
CAPRI: A Tool for Mining Complex Line Patterns
in Large Log Data

Farhana Zulkernine, Patrick Martin,
Wendy Powley, Sima Soltani

School of Computing, Queen’s University
Kingston, ON, Canada K7L 3N6

{farhana, martin, wendy, soltani}@cs.queensu.ca

Serge Mankovskii*, Mark Addleman#
*CA Labs, Toronto, ON, Canada

#CA Technologies Inc., San Francisco, USA
*serge.mankovski@ca.com,

#mark.addleman@ca.com

ABSTRACT
Log files provide important information for troubleshooting
complex systems. However, the structure and contents of the log
data and messages vary widely. For automated processing, it is
necessary to first understand the layout and the structure of the
data, which becomes very challenging when a massive amount of
data and messages are reported by different system components in
the same log file. Existing approaches apply supervised mining
techniques and return frequent patterns only for single line
messages. We present CAPRI (type-CAsted Pattern and Rule
mIner), which uses a novel pattern mining algorithm to efficiently
mine structural line patterns from semi-structured multi-line log
messages. It discovers line patterns in a type-casted format;
categorizes all data lines; identifies frequent, rare and interesting
line patterns, and uses unsupervised learning and incremental
mining techniques. It also mines association rules to identify the
contextual relationship between two successive line patterns. In
addition, CAPRI lists the frequent term and value patterns given
the minimum support thresholds. The line and term pattern
information can be applied in the next stage to categorize and
reformat multi-line data, extract variables from the messages, and
discover further correlation among messages for troubleshooting
complex systems. To evaluate our approach, we present a
comparative study of our tool against some of the existing popular
open-source research tools using three different layouts of log
data including a complex multi-line log file from the z/OS
mainframe system.

Categories and Subject Descriptors
I.5.3 [Clustering] and I.5.4 [Applications]: Algorithms and text
processing tool for line, term and value pattern mining.

General Terms
Algorithms, Design, Experimentation.

Keywords
Line, term, value pattern mining, type-casting, association rule.

1. INTRODUCTION
Log data analysis is crucial to retrieve knowledge regarding the
system status when troubleshooting performance issues. With the
evolution of various sensors and system monitoring tools, we
come across many different log files with varying data layouts.
The files are often very large and contain a mixture of many
different pieces of information. The analysis of the data, therefore,
has become more challenging than ever and involves multiple
steps based on the information requirements and data contents.
The first step in a complex log data analysis process naturally
leads to discovering line patterns and understanding frequent data
values in the log files to enable further processing in an automated
or semi-automated manner. The application of line pattern mining
has recently been quite prevalent in IDS (Intrusion Detection
System) alert filtration [11][9] and event categorization for
software maintenance and error diagnosis [3][5][7]. Other
application areas include autonomic systems management [4][12],
decision support systems [13]; anomaly detection by identifying
abnormal system behavior [3]; fault detection by comparing with
predefined fault characteristics [10], and prediction of error
situations using techniques such as case-based reasoning,
sequence mining or statistical approaches [3].

The work described here is a part of a larger research effort [14],
which is aimed at providing a decision support framework for
database administrators (DBA) to help troubleshoot problems in
complex real world systems such as the z/OS mainframe DB2.
Fig.1 shows an example of complex multi-line log messages from
a z/OS mainframe DB2 JES (Job Entry Subsystem) master log file
where many different monitoring agents report events in various
formats [14]. The DBAs often have to inspect such large files
manually for troubleshooting purposes. A mandatory step in
automating the analysis of complex log files is to first understand
the structural aspect of the line patterns in the data, which should
include both frequent and rare line patterns; the contextual
relationship between different line patterns, and frequent value
patterns. This knowledge can then be used to automate the next
step of data processing and knowledge discovery such as
reformatting, content analysis, message classification, variable
identification, and correlation analysis as necessary for specific
application domains [3].

Although frequent itemset mining and text data mining have been
popular areas of research in the last decade, a literature study
reveals that most of the existing data mining approaches for semi-
structured text data such as log files apply supervised learning
methods [3] for job-specific limited size log files. Some of the
more recent works demonstrate application of unsupervised
learning methods [11]. However, the common assumptions in the
existing approaches are that the messages are single line with a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components of
this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.

BigMine'13, August 11-14 2013, Chicago, IL, USA Copyright is held by the
owner/author(s).Publication rights licensed to ACM.
ACM 978-1-4503-2324-6/13/08…$15.00.

mailto:Permissions@acm.org

time stamp and the formats of the parameters are known from
heuristics. In this research, we address the challenges in
processing complex multi-line messages in large log data.

The JES log file in z/OS mainframe is used by the DBAs as an
important reference. We use the JES log file in Fig. 1 containing
multi-line messages as a running example in the paper. The end of
the first line of a multi-line message contains a line number that
appears in the beginning of the subsequent lines of the same
message, for example lines 4-8 excluding line 7. Additional
complexity arises from the facts that a) day and time are expressed
in separate messages (date in line 2 and time as hh:mm:ss in the
beginning of each message); b) messages can be in table format
(lines 9-11); c) the parameters can be of various formats, and d)
the lines may be ordered incorrectly as lines 7 and 8 due to
multiple reporting agents writing concurrently in the same file.

Existing research tools such as SLCT [10], LogHound [11], and
IPLoM [7] have the following shortcomings: they fail to identify
rare line patterns, they cannot process large multi-line log data,
and they do not retrieve the frequent term patterns or the
contextual relationship between commonly occurring pairs of line
patterns. Our research is, therefore, motivated towards resolving
these shortcomings.

We propose CAPRI (type-CAsted Pattern and Rule mIner), a
novel algorithm and tool [2] that makes a minimal number of
passes over semi-structured log data to detect line patterns using
unsupervised clustering and a type-casting technique [ref. Sec.
3.1]. It has the following features:
a) Processes both single and multi-line messages.
b) Generates a compact list of frequent, rare, and interesting line

patterns expressed in a type-casted format.
c) Generates a list of frequent term and value patterns given the

minimum support values.
d) Generates rules that identify contextual relationships between

subsequent line patterns.
e) Performs incremental mining for big data and uses a bitmap

matrix to compute the support counts in a single pass over the
data making efficient use of system resources.

The next section of the paper describes the related work.
Definitions of some key concepts are presented in Section 3.
Section 4 presents our approach in detail. We evaluate CAPRI
against existing popular line pattern mining tools. Experimental
results are provided in Section 5 to demonstrate the discovered
line, term and value patterns and the rules from a set of test data.
Section 6 concludes the paper summarizing the contributions and
our future work plan.

2. RELATED WORK
Frequent pattern and association rule mining for semi-structured
text data has been explored by many researchers [3].
Classification and clustering techniques for mining frequent
patterns have been used for troubleshooting systems [4], anomaly
detection [12], and software maintenance [5]. Most of these
approaches apply supervised learning based on labelled training
data, which is effective when there are a limited number of
message formats that can be labelled. In complex systems and the
big data paradigm this is infeasible. Hellerstein et al. [4] propose a
framework to mine event bursts, periodic and dependent event
patterns, and event attributes and correlations from logs that can
be used to take corrective actions for systems management. Xu et
al. [12] demonstrate a console log mining approach where
message patterns are extracted by analyzing source code which is
generally not accessible. In the anomaly detection paradigm, Fu et
al. [3] propose an algorithm to categorize log messages by a
generated text key without application specific knowledge. The
approach assumes single line log messages each having a
timestamp, a thread ID and a request ID. Jiang et al. [5] propose a
clone detection based log abstraction technique using heuristics to
identify parameters from constant terms, and thereby, understand
the structures of log messages.

Some of the more recent line pattern mining approaches use
unsupervised learning techniques but assume only single line
messages with timestamps. Applications of these approaches can
be found in categorizing and filtering important messages from
IDS event logs [11][9], which contain a huge number of alerts.
Vaarandi [10] proposes SLCT (Simple Log Clustering Tool) and
LogHound tools to find only frequent message clusters in log
data. Stearly [8] proposes the Sisyphus toolkit combining
Teiresius and other components, which enables automated
generation of maximal message patterns for categorization and
grouping of time-correlated messages and interactive reviewing of
the results. The approach requires some knowledge about the data
and generates a separate output for the outliers. Both Teiresius
and LogHound require that the data reside completely in memory.
SLCT avoids the memory problem by requiring multiple passes
over the data. Makanju et al. [7] propose IPLoM (Iterative
Partitioning Log Mining), which uses a repeated data partitioning
approach to first create clusters with messages having equal
number of data items in each line and then repartitioning the
clusters based on other criteria.

All of the above approaches apply value-based clustering. We
move up a level in abstraction by introducing a type-casting
mechanism and generating a more condensed set of type-casted
line patterns using unsupervised learning and incremental mining
techniques. CAPRI also generates a list of frequent term and value
patterns and rules that state how the patterns are correlated in
multi-line log messages.

3. DEFINITIONS
3.1 The Type-casting Technique
We identify 3 types of characters: alphabetic characters (a-z, A-
Z), numeric characters or numbers (0-9) and symbols (anything
other than the above two types). Literals refer to any combination
of the above character types. The Type Casting Technique uses
the type and the number of characters to map a word (space
delimited data) to a type-casted format but leaves the symbols
intact because they typically stand out in the pattern. We convert a

1 J E S 2 J O B L O G -- S Y S T E M Z P 0 1 -- N O D E U S I L 0 P 0 1
2 19.00.25 STC10799 ---- SATURDAY, 18 DEC 2010 ----
3 03.58.05 STC09048 DSNJ110E !SS11 LAST COPY 1 ACTIVE LOG DATA

SET IS 95 PERCENT FULL
4 12.46.21 STC10799 DSNP010I !PB11 END OF MESSAGES. 744
5 744 CONNECTION-ID=SERVER
6 744 CORRELATION-ID=PB1BTC008
7 12.17.58 STC10799 DSNV512I !PB11 DSNVMON - AGENT 1: 771
8 744 LUW-ID=ODCA4760.EC77.C737D7D90AA5=181319
9 771 NAME ST A REQ ID AUTHID PLAN ASID TOKEN
10 771 ---- -- - --- -- ------ ---- ---- -----
11 771 SERVER RA * 10879 PB1DIA025 PB1ADM DISTSERV 0070 67702
12 771 LONG 9728K VLONG 436K 64BIT 28784K

Figure 1. Data type A- z/OS mainframe DB2 JES master log
file containing multi-line messages

number to “i?” where “?” indicates the number of digits in that
number. Similarly alphabetic literals are converted to “c?”.
Symbols are not modified. Therefore, “03.58.05 STC09048
DSNJ110E” in Fig. 1 line 3 is type-cast to “i2.i2.i2 c3i5 c4i3c1”.
This conversion allows us to represent data such as date and time,
which do not have any frequent values, in a common format and
thus capture additional semantic information about the data items.

3.2 Line, Term, and Value Patterns
A Term is a sequence of characters (alphabetic, numeric or
symbol or any combination of these types) that is delimited by a
space, or an end of line character depending on the position of the
sequence in a line of data. A Term Pattern denotes the pattern of a
type-cast term such as “i2.i2.i2” for all timestamp values like
“19.00.25” in Fig. 1. A Value of a Term denotes a concrete
instance of the term as it appears in the data such as “19.00.25”. A
term or term pattern can have multiple values such as the time
data. A Value Pattern is a sequence of frequent characters in a
term and ‘?’, where a frequent character remains as is in its
position and an infrequent character is replaced by a “?”. For
example, “12.??.??” is a value pattern for the term “i2.i2.i2”. A
Line is a sequence of terms which are separated by one or more
spaces and is terminated by a line feed in the text data. A Line
Pattern is a line composed of its term patterns where frequent
terms remain the same at their positions but infrequent terms get
replaced by “*”. Consecutive “*”s are merged into one “*” to
provide a concise representation of the line pattern. An example
line pattern for line 3 of Fig. 1 would be “i2.i2.i2 c3i5 *“,
considering that the terms after “c3i5” are not frequent. More
examples are given in Sections 4 and 5.

3.3 Frequent Patterns and Support Values
The support value of a pattern P in a dataset D containing semi-
structured text data is:

Support (P) = ……… (1)

where D = {L1, L2,…,Ln} the set of all lines Li in the data, and i∈
(1, n), n=the maximum number of lines in the data. LTi = {Ti1,
Ti2,…,Tij,…, Tim} is the set of all type-casted term patterns in line Li,
where, j∈ (1, m), m=the maximum number of terms in line i. If
Support (P) > ε, where ε is a user defined minimum support
threshold then P is called a frequent pattern.

A line pattern Pl ⊆ LTi and it is composed of one or more type-
casted term patterns. In the context of semi-structured text data,
the position of the term in the line must be considered in
computing its support. Therefore, a term pattern Ptj = <Tij, j>,
where Tij∈LTi represents a term at the jth position of ith data line.
The support for value patterns are computed in the same way as
the term patterns. Here Li = {Vi1, Vi2, …, Vim} which represents
actual values of the terms instead of type-casted terms and a value
pattern Pvj = <Tij, Vij, j>. However, the absolute support counts
are often used instead of fractions as we use in Sections 4 and 5.

3.4 Closed Frequent Pattern
A pattern ∝ is a Closed Frequent Pattern (CFP) in a dataset D if
∝ is frequent in D and there exists no proper super-pattern β
such that ∝⊂β and β has the same support as ∝ in D [3]. If a
pattern is frequent, each of its sub-patterns is also frequent. CFPs
restrict the number of sub-patterns of a frequent pattern without
losing any information.

3.5 Association Rule Mining
Rules comprise two parts namely, a condition and an implication.
Given a set of items I = {i1, i2, i3,…}, a rule is generally expressed
as ∝⇒β, where ∝ ⊂ I, β ⊂ I, and ∝ ∩ β = Ø. ∝ is called
the antecedent and β is called the consequent of the rule. In
information retrieval, association rule mining is very effective in
discovering the knowledge about relationships among different
information pieces and establishing correlations between different
data dimensions i.e., data items in a data set. We take each pair of
patterns that occur together and find which terms have the same
values to explore the contextual relationship. Our rule, therefore,
resembles (px-py,)⇒(lxi=lyj). We also derive the support and
confidence values to determine the acceptability of the rules.

3.6 Support and Confidence of Rules
In general the support for a rule ∝⇒β is:

Support (∝⇒β) = … (2)

Confidence (∝⇒β) = ………….. (3)

where Support(∝) is computed using equation (1). For each pair
of lines lx and ly occurring together in the data where ly follows lx,
we mine association rules between their corresponding line
patterns px and py to understand the contextual relationships
between the different terms of these line patterns. We express the
rule as (px-py,)⇒(lxi=lyj), which states that if the line pattern py,
follows the line pattern px, then the value of the ith term, lxi of the
former line lx matches the value of the jth term lyj of the following
line ly. The support for (px-py,) is calculated by the ratio of the
total number of times py follows px, and the total number of line
pairs in the data, which is (|D|-1), |D| being the total number of
lines in the data set. The confidence of a rule is calculated using
Eq. 3. For example, if (p1-p2) is true 10 times in 101 lines of data
in total, then the support of the rule is 0.1. If out of these 10 times,
every time term p1.T1=p2.T2 then the confidence of the rule is
1.0. A small deviation (5%) in the confidence of a rule indicates
possible incorrect ordering of lines or incorrect data formats, and
helps in correcting the data.

4. OUR APPROACH – CAPRI
4.1 Overview
Given the fact that most event reports contain messages that have
an initial header part with a timestamp and some other ID,
followed by a body part containing the detailed message, we
devise a technique that sorts type-casted data to generate clusters
of similar line formats. The type-casting technique abstracts the
variation in data but maintains the structural data pattern.
CAPRI uses incremental mining to handle large data files, mines
frequent line, term and value patterns including the rare and
interesting line patterns, and the contextual relationships between
subsequent line patterns in the data. In this paper, we define a
simple criterion for interestingness, which is the subsequent
appearance of three or more symbols in a line pattern because up
to two symbols (e.g. “::”) are used in the text or in parameter
values. In Fig.1 line 1 is rare as it appears only once in a file, and
line 2 is rare and also interesting as it contains “---“. CAPRI
successfully identifies the line patterns, categorizes and labels
each line of data with a line pattern ID and optionally rewrites
labeled lines in an output file. In the following sections we
describe the algorithm in detail focusing on its key features.

4.2 Pattern Extraction
4.2.1 Generating Type-Casted and Sorted Data
As the data is read, it is converted into the type-casted format, and
both the original and converted data are stored in a vector array in
memory. Fig. 2 shows the type-casted data of Fig. 1. The type-
casted data of Fig. 2 in the vector array is then sorted as in Fig. 3.

4.2.2 Bitmap Matrix Generation
A bitmap matrix, as shown in Fig. 4, is used in our algorithm to
compute the support for discovering closed frequent patterns in
one pass over the data in memory. It is created by comparing the
terms tij and t(i+1)j of subsequent rows i and (i+1) in the jth column
of the sorted array (Fig. 3) as stated in Eq. (5). Mij is the resulting
0 or 1 as shown in the bitmap matrix of Fig. 4.

Mij = (tij == t(i+1)j) …….. (5)
For example, line 2 of the matrix in Fig. 4, 1100…0, is the result
of the comparison of the terms in lines 2 and 3 in Fig. 3. Since
two lines of the data generate one line of the bitmap matrix, the
total number of lines in the matrix would be one less than that of
the vector array. We use the last row of the matrix to store the
result of the bit-multiplication as explained next.

4.2.3 Bit Multiplication and Counting Support
As stated in Eq. (6), starting with the first row of the bitmap
matrix, we multiply the bits Mij and M(i+1)j in the subsequent rows
in the same column j using a logical “AND” operation and the
result is stored in MMj in the last row. Line 12 in Fig. 4 shows the
result of multiplying lines 2 and 3.

MMj = Mij * M(i+1)j …….. (6)

MMj=1 indicates that last 3 consecutive terms in j in Fig. 3 are the
same. We use a one dimensional array to save the count of 1s in
the multiplication results for each column of the matrix as shown
by the last column labeled Counter(CC) in Fig. 4. The count is

increased if the multiplication result MMj is 1 as shown below.

If MMj==1 then CCj += 1 else checkSave() …….. (7)
The algorithm is shown in Fig. 5. In Fig. 4, the result of the
multiplication of lines 2 and 3, is shown in the last row and CCj is
“1100…” as the previous multiplication result was all 0s. For
lines 3 and 4, the multiplication result is “111100…”. Therefore,
CCj is updated to “221100…”. CCj=n indicates that (n+2) terms
at column j are the same in consecutive rows in the sorted type-
casted data. In Fig. 4 line 4 when MMj=0, CC1=2 means 4 terms
at column 1 are the same up to the next line (see Fig. 3 lines 2-5).
In Eq. (7), when MMj=0 the counter is checked to see if its value
exceeds the minimum line (minLineSup) and term support
thresholds (minTermSup). If a minimum threshold is reached or
exceeded, an appropriate save pattern operation is invoked (Fig. 5
lines 19-27) as described in the next section. Otherwise, the
counter is reset (Fig. 5 line 26) to 0.

1 i1 c1 c1 c1 i1 c1 c1 c1 c1 c1 c1 -- c1 c1 c1 c1 c1 c1 c1 c1 i1 i1 -- c1 c1 c1
c1 c1 c1 c1 c1 i1 c1 i1 i1

2 i2.i2.i2 c3i5 ---- c8, i2 c3 i4 ----
3 i2.i2.i2 c3i5 c4i3c1 !c2i2 c3 c2 c8. i3
4 i2.i2.i2 c3i5 c4i3c1 !c2i2 c4 c4 i1 c6 c3 c4 c3 c2 i2 c7 c4
5 i2.i2.i2 c3i5 c4i3c1 !c2i2 c7 - c5 i1: i3
6 i3 ---- -- - --- -- ------ ---- ---- -----
7 i3 c10-c2=c6
8 i3 c11-c2=c2i1c3i3
9 i3 c3-c2=c4i4.c2i2.c1i3c1i1c1i2c2i1=i6
10 i3 c4 c2 c1 c3 c2 c6 c4 c4 c5
11 i3 c4 i4c1 c5 i3c1 i2c3 i5c1
12 i3 c6 c2 * i5 c2i1c3i3 c2i1c3 c8 i4 i5

Figure 3. Sorted type-casted line vector of data in Fig. 2.

1 i1 c1 c1 c1 i1 c1 c1 c1 c1 c1 c1 -- c1 c1 c1 c1 c1 c1 c1 c1 i1 i1 -- c1 c1 c1
c1 c1 c1 c1 c1 i1 c1 i1 i1

2 i2.i2.i2 c3i5 ---- c8, i2 c3 i4 ----
3 i2.i2.i2 c3i5 c4i3c1 !c2i2 c4 c4 i1 c6 c3 c4 c3 c2 i2 c7 c4
4 i2.i2.i2 c3i5 c4i3c1 !c2i2 c3 c2 c8. i3
5 i3 c10-c2=c6
6 i3 c11-c2=c2i1c3i3
7 i2.i2.i2 c3i5 c4i3c1 !c2i2 c7 - c5 i1: i3
8 i3 c3-c2=c4i4.c2i2.c1i3c1i1c1i2c2i1=i6
9 i3 c4 c2 c1 c3 c2 c6 c4 c4 c5
10 i3 ---- -- - --- -- ------ ---- ---- -----
11 i3 c6 c2 * i5 c2i1c3i3 c2i1c3 c8 i4 i5
12 i3 c4 i4c1 c5 i3c1 i2c3 i5c1

Figure 2. Type-casted line data corresponding to Fig. 1

1 2 3 4 5 6 7 8 9 Counter (CC)
1 0 0000…
2 1 1 0 1100…
3 1 1 1 1 0 2211…
4 1 1 1 1 0 2211…
5 0000…
6 1 0 1000…
7 1 0 2000…
8 1 0 3000…
9 1 0 4000…
10 1 1 0 5000…
11 1 0
12 1 1 0 MMj

Figure 4. Bitmap matrix for the data shown in Fig. 3. Bit
multiplication result is temporarily stored in the last row

MM, where MMj = Mij * M(i+1)j. CC keeps the count of
consecutive 1’s in each column

Algorithm: Extract Patterns
1 Sort type-casted data stored in the vector array
2 Create the Bitmap-Matrix where Mij = (tij == t(i+1)j)
3 Reset CCj = 0
4 saveFlag = 0
5 For each row of matrix until (totrows-2)
6 saveFlag = 0
7 For each column
8 Compute Bit Multiplication (MMj = Mij * M(i+1)j)
9 If (MMj == 1)
10 Increment bit counter CCj += Mij* M(i+1)j
11 If (lastLine)
12 If (checkSave(CCj, Mij, MMj, minTermSup) >0)
13 Save frequent term pattern
14 Check and save frequent value pattern
15 Endif
16 saveFlag = (checkSave(CCj,Mij,MMj,minLineSup)>0)
17 Endif
18 Else
19 If (checkSave(CCj, Mij, MMj, minTermSup) >0)
20 Save frequent term pattern
21 Check and save frequent value pattern
22 Endif
23 If (checkSave(CCj,Mij,MMj,minLineSup)>0)
24 saveFlag = 1
25 else
26 Reset CCj =0
27 Endif
28 Endif
29 Endfor
30 saveLabelLinePatterns
31 Endfor
32 saveLabelRareInterestingLinePatterns

Figure 5. Extracts line, term and value patterns.

Note that each line of the bitmap matrix is created from two lines
of data. An additional check is made when MMj=1 (Fig. 5 line 11-
17) for the last row (lastline=totrows-2 where totrows=total
number of data lines) because if a column contains all 1’s until the
last line, MMj is never 0 and the line pattern does not get saved
(Fig. 5 line 11). Also the bit multiplication compares 3
consecutive lines or more. Therefore, the last two lines of data
have to be checked separately for frequent 2 term or line patterns.

4.2.4 Saving Term, Value and Line Patterns
The algorithm maintains frequent line, term and value pattern lists
in memory. The checkSave() function returns 1 (Fig.5 lines 12,
16, 19, 23) if the support count (CCj+2) equals or exceeds the
minimum threshold (for terms minTermSup and for lines
minLineSup) to indicate that a frequent pattern must be saved. If
the pattern does not exist already, it is added to the corresponding
pattern list, otherwise only its support count is updated. A
frequent term pattern FTP is represented as <ft, tp, ts> where ft is
the type-casted term pattern, tp is its position in the line and ts is
its support. For FTPs, the actual values are inspected further to
find the frequent value patterns (Fig. 5 line 14).

A frequent value pattern FVP is represented as <ft, tp, VP> where
ft is the frequent term pattern and tp is its position in the line. VP
= {<fv1,vs1>, <fv2,vs2>,…, <fvn,vsn>} is the set of all value
patterns listed as a pair <fvi,vsi>, fvi being the value pattern and vsi
being its corresponding support. To check frequent value patterns,
the process starts at the row of the vector array where the term
match started; extracts all the different values for that term from
the corresponding row of unmapped data into an array; sorts the
values, and follows the same strategy as described above using the
bitmap matrix and bit multiplication technique. The counter value
CCj here indicates the number of times a character appears in
subsequent rows in the jth column. If the character count (CCj+2)
equals or exceeds the minValueSup then a closed frequent value
pattern is saved.

A frequent line pattern FLP is represented as <pid, lp, ls> where

pid is the pattern ID, lp is the type-casted line pattern and ls is the
support count. A line pattern is generated once all its terms have
been examined and if flagged for saving by checkSave() based on
the minLineSup threshold. Any term that equals or exceeds the
minLineSup is included as is and the others are replaced by a “*”.
Consecutive “*”s are merged into one to minimize the length of
the pattern for very long data lines.

For line and value patterns, we create closed frequent patterns
{cfp1, cfp2, …} in multiple iterations from an item set I = {i1, i2,..,
in} and their corresponding support values {is1,is2, …, isn} until
there exists no ist≥ minSup where t={1..n}. In each iteration we
find the smin≥minSup and create cfpu= {(j1, j2,…) | (jx ∈I) ∨ (jx
=“*”) ∨ (jx =“?”)} and∀(jx = iy)⇒ isy≥smin}, where x={1..n},
y={1..n} and u={1,2,..}. In the next iteration isy is set to 0 where
isy =smin so as to not include that item again. We use “?” in value
patterns and “*” in line patterns to indicate any character or term.
For log data, the order of the items is preserved in the generated
patterns. Fig. 6 shows the algorithm. For line patterns we merge
multiple consecutive “*” to minimize the length of the pattern for
very long data lines. New line patterns are saved using the
findSaveLinePattern procedure (Fig. 6 line 17) which checks
against existing patterns for a) exact match, or b) closest matching
super patterns when saving rare or interesting patterns (that have
support less than minLineSup) using a binary search algorithm.
The objective is to avoid creating redundant line patterns. The
assignLineLabel procedure in Fig. 6 line 18 categorizes the data
lines by assigning them pattern IDs.

In Fig. 4 line 4, CC2=2. Given a minTermSup=3, the term c3i5
will be saved as a frequent term = <c3i5, 2, 4> with support (CC2
+2). From its sorted actual values the frequent value patterns
<c3i5, 2, {<STC10799,3>, <STC?????,4>}> are saved given
minValueSup=3. If minLineSup=3, the line patterns are also saved
since terms 1-4 in line 4 Fig. 4 have support values 4, 4, 3, 3
corresponding to CC= 2211…. In the first iteration smin=3 and the
pattern “i2.i2.i2 c3i5 c4i3c1 !c2i2 *” is saved as <P1, “i2.i2.i2
c3i5 c4i3c1 !c2i2 *”, 3>. In the next iteration, support counts of
value 3 are reset to 0 and the new smin=4, and another super
pattern is saved as <P2, “i2:i2:i2 c3i5 *”, 4>.

4.2.5 Saving Rare and Interesting Line Patterns
The extract pattern algorithm makes a final pass over the data in
memory to check for Interesting patterns and unlabeled data lines
(Fig. 5 line 32). In this work we assert a line is interesting if it
contains 3 or more successive symbols (up to two symbols are
used in data as “::”). The getMatchingPattern in Fig. 7 first looks
for an exact match from existing patterns and then from closest
super-patterns. If a match is not found, it looks for a partial match
from which to construct a pattern. In the case of interesting

Algorithm: saveLabelLinePatterns
1 While (saveFlag=1)
2 CCmin = -1
3 linePattern = “”
4 saveFlag = 0
5 For each term in the line
6 If (term_support>=minLineSup)
7 If (term_support < CCmin) or (CCmin <0)
8 CCmin = term_support
9 Endif
10 linePattern = linePattern + term
11 Else
12 If linePattern does not end with “*”
13 linePattern = linePattern + “*”
14 Endif
15 Endif
16 Endfor
17 Pid = findSaveLinePattern(linePattern, CCmin)
18 assignLineLabel(current_linenum, CCmin, Pid)
19 For each term in the line
20 If (term_support== CCmin)
21 Reset term_support=0
22 Else if (term_support >CCmin)
23 saveFlag=1
24 Endif
25 Endfor
26 CCmin = 0
27 Endwhile

Figure 6. Creates and saves closed frequent line patterns.

Algorithm: saveLabelRareInterestingLinePatterns
1 For each line
2 If (noLineLabel(line)) or isInterestingPattern(pattern)
3 pat = getMatchingPattern(pattern)
4 If (noLineLabel(line)) or isNew(pat) or

(!isNew(pat) and (llabel!=pat.pid))
5 Pid = findSaveLinePattern (pattern, 1)
6 assignLineLabel(current_linenum, 1, Pid)
7 Endif
8 Endif
9 Endfor

Figure 7. Creates and saves rare and interesting line

patterns and labels the corresponding data lines.

patterns, the matching pattern is augmented with the interesting
tokens from the line. In Fig. 3, line 1 is a rare pattern as it occurs
only once and lines 2 and 6 are interesting as they contain 3 or
more consecutive symbols. Extract pattern categorizes line 2
under “i2.i2.i2 c3i5 *”. In the final pass, algorithm in Fig. 7
identifies it as an interesting pattern and augments the above to
create a new pattern “i2.i2.i2 c3i5 --- *” for line 2.

4.3 Find Pattern Correlation Rules
Once the data is labeled with pattern IDs (PIDs), another pass is
made over the data to a) count the support for each pair of PIDs
that appear together in a specific order and b) find the relationship
between pairs of terms in the lines with regards to position and
value. When stating the rule, p1-p3 means a pair of consecutive
line patterns p1 and p3, where p1 and p3 represent PIDs and p3
follows p1 as shown in Fig. 8 lines 3 and 4. The support is
calculated the way as explained in Section 3.6. In Fig. 9, p1-p3
has support 18.18% (=2/11). Terms in a line are expressed as Tn
where n is the term position in the line starting with 0. The last
term is expressed as TL, because of the different sizes of the lines.
CAPRI compares the values of each pair of terms of a pair of
PIDs, and generates rules of the form p1-p3⇒TL=T0 for lines 3
and 4 of Fig. 8. Here the antecedent of the rule TL belongs to p1
and the consequent, T0, belongs to p3. The confidence of the rule
is calculated using Eq. 4. The support of (p1-p3 and TL=T0) is
1/11 and the support of p1-p3 is 2/11. Therefore,
confidence=50%.
For large data files, rules that have low support and confidence
values can be filtered out. Lines that violate rules having high
confidence values indicate possible error in the data. In Fig. 8,
line 7 violates the p1-p3 rule and has an error in line order.

4.4 Tool Output
Optionally (if the user enters an output file name) CAPRI writes
data labeled with PIDs as shown in Fig. 8 to facilitate subsequent
data processing. The discovered line, term and value patterns
including the rules are written out to a default text file called
"LTVPatterns.txt" as shown in Fig. 9.

4.5 Implementation
The CAPRI tool and test data sets with some results are available
online [2]. It was developed using Java 1.6.0_26 on a 64-bit
Windows platform. A set of Java class files can be extracted from
a downloadable compressed rar file. It is executed as follows from
a command prompt using the Java 1.6 runtime libraries.

java Capri <inputfile> [outputfile]

5. EXPERIMENTAL EVALUATION
We evaluate the effectiveness of CAPRI based on the following
criteria using a machine having an Intel core i7 processor with a
2.67 GHz CPU and 4GB memory, running a 64-bit Windows 7
operating system:

I. Ability to categorize all lines including rare and interesting
line patterns, and find frequent term and value patterns, and
rules that state relationships between pairs of line patterns.

II. The effect of minimum support thresholds on the result of
moderate size data files.

III. Comparative performance analysis with other similar tools for
both small and large data sets of various types.

5.1 Test Data Types
We use three different data layouts A, B, and C; A is a z/OS
mainframe DB2 JES master log data with multi-line messages
(example shown in Fig. 1); B is a distributed DB2 log with
paragraph style messages, and C is a Squid web access log file
with single line messages. Samples of the B and C data sets are
presented in Fig. 10. Data sets of Fig. 1 (type A), B, and C with
some experimental results are also available online with the tool.

5.2 Pattern and Rule Discovery
Our small running example dataset A of Fig. 1 and the outputs
from CAPRI in Fig. 8 and 9 demonstrate that CAPRI not only
finds the closed frequent patterns, it also accurately categorizes
the lines with the PIDs of the closest matching patterns. It finds

0 p4 1 J E S 2 J O B L O G -- S Y S T E M Z P 0 1 -- N O D E U S I L 0 P 0 1
1 p5 19.00.25 STC10799 ---- SATURDAY, 18 DEC 2010 ----
2 p1 03.58.05 STC09048 DSNJ110E !SS11 LAST COPY 1 ACTIVE LOG

DATA SET IS 95 PERCENT FULL
3 p1 12.46.21 STC10799 DSNP010I !PB11 END OF MESSAGES. 744
4 p3 744 CONNECTION-ID=SERVER
5 p3 744 CORRELATION-ID=PB1BTC008
6 p1 12.17.58 STC10799 DSNV512I !PB11 DSNVMON - AGENT 1: 771
7 p3 744 LUW-ID=ODCA4760.EC77.C737D7D90AA5=181319
8 p3 771 NAME ST A REQ ID AUTHID PLAN ASID TOKEN
9 p6 771 ---- -- - --- -- ------ ---- ---- -----
10 p3 771 SERVER RA * 10879 PB1DIA025 PB1ADM DISTSERV 0070

67702
11 p3 771 LONG 9728K VLONG 436K 64BIT 28784K

Figure 8. Data of Fig. 1 categorized with line pattern ID.

Data Type B: Distributed DB2 log file
1 2010-12-01-10.34.15.693000-300 I1F955 LEVEL: Event
2 PID : 3740 TID : 4148 PROC : DB2STOP.EXE
3 INSTANCE: DB2 NODE : 000
4 Information in this record is only valid at the time when this file was
5 created (see this record's time stamp)
6 2010-12-01-10.34.15.693000-300 I959F1671 LEVEL: Event …

Data Type C: Squid access log file
1 1286536308.779 180 192.168.0.224 TCP_MISS/200 411 GET

http://liveupdate.symantecliveupdate.com/minitri.flg -
DIRECT/125.23.216.203 text/plain

2 1286536309.586 921 192.168.0.68 TCP_MISS/200 507 POST http://rcv-
srv37.inplay.tubemogul.co...eiver/services - DIRECT/174.129.41.128
application/xml ...

Figure 10. Data types

Line patterns: (Total 6 patterns from 12 lines)
p4 : i1 c1 * : 1
p2 : i2.i2.i2 c3i5 * : 4
p5 : i2.i2.i2 c3i5 ---- * : 1
p1 : i2.i2.i2 c3i5 c4i3c1 !c2i2 * : 3
p3 : i3 * : 7
p6 : i3 ---- * : 1
Term patterns: (Total 5 patterns ordered by position) : Position in line : Value
patterns (Total 9 patterns)
i2.i2.i2 : pos 1 : 4 [1?.??.?? : 3, ??.??.?? : 4]
i3 : pos 1 : 7 [771 : 4, 744 : 3, 7?? : 7]
c3i5 : pos 2 : 4 [STC10799 : 3, STC????? : 4]
c4i3c1 : pos 3 : 3 [DSN??1?? : 3]
!c2i2 : pos 4 : 3 [!??11 : 3]
Rule list (having support>0.1 and confidence>0.5)
p3-p3 (cnt:3, sup:0.2727272727272727) => {T0=T0=0.6666666666666666}
p1-p3 (cnt:2, sup:0.18181818181818182) => {TL=T0=0.5}
Total 2 rules generated.

Figure 9. Extracted line, term and value patterns and
rules for the data of Fig. 1 for minLineSup=25% (=3),

minTermSup=25% and minValueSup=25%.

rare and interesting line patterns, all term and value patterns, and
rules given a minimum support threshold.

5.3 Effect of Support Thresholds
In general, greater support values result in fewer and more general
patterns. We define the test cases shown in Table 1 to examine the
effects of different parameters on CAPRI’s performance for each
data type. We apply CAPRI on moderate size log files of type A,
B and C. The results are shown in Table 2. For rule count, each
consequent of the same antecedent is counted separately.

Table 1: Test-case parameters for CAPRI
Test case minLineSup minTermSup minValueSup minRuleSup minRuleConf

1 30 20 10 5 80

2 20 20 20 10 90

3 40 25 20 7 95

Note: Support thresholds are in percentile
Table 2: Study of the effect of parameters on results

Data
type

File Size
in KB

Lines
of data

Test
case

Number of patterns Number of
rules Line Term Value

A 106 1679
1 7 20 139 4
2 13 20 46 1
3 7 19 45 3

B 176 2826
1 88 14 29 69
2 101 14 17 66
3 76 11 13 66

C 16 113
1 9 15 55 16
2 11 15 31 10
3 7 13 29 10

5.3.1 Observations and Inferences
Data type A: Comparing rows A.1 and A.2 in Table 2, we see
that a lower minLineSup results in more line patterns and
consequently a lower support value for each rule. So, with a lower
minLineSup and slightly higher minRuleSup threshold, only 1 rule
is extracted leaving out an important rule. Therefore, higher
minLineSup allow CAPRI to efficiently mine closed frequent
patterns and rules from larger data sets. A higher minValueSup
helps in reducing the many different value patterns extracted for
date and line numbers and still maintains other important value
patterns. Overall, A.3 gives the most concise and effective set of
patterns and rules for the data set.

Data type B: This block style data layout includes many lines
with 3 or more consecutive symbols in binary data, and rare line
patterns due to the unstructured message in each block. For
interesting patterns, CAPRI looks for partial match in super
patterns and then adds terms up to the interesting term.
Therefore, many similar interesting patterns are created and the
total number of patterns is high. Many rules are also created for
the same antecedent due to existence of blocks of binary data.
Data type C: This data file contains very similar short single line
messages that differ mostly in the parameters. The rules are,
therefore, helpful in identifying constant terms. Since CAPRI
explores frequent values only for the frequent terms, row C.2 has
more term patterns (for lower minTermSup) and consequently
more value patterns than C.3 for the same minValueSup threshold.

5.4 Comparative Performance Analysis
We select two popular open source line pattern mining tools
called the SLCT and LogHound [10][6] which have previously
been used in research studies. Other tools such as IPLoM [7] and

Teiresius [8] assume single line messages and require
preprocessing of the data to extract only the message (description
part without the date, time and other preceding parts) from each
line in to another data file, which is then processed by the tools.
Unlike CAPRI all the other tools mine patterns based on actual
data values. Therefore, we cannot do an exact comparison. We use
SLCT and LogHound for the same data types A, B, and C and
provide a comparison in terms of functionality, coverage, and
abstractness of the patterns. Some examples of the discovered
patterns for the different data types for SLCT and LogHound are
shown in Table 3. More detailed test results including sample data
sets of each type are available online with CAPRI.

Table 3. Examples of extracted clusters or line patterns for
data types A, B and C using SLCT and LogHound

Table 4: Study of the comparative performances of CAPRI,
SLCT and LogHound for different types and sizes of data

Data
type

File Size
(KB)

Lines
of data

Test
case

No. of line patterns Support
threshold CAPRI SLCT LogHound

A 106 1679
1 7 15 44 30
2 13 34 116 20
3 7 14 40 40

59 MB 938262 4 28 8356 52636 30

B 176 2826
1 88 24 275 30
2 101 80 444 20
3 76 22 273 40

C 16 113
1 9 1 9 30
2 11 2 10 20
3 7 1 8 40

Table 4 shows the comparison between the three tools in terms of
the number of line patterns retrieved by each for the same data set
as in Table 2. An additional highlighted row is shown (row A.4 in
Table 4) as test case 4 for data type A that uses a larger data file.
Since the other tools take only the minimum term support
threshold, it is listed on the rightmost column. The same value is
used as the minLineSup for CAPRI.

5.4.1 Observations and Inferences
CAPRI discovers a concise number of type-casted line patterns in
contrast to the other tools, which use the actual data values.
CAPRI also finds the term and value patterns. Abstract patterns
that are composed of only “*” as shown in Table 4 discovered by
SLCT and LogHound, do not present any useful information.
Some patterns like 771 and 744 as extracted by SLCT for the data
set in Fig. 1 are confusing. CAPRI retrieves more useful patterns
with none composed of only “*”. Fewer patterns are discovered

SL
C

T

A
771
744
* STC10799

B

* :
2010-12-01-10.34.15.693000-300 * LEVEL: Event
INSTANCE: DB2 NODE : 000
PID : 3740 TID : 4148 PROC : DB2STOP.EXE

C

* * 192.168.0.224 TCP_MISS/200 * GET * - IRECT/125.23.216.203
* * 192.168.0.68 TCP_MISS/200 507 POST http://rcv-
srv37.inplay.tubemogul.co...eiver/services - DIRECT/174.129.41.128
application/xml

L
og

H
ou

nd
 A

* * * * * * * * * :
* * CORRELATION-ID=db2jcc_appli
* * (SUSPENDED) (FOR) (PRT1) (AT) (RBA) * LRSN * (PRIOR)

B
* * * * * * :
(DATA) * : * 34
(DATA) (#2) (:) * PD_SQLER_TYPE_FMP_HANDLE, * (bytes)

C
* * * * * * * -
* * * * * GET * (-)
* * * TCP_MISS/200 * GET * (-)

by SLCT for single line messages in data types B and C as shown
in Table 4 because it finds only the frequent clusters. LogHound
finds more patterns, and therefore, has better coverage than SLCT
for all the different data types but it has many abstract and
redundant super patterns as shown in Table 3. For multi-line
messages in large files CAPRI does a much better job than the
other tools as demonstrated in test case 4 in Table 3. It also mines
rules, identifies rare and interesting patterns and optionally
generates an output file with lines labeled with pattern ids. CAPRI
is based on java and is, therefore, platform independent. Both the
other tools use C-code and are designed to run on UNIX.

5.5 Usability of the Tool for Big Data
CAPRI discovers line patterns with 100% coverage for each data
line and labels each data line with a pattern ID. As ongoing work,
we are implementing CAPRI using Amazon’s Elastic Map Reduce
(EMR) [1] framework to maximize its efficiency in processing big
data files. EMR uses the Hadoop framework with cloud resources
for storage and computation. For the decision support
applications, we define rules to process each type of line pattern
for further log analysis. For example, p5 in Fig. 8 denotes start of
a new day and p3 indicates continuation of a message. The rules
such as p1-p3⇒TL=T0 enable automated reformatting to generate
single line messages from the multi-line messages using the
matching line numbers in line patterns p1 and p3 and correction
of line orders. The term and value patterns such as “i2.i2.i2” and
“DSNJ????” are used to identify time and error codes, constant
and variable terms to facilitate message correlation analysis.

6. CONCLUSION
We present the CAPRI tool which demonstrates a type-casting
technique, a bitmap multiplication algorithm to compute the
support for discovering closed frequent line patterns in a single
pass over big data, and allows incremental mining for large data
files. CAPRI discovers both frequent and rare line patterns in a
type-casted format from both single and multi-line semi-structured
log data. We developed CAPRI based on observations of the
human cognitive approach towards line patterns and the typical
data analytics requirements with respect to log data analysis.
Existing approaches return line patterns based on the actual data
values which result in very long lists of message patterns or return
only the frequent patterns. The type-casting technique provides a
much shorter list of line patterns for the same support threshold.
CAPRI discovers frequent term and value patterns as well, which
gives important semantic information about the data. CAPRI
achieves 100% recall by labeling and categorizing each line of
data with the closest matching frequent line pattern ID for
effective post-processing. It generates rules, which show the
contextual relationship between pairs of line patterns with
corresponding support and confidence values. Users can choose to
filter out rules having low support and confidence, and thereby,
generate a more effective rule set. The rule set can be used to
identify errors in line order, to reformat multi-line messages or
explore further correlations in the data.

For future work, we like to extend the usability of CAPRI to
create a semantic vocabulary of type-casted frequent term patterns
to enable human-like recognition capabilities. We like to define
rules to specify interesting patterns and to constrain the extraction
of value patterns for known terms such as date and time. We also
plan to carry out experiments on Amazon EMR with big datasets.

7. ACKNOWLEDGMENTS
We acknowledge the contributions of MITACS (Mathematics of
Information Technology and Complex Systems) Elevate and CA
Technologies for supporting the research.

8. REFERENCES
[1] Amazon Elastic Map Reduce. Available online at:

http://aws.amazon.com/elasticmapreduce/.
[2] CAPRI: type-CAsted Pattern and Rule mIner. 2013. At:

http://research.cs.queensu.ca/home/farhana/capri.html.
[3] Fu, Q., Lou, J.G., Wang, Y., and Li, J., 2009. Execution

Anomaly Detection in Distributed Systems through
Unstructured Log Analysis. In proc. of the IEEE ICDM, pp.
149 – 158, Miami, FL.

[4] Hellerstein, J., Ma, S., and Perng, C., 2002. Discovering
Actionable Patterns in Event Data. IBM System Journal, vol.
41(3).

[5] Jiang, Z., Hassan, A., Hamann, G, and Flora, P., 2008. An
Automated Approach for Abstracting Execution Logs to
Execution Events. Journal of Software Maintenance and
Evolution: Research and Practice, vol. 20, pp. 249–267.

[6] Makanju, A., Brooks, S., Zincir-Heywood, A., Milios, E.,
2008. LogView: Visualizing Event Log Clusters. In proc. of
annual conference on Privacy, Security and Trust,
Fredericton, NB, pp. 99 – 108, IEEE.

[7] Makanju, A., Zincir-Heywood, A. N., Milios, E., 2009.
Clustering Event Logs by Iterative Partitioning. In proc. of
the ACM SIG KDD, Paris, France, pp. 1255-1263, ACM.

[8] Stearley, J., 2004. Towards Informatic Analysis of Syslogs.
In proc. of the IEEE Intl. Conf. on Cluster Computing
(CLUSER), San Diego, California, USA, pp. 309-318.

[9] Subbulakshmi, T., Mathew, G., Shalinie, S., 2010. Real Time
Classification and Clustering of IDS Alerts using Machine
Learning Algorithm. In proc. of Intl. Journal of Artificial
Intelligence and Applications (IJAIA), vol. 1(1).

[10] Vaarandi, R., 2008. Mining Event Logs with SLCT and
LogHound. IEEE/IFIP Network Operations and
Management Symposium: Pervasive Management for
Ubiquitous Networks and Services, NOMS, Salvador, Bahia,
Brazil, pp. 1071-1074, IEEE.

[11] Vaarandi, R., Podins, K., 2010. Network IDS Alert
Classification with Frequent Itemset Mining and Data
Clustering. In intl. conf. on Network and Service Mgmt.
(CNSM), Niagara Falls, Canada, pp. 451-456, IEEE.

[12] Xu, W., Huang, L., Fox, A., Patterson, D., and Jordan, M.,
2009. Detecting Large-Scale System Problems by Mining
Console Logs. In proc. of SOSP, Montana, US, ACM.

[13] Zhang, S., and Wu, X., 2011. Fundamentals of Association
Rules in Data Mining and Knowledge Discovery, Wiley
Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, vol. 1(2), John Wiley & Sons.

[14] Zulkernine, F., Martin, P., Soltani, S., Powley, W.,
Mankovski, S., and Addleman, M., 2012. Towards a
Training Oriented Adaptive Decision Support System, in
proc. of IEEE ICDE workshop on Data-Driven Decision
Guidance and Support System (DGSS), Washington DC. US.

	1. INTRODUCTION
	2. RELATED WORK
	3. DEFINITIONS
	3.1 The Type-casting Technique
	3.2 Line, Term, and Value Patterns
	3.3 Frequent Patterns and Support Values
	3.4 Closed Frequent Pattern
	3.5 Association Rule Mining
	3.6 Support and Confidence of Rules

	4. OUR APPROACH – CAPRI
	4.1 Overview
	4.2 Pattern Extraction
	4.2.1 Generating Type-Casted and Sorted Data
	 Bitmap Matrix Generation
	Bit Multiplication and Counting Support
	4.2.4 Saving Term, Value and Line Patterns
	4.2.5 Saving Rare and Interesting Line Patterns

	4.3 Find Pattern Correlation Rules
	4.4 Tool Output
	4.5 Implementation

	5. EXPERIMENTAL EVALUATION
	5.1 Test Data Types
	5.2 Pattern and Rule Discovery
	5.3 Effect of Support Thresholds
	5.3.1 Observations and Inferences

	5.4 Comparative Performance Analysis
	5.4.1 Observations and Inferences

	5.5 Usability of the Tool for Big Data

	6. CONCLUSION
	7. ACKNOWLEDGMENTS
	8. REFERENCES

