are created and the 
total number of patterns is high. Many rules are also created for 
the same antecedent due to existence of blocks of binary data.  
Data type C: This data file contains very similar short single line 
messages that differ mostly in the parameters. The rules are, 
therefore, helpful in identifying constant terms. Since CAPRI 
explores frequent values only for the frequent terms, row C.2 has 
more term patterns (for lower minTermSup) and consequently 
more value patterns than C.3 for the same minValueSup threshold.  

5.4  Comparative Performance Analysis 
We select two popular open source line pattern mining tools 
called the SLCT and LogHound [10][6] which have previously 
been used in research studies. Other tools such as IPLoM [7] and 

Teiresius [8] assume single line messages and require 
preprocessing of the data to extract only the message (description 
part without the date, time and other preceding parts) from each 
line in to another data file, which is then processed by the tools. 
Unlike CAPRI all the other tools mine patterns based on actual 
data values. Therefore, we cannot do an exact comparison. We use 
SLCT and LogHound for the same data types A, B, and C and 
provide a comparison in terms of functionality, coverage, and 
abstractness of the patterns. Some examples of the discovered 
patterns for the different data types for SLCT and LogHound are 
shown in Table 3. More detailed test results including sample data 
sets of each type are available online with CAPRI. 

Table 3. Examples of extracted clusters or line patterns for 
data types A, B and C using SLCT and LogHound 

Table 4: Study of the comparative performances of CAPRI, 
SLCT and LogHound for different types and sizes of data 

Data 
type 

File Size 
(KB) 

Lines 
of data 

Test 
case 

No. of line patterns Support 
threshold CAPRI SLCT LogHound 

A 106 1679 
1 7 15 44 30 
2 13 34 116 20 
3 7 14 40 40 

59 MB 938262 4 28 8356 52636 30 

B 176 2826 
1 88 24 275 30 
2 101 80 444 20 
3 76 22 273 40 

C 16 113 
1 9 1 9 30 
2 11 2 10 20 
3 7 1 8 40 

Table 4 shows the comparison between the three tools in terms of 
the number of line patterns retrieved by each for the same data set 
as in Table 2. An additional highlighted row is shown (row A.4 in 
Table 4) as test case 4 for data type A that uses a larger data file. 
Since the other tools take only the minimum term support 
threshold, it is listed on the rightmost column. The same value is 
used as the minLineSup for CAPRI.  

5.4.1 Observations and Inferences 
CAPRI discovers a concise number of type-casted line patterns in 
contrast to the other tools, which use the actual data values. 
CAPRI also finds the term and value patterns. Abstract patterns 
that are composed of only “*” as shown in Table 4 discovered by 
SLCT and LogHound, do not present any useful information. 
Some patterns like 771 and 744 as extracted by SLCT for the data 
set in Fig. 1 are confusing. CAPRI retrieves more useful patterns 
with none composed of only “*”. Fewer patterns are discovered 

SL
C

T
 

A 
771       
744       
* STC10799 

B 

* :       
2010-12-01-10.34.15.693000-300 * LEVEL: Event   
INSTANCE: DB2 NODE : 000     
PID : 3740 TID : 4148 PROC : DB2STOP.EXE 

C 

* * 192.168.0.224 TCP_MISS/200 * GET * -  IRECT/125.23.216.203 
* * 192.168.0.68 TCP_MISS/200 507 POST http://rcv-
srv37.inplay.tubemogul.co...eiver/services - DIRECT/174.129.41.128 
application/xml  

L
og

H
ou

nd
 A 

* * * * * * * * * :  
* * CORRELATION-ID=db2jcc_appli 
* * (SUSPENDED) (FOR) (PRT1) (AT) (RBA) * LRSN * (PRIOR) 

B 
* * * * * * : 
(DATA) * : * 34 
(DATA) (#2) (:) * PD_SQLER_TYPE_FMP_HANDLE, * (bytes) 

C 
* * * * * * * -  
* * * * * GET * (-) 
* * * TCP_MISS/200 * GET * (-)  



by SLCT for single line messages in data types B and C as shown 
in Table 4 because it finds only the frequent clusters. LogHound 
finds more patterns, and therefore, has better coverage than SLCT 
for all the different data types but it has many abstract and 
redundant super patterns as shown in Table 3. For multi-line 
messages in large files CAPRI does a much better job than the 
other tools as demonstrated in test case 4 in Table 3. It also mines 
rules, identifies rare and interesting patterns and optionally 
generates an output file with lines labeled with pattern ids. CAPRI 
is based on java and is, therefore, platform independent. Both the 
other tools use C-code and are designed to run on UNIX. 

5.5 Usability of the Tool for Big Data 
CAPRI discovers line patterns with 100% coverage for each data 
line and labels each data line with a pattern ID. As ongoing work, 
we are implementing CAPRI using Amazon’s Elastic Map Reduce 
(EMR) [1] framework to maximize its efficiency in processing big 
data files. EMR uses the Hadoop framework with cloud resources 
for storage and computation. For the decision support 
applications, we define rules to process each type of line pattern 
for further log analysis. For example, p5 in Fig. 8 denotes start of 
a new day and p3 indicates continuation of a message. The rules 
such as p1-p3⇒TL=T0 enable automated reformatting to generate 
single line messages from the multi-line messages using the 
matching line numbers in line patterns p1 and p3 and correction 
of line orders. The term and value patterns such as “i2.i2.i2” and 
“DSNJ????” are used to identify time and error codes, constant 
and variable terms to facilitate message correlation analysis. 

6. CONCLUSION 
We present the CAPRI tool which demonstrates a type-casting 
technique, a bitmap multiplication algorithm to compute the 
support for discovering closed frequent line patterns in a single 
pass over big data, and allows incremental mining for large data 
files. CAPRI discovers both frequent and rare line patterns in a 
type-casted format from both single and multi-line semi-structured 
log data. We developed CAPRI based on observations of the 
human cognitive approach towards line patterns and the typical 
data analytics requirements with respect to log data analysis. 
Existing approaches return line patterns based on the actual data 
values which result in very long lists of message patterns or return 
only the frequent patterns. The type-casting technique provides a 
much shorter list of line patterns for the same support threshold. 
CAPRI discovers frequent term and value patterns as well, which 
gives important semantic information about the data. CAPRI 
achieves 100% recall by labeling and categorizing each line of 
data with the closest matching frequent line pattern ID for 
effective post-processing. It generates rules, which show the 
contextual relationship between pairs of line patterns with 
corresponding support and confidence values. Users can choose to 
filter out rules having low support and confidence, and thereby, 
generate a more effective rule set. The rule set can be used to 
identify errors in line order, to reformat multi-line messages or 
explore further correlations in the data.  

For future work, we like to extend the usability of CAPRI to 
create a semantic vocabulary of type-casted frequent term patterns 
to enable human-like recognition capabilities. We like to define 
rules to specify interesting patterns and to constrain the extraction 
of value patterns for known terms such as date and time. We also 
plan to carry out experiments on Amazon EMR with big datasets. 
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