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ABSTRACT
Many key building design policies are made using sophisti-
cated computer simulations such as EnergyPlus (E+), the
DOE flagship whole-building energy simulation engine. E+
and other sophisticated computer simulations have several
major problems. The two main issues are 1) gaps between
the simulation model and the actual structure, and 2) lim-
itations of the modeling engine’s capabilities. Currently,
these problems are addressed by having an engineer man-
ually calibrate simulation parameters to real world data or
using algorithmic optimization methods to adjust the build-
ing parameters. However, some simulations engines, like
E+, are computationally expensive, which makes repeatedly
evaluating the simulation engine costly. This work explores
addressing this issue by automatically discovering the sim-
ulation’s internal input and output dependencies from ∼20
Gigabytes of E+ simulation data, future extensions will use
∼200 Terabytes of E+ simulation data. The model is val-
idated by inferring building parameters for E+ simulations
with ground truth building parameters. Our results indi-
cate that the model accurately represents parameter means
with some deviation from the means, but does not support
inferring parameter values that exist on the distribution’s
tail.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Applications and Expert Sys-
tems
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Structure Learning, Probabilistic Inference, Big Data

1. INTRODUCTION
EnergyPlus is currently DOE’s flagship whole-building en-

ergy simulation engine developed with active involvement by
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many participating individuals and organizations since 1996,
with roots dating back to DOE-2 and Building Loads Anal-
ysis and System Thermodynamics (BLAST) from the late
1970s. E+ consists of ∼600k lines of Fortran code, and
utilizes a much more extensible, modular architecture than
DOE-2 to perform the energy analysis and thermal load sim-
ulation for a building. The extensive capabilities of E+ are
beyond the scope of this paper. The computational costs of
these capabilities has resulted in annual building simulations
that, depending on the complexity of the building informa-
tion, often require 5+ minutes (10x-100x slower than DOE-2
[11]) of wall-clock time to complete; reducing E+’s runtime
is a top priority for its development teams, E+ 7.0 is 25%-
40% faster than E+ 6.0.

Even with a 40% reduction in runtime, manually tuning
E+ building models is still a very slow and tedious pro-
cess. For example, an engineer manually calibrating a sim-
ulation is not likely to wait the 3-7 minutes required to run
an E+ simulation before proceeding to the next calibration
step; likewise, optimizing the simulation parameters auto-
matically using ∼1000 simulations, at 3 minutes per simula-
tion, requires over 2 days on a standard desktop computer.
However at its core, calibrating an E+ simulation model
requires understanding how all the input variables interact
and the effects these variables have on the simulation out-
put. This implies it is possible to construct models that
can produce quick candidate simulation estimates without
optimizing against the simulation engine at all.

If one views the E+ input and output variables as a set
of random variables, e.g., {X1, X2, ..., XN}, then learning
the relationship between the variables can be formulated as
learning the joint probability distribution, P (X1, X2, ..., XN ),
over these variables. This means that the true joint distri-
bution defines a probabilistic surface over the random vari-
ables, which implies that the joint distribution represents all
the complex relationships between the E+ variables. The
joint distribution can be used to tune E+ models, and like-
wise it has the ability to approximate the E+ simulation.
The tuning problem can be solved by using reference output
data or real world sensor data to find the input variables
that maximize the posterior probability. In mathematical
notation, one wants to maximize the following probability:

ΠN
i=1P (X|Yi)P (Yi) (1)

where X denotes the E+ building specification variables and
Y denotes the observed output data or real world sensor
data, weather data, and operation schedule. This equation



assumes that all observations are independent and identi-
cally distributed. Eq. 1 may be rewritten as:

ΠN
i=1P (X,Yi) (2)

which is the joint probability distribution. Conversely, the
E+ approximation process requires maximizing the follow-
ing posterior probability:

ΠN
i=1P (Yi|X)P (X) (3)

whereX represents the inputs and observed operation sched-
ule, and Yi represents a single output sample. This ap-
proximation method requires finding multiple samples that
maximize the posterior probability, rather than a single as-
signment. However, forward approximating E+ using this
method is computationally slower than using statistical sur-
rogate models. Therefore, we are only focusing on estimat-
ing building parameters and only present this capability for
completeness.

2. PROBABILISTIC GRAPHICAL MODEL
Learning the true joint probability distribution directly in

the general case is computationally intractable, especially
when dealing with a large number of continuous random
variables. In general, it is assumed the joint probability fac-
torizes into several smaller more manageable computational
problems. Factorization is based purely on conditional in-
dependence and is represented using a graphical model G,
where G is a graph with V nodes representing random vari-
ables and E edges. The edges in E represent conditional
dependencies between the random variables in the graph G.
The graph structure is intended to represent the true factor-
ization for the joint probability distribution by splitting it
into simpler components. These types of models have been
effectively applied to many fields, such as topic classification
[2], document classification [1], and disease diagnosis [13].

The graphs used to represent factorized joint probabil-
ity distributions are either direct acyclic graphs (DAG) or
undirected graphs. The first form assumes that the graph
represents a Bayesian Network and the latter form assumes
that the graph represents a Markov Network. These graph
types both assume that a joint probability distribution fac-
torizes according to their structure. However, a Bayesian
Network assumes a much simpler probabilistic dependency
between the variables, in which a variable is conditionally
independent of all other variables given its parents. On
the other hand, a Markov network assumes variables X are
conditionally independent from variables Y provided that
they are separated by variables Z. X and Y are said to be
separated by Z if and only if all paths between X and Y
pass through the variables Z [14]. The Bayesian Network
makes stronger assumptions about independence, but these
assumptions make it easier to perform exact interference.
In contrast, Markov Networks use approximate inference
methods, such as Loopy Belief Propagation. Additionally,
both graphs have weaknesses with representing certain con-
ditional independence properties. However within this work,
we show preference to Markov Networks over Bayesian Net-
works because we wish to avoid falsely representing variables
as conditionally independent.

While these graphical models are able to adequately rep-
resent joint distributions, the graph structures are generally
predetermined. Given the total number of random variables
within an E+ (∼300 for our experiments) simulation, it is

not feasible to specify the single best graph structure in ad-
vance. Therefore, algorithmic techniques must be used to
find the best graph structure that matches the true joint
probability distribution without overfitting the observed train-
ing samples. There are three categories of algorithms that
address this problem. The first method is Score and Search
(Section 3.1), and is generally used to learn Bayesian Net-
work structures. The second approach is Constraint Based
(Section 3.2) methods, which are used to learn Bayesian and
Markov Networks. The final method uses strong distribution
assumptions combined with regression based feature selec-
tion methods to determine dependencies among the random
variables (Section 3.3).

3. STRUCTURE LEARNING

3.1 Score and Search
Score and Search (S&S) algorithms try to search through

the space of all possible models and select the best seen
model. The best model is selected by using a global crite-
ria function, such as the likelihood function. However, the
most common criteria function is the Bayesian Information
Criteria (BIC) [22]:

BIC(Data; G) = L(Data;G, θ) +
logM

2
∗Dim[G] (4)

where Dim[G] represents the number of parameters esti-
mated within the graph, M is the total number of samples,
and L is the the log-likelihood function.

These S&S methods are generally used to find the best
structure for Bayesian Networks, because the log-likelihood
function factorizes into a series of summations. This factor-
ization makes it very easy to modify an existing Bayesian
Network and compute the modified score without recom-
puting the entire score. For example, adding an edge to an
existing Bayesian network requires computing the new and
previous conditional probability involving the child of the
new edge, and adding the difference to the previous BIC
score. Updating the penalty term is achieved by simply
adding N logM

2
to the updated BIC score, where N is the

number of newly estimated parameters.
The most common method for performing S&S within

the literature is Greedy Hill Climbing, which explores the
candidate graph space by deleting edges, adding edges, and
changing edge directions. The best valid graph modification
is selected according to a criteria function, generally BIC,
and a new candidate graph is generated. A modification is
only valid if the candidate graph is a valid Bayesian Net-
work. This approach guarantees a locally optimal solution
that will maximize the criteria function, but could be far
away from the true model.

There are two algorithms that extend the basic algorithm
by constraining the search space, which allows for better so-
lutions. The first algorithm is the Sparse Candidate method
[8]. This method assumes that random variables that have a
high measure of mutual information should be located closer
to each other in the final network than variables with low
mutual information. The mutual information for two dis-
crete random variables, X and Y , is defined as follows:

I(X,Y ) =
∑
x,y

P (x, y)log

(
P (x, y)

P (x)P (y)

)
(5)



In the case of continuous random variables, the summation
is replaced by integration.

In addition to using the mutual information within the
data to restrict the search, the Sparse Candidate method
restricts the total possible number of parents to a user spec-
ified value k. Combining the restricted number of parents
with the mutual information criteria allows the greedy algo-
rithm to select the best candidate parent set for each ran-
dom variable. Using the candidate parent set, an approxi-
mate Bayesian network is constructed. The network is ap-
proximate, because it may not actually be a valid Bayesian
network. Standard greedy hill climbing is then applied to
the approximate Bayesian network, but the valid augmen-
tations are now restricted according to the best candidate
parent set. The Sparse Candidate algorithm scales well to
large Bayesian Networks with hundreds of random variables,
but the runtime and solution quality tradeoff are strongly
determined by k’s selection [26].

The second algorithm, Max-Min Hill-Climb (MMHC [26]),
extends the basic greedy hill climbing algorithm by using
a Constraint Based (C&B) algorithm (Section 3.2) called
Max-Min Parents and Children (MMPC [25]) to determine
the underlying, undirected, structure for each random vari-
able. Given the approximate optimal substructure per vari-
able, the algorithm proceeds to apply greedy hill climbing to
find the DAG that maximizes the criteria function. However,
edges can only be added to the graph if they follow the con-
straints specified by the undirected model. This algorithm
improves on the Sparse Candidate algorithm by providing a
tighter upper bound on runtime. In addition, this algorithm
removes the parent restriction. However, the algorithm re-
places the parent restriction with a restriction on the size of
the subsets that will be used for the MMPC’s conditional
independence testing, which leads to an exponential worst
case runtime.

There are many more S&S methods that have been ap-
plied to structure learning, such as genetic algorithms [15],
best first search, and equivalence class searches [4]. While
some S&S methods scale well to large datasets, these meth-
ods involve optimizing a BIC, likelihood, or posterior proba-
bility criteria function, which does not scale to Markov Net-
works. The criteria function for an undirected model does
not factorize in a manner that avoids recomputing the en-
tire score. It is possible to use a Bayesian network rather
than a Markov Network, but Bayesian Networks may under
represent the data’s underlying dependencies.

3.2 Constraint Based
Constraint based (CB) algorithms focus on learning the

graph structure through conditional independence testing.
These methods assume that it is possible to recover the dis-
tribution’s factorization by statistically analyzing the data
with standard hypothesis testing methods, such as X 2 tests.
Note that hypothesis testing with continuous random vari-
ables is much more challenging and can be intractable in
some cases. Since the CB approaches are only dependent
upon statistical testing, they are better suited for learning
Markov Networks than the S&S algorithms. This benefit
is derived from the fact that these methods do not need to
compute a global criteria function.

However, this can also be viewed as a drawback. The
problem is best understood by analyzing the simplest CB
algorithm, SGS [23], that attempts to perform every pos-

sible conditional independence test. The SGS algorithm
starts with a fully connected graph, and deletes edges that
directly connect random variables if those variables are in-
dependent. However, two variables are only determined to
be independent if they are conditionally independent for
all possible random variable subsets that do not include
those two variables. This algorithm clearly does not scale to
large problems, because the total number of possible condi-
tional independence tests grows combinatorially. While this
method will find the true factorization if all statistical tests
are sound, it is not possible to apply to real applications.
This means that the total number of conditional indepen-
dence tests needs to be restricted, and without a global cri-
teria, all approximate algorithms lose the guarantee of even
a local maximum in the general case.

While there are no guarantees in the general case, under
certain assumptions most CB algorithms perform well and
scale to larger data sets. The Grow and Shrink algorithm
(GS) is able to scale to very large data sets by estimating
the Markov blanket for each random variable [18]. Given the
estimated Markov blanket for each random variable, the GS
algorithm then recovers a Bayesian Network from the local
information. This algorithm’s runtime is O(m2 + n3|D|),
where |D| is size of the training set, n is the number of
random variables, andm is the number of edges in the graph.
While this algorithm may scale well to a large number of
random variables, it does not scale well on E+ data for two
reasons: the size of the E+ dataset (millions of data vectors)
and the total number of random variables being modeled
(∼300). Ignoring the dataset cardinality issue, the cubic
run time results in a very large number of computational
steps. Additionally, the number of conditional independence
tests required by this algorithm are only polynomial if the
Markov blanket for each random variable is bounded. In the
worst case, the algorithm reverts to an exponential problem,
because it will require an exponential number of conditional
independence tests.

J. Pellet et. al, [21] shows that algorithms that approx-
imate the Markov blanket perform better at extracting ca-
sual structures and scale better to large datasets. While we
are interested in a method for approximating an undirected
graph, approximating the Markov blanket for each random
variable easily allows an algorithm to extract the undirected
model. In fact [21] proves that if an algorithm has the exact
Markov blanket for each random variable, then the algo-
rithm will find the true causal model. A causal model is
a Bayesian Network in which edges imply causality, which
represents a stronger probabilistic relationship.

While it is computationally intractable to extract the ex-
act Markov blanket for each random variable in large prob-
lems, the algorithm does not use dependency test, like GS, to
determine the Markov blanket. Rather, the algorithm uses
feature selection techniques to determine the Markov blan-
ket for each random variable by using backward-selection
based linear regression and stepwise selection linear regres-
sion. J. Pellet et. al, [21] also explored a backward-selection
method combined with SVM regression, called Recursive
Feature Elimination (RFE) [10], but determined that the
method is too computationally expensive even though it will
detect nonlinear dependencies within the Markov blanket.
While the proposed algorithm in [21] is more computation-
ally appealing than the existing CB and S&S methods, it
must assume that all regression error terms follow a Gaus-



sian distribution, which makes it slightly less general than
the other methods. In addition, other works illustrates that
there are better feature selection methods than stepwise se-
lection and backwards selection [19].

While the feature selection methods can be improved, the
overall approach is much more scalable than the S&S and
CB methods. This clear computational advantage lead us to
explore additional Regression based (RB) structure learning
methods. In addition, the RB methods presented in this
paper have a polynomial worst case runtime, while all other
methods have an exponential worst case runtime.

3.3 Regression Based
RB structure learning methods determine all conditional

dependencies by assuming that each variable is a functional
result from a subset of all random variables. This concept is
best presented in Linear Gaussian Bayesian Networks, where
each random variable is Gaussian distributed, but each de-
pendent random variable’s Gaussian distribution is a linear
combination of its parents. Therefore, one can clearly learn
the structure for a Linear Gaussian Bayesian Network by
performing a series of linear regressions with feature selec-
tion.

The RB approach is extremely scalable. For example,
M. Gustafsson et. al [9] used RB methods to learn large
undirected graphical model structures in Gene Regulatory
Networks. Microarray data generally contains thousands of
random variables and very few samples. In that particular
research, the algorithm for building the graph structure is
fairly straightforward. If the regression coefficients are non-
zero, then there exists a dependency between the response
variable and the predictors with a non-zero regression coef-
ficient. While the method directly extracts an undirected
conditional dependency graph, it may not be possible to ex-
tract an overall joint distribution from the resulting graph.

A. Dobra et. al [5] focuses on recovering the factorized
graph’s joint distribution. [5] assumes that the overall joint
distribution is sparse and represented by a Gaussian with
N (0,Σ). This type of Markov Network is called a Gaussian
Graphical Model (GGM), and it is assumed that the joint
probability is represented by the following:

1

(2π)
n
2 |Σ| 12

exp(−1

2
(x− µ)T Ω(x− µ)) (6)

where Σ is the covariance matrix, µ is the mean, and Ω
is the inverse covariance matrix or precision matrix. The
approach learns a Bayesian Network that is converted to a
GGM by using the regression coefficients and the variance
for each regression to compute the precision matrix Ω. The
precision matrix is recovered by the following computation:

Ω = (1− Γ)T Ψ−1(1− Γ) (7)

where Γ represents an upper triangular matrix with zero di-
agonals and the non-zero elements represent the regression
coefficients, and Ψ−1 represents a diagonal matrix contain-
ing the variances for each performed regression. There are
methods for learning Ω from the data directly, either by
estimating Σ and computing Σ−1. The inverse operation
requires an O(V 3) runtime, where V is the total number
of random variables, which is not scalable to larger prob-
lems. More importantly, directly learning Ω via [7] only
guarantees a global maximum solution if there are sufficient
observations for the problems dimensionality. However, the

method presented by Fan Li [16] guarantees a global maxi-
mum solution in all instances.

This model allows exact inference by using the GGM’s
distribution’s information form (Eq. 8).

p(x) ∝ exp(xTJx+ hTx) (8)

J is the Ω and h is the potential vector. These methods as-
sume h represents a vector of zeros. Based on the research
presented in [27], it is possible to relax the assumption that h
is zero. However, computing h requires computing Σ by in-
verting Ω, which is expensive even with the efficient method
presented by A. Dobra et. al [5].

Overall, A. Dobra et. al [5]’s method is fairly robust
and computationally feasible for a large number of random
variables. However, the resulting model is heavily depen-
dent upon the variable ordering. Each unique variable or-
dering may produce a different joint probability distribu-
tion because each variable is only dependent upon variables
that proceed it. This assumption ensures that the resulting
graph structure is a valid Bayesian Network, but requires the
method to search the set of all possible orders to determine
the best structure. A. Dobra et. al [5] addresses this issue
by scoring the individual variables and greedily ordering the
variables in ascending order based on their assigned score.

Fan Li [16] builds on this approach and removes the order
requirement without adding additional assumptions. Fan Li
[16] applies a Wishart prior to the precision matrix, and uses
Lasso regression to perform feature selection. Applying the
prior to the precision matrix allows the method to propagate
the prior distribution to the regression coefficients, which
enables the Lasso regression method to perform Bayesian
feature selection. In addition, applying the prior to Ω lets
allows Fan Li to prove all possible resulting Bayesian Net-
works encode the same GGM joint probability, regardless
of variable order. This means that the computed Ω is a
MAP estimate, which has very appealing properties such
as avoiding overfitting. In addition, the [17] introduces a
way to transform the Lasso regression formulation into an
SVM regression problem, where the solution to the SVM re-
gression problem is also the solution to the Lasso regression
problem. This transformation allows the method to detect
nonlinear dependencies among the random variables. How-
ever, exploring nonlinear dependencies via this method is
future work, because naively implementing the method on
our data will produce non-sparse GGM models.

While the method presented by Fan Li [16] can efficiently
estimate the GGM that governs the joint distribution over
the E+ random variables, it is not clear how it will perform
on the E+ data set, which has many more samples than
variables. The method is intended to work with small sam-
ple size data sets that contain a large number of features,
such as microarray data. While priors are generally reserved
for problems with more features than observation samples
(e.g., microarray data sets), our E+ data set requires priors
as well. Our E+ simulations generate 30,540 output data
vectors per input parameter set, which leads to a significant
imbalance between output and input observations. For ex-
ample, 299 E+ simulations produce approximately 3.9GB of
data. In addition, the simulation input parameter space rep-
resents a complex high dimensional state space, which fur-
ther complicates the problem. The input parameter space
and observational skewness has lead us to avoid exploring
direct approaches such as [7], which will most likely only



find a local maximum solution.
Lastly, traditional solvers or optimization techniques are

not able to scale to our problem size. We present our solution
to this problem in Section 4.1, which allows us to scale to
arbitrarily large problems.

4. APPROACH
Given that the regression structure learning method has

the most scalability, we only need to address the Lasso re-
gression component’s scalability. Once addressed, we can
learn the the GGM model using the method outlined in Sec-
tion 4.2.

Originally, Lasso regression models were learned using
quadratic programming methods, which include interior point
[20], gradient methods, and many more. However, these tra-
ditional methods scaled poorly to large datasets [12]. Im-
proving optimization algorithms’ performance and scalabil-
ity is an active research area, and much advancement has
been made over the years. As a result, there are many dif-
ferent methods that are able to scale well to different prob-
lem types [6, 24]. For example, the Convex Bundle Cutting
Plane (CBCP) method [24] is a highly scalable optimization
algorithm that uses piecewise linear components to itera-
tively approximate the criteria function and find a solution.

The methods investigated vary in their scalability in rela-
tion to parallelizing across multiple processing cores and uti-
lizing the underlying hardware efficiently. For example, the
CBCP method parallelizes fairly well by splitting large data
sets across multiple computers, but the parallel algorithm
uses a master-slave paradigm. Essentially, the slave com-
puters solve subproblems, and the master computer aggre-
gates the sub-solutions and solves an additional optimization
problem over the available information. While the master
computer is solving its optimization problem, the slave com-
puters are idle, which reduces overall resource efficiency. In
order to maximize resource utilization, we elected to use Al-
ternating Direction Method of Multipliers (ADMM) [3] over
other equally capable distributed optimization methods be-
cause it does not use a master-slave paradigm. While the fol-
lowing, detailed ADMM description illustrates solving a re-
dundant secondary optimization problem per computer, the
optimization problem in practice is extremely light-weight.
This makes it more efficient to redundantly solve the prob-
lem locally, rather than communicate the solution to slave
computers.

4.1 Lasso with ADMM
ADMM is a fully decentralized distributed optimization

method that can scale to very large machine learning prob-
lems. ADMM solves the optimization problem directly with-
out using approximations during any phase of the optimiza-
tion process. The optimization process works by splitting
the criteria function into separate subproblems and opti-
mizing over those individual problems with limited commu-
nication.

In more formal terms, there exist several common sub-
structures for constrained convex optimization problems [3].
In particular, the general minimization problem is defined
as follows:

minimizef(x) (9)

with the following constraints x ∈ C, where C defines a con-
strained convex space. This general minimization problem

is formulated as the following under ADMM:

minimizef(x) + g(z) (10)

with the constraint x− z = 0, where g is an indicator func-
tion. Using an indicator function for g allows ADMM to
represent the original convex optimization constraints, and
the x−z = 0 constraint guarantees that the x that minimizes
f(x) obeys the original constraints.

While [3] used this general solution format to solve many
different convex optimization problems, we are only focus-
ing on the version used to solve Lasso regression. The dis-
tributed optimization steps for solving large scale linear Lasso
regression problems are presented below1.

xk+1
i = argmin

xi

(
1

2
||Aixi − bi||22 +

ρ

2
||xi − zk + uk

i ||22) (11)

zk+1 = S λ
ρN

(x̄k+1 + ūk) (12)

uk+1
i = uk

i + xk+1
i − zk+1 (13)

The individual local subproblems are solved using ridge re-
gression, and the global z values are computed by evaluating
a soft thresholding function S. This function is defined as
follows:

S λ
ρN

(v) = max(0, v − λ

ρN
)−max(0,−v − λ

ρN
) (14)

The soft thresholding function applies the Lasso regression
sparsity constraints over z, which are incorporated into the
local subproblem solutions on the next optimization itera-
tion.

The key advantage behind this particular Lasso regression
formulation is that the main, computationally demanding,
step is solved exactly once. The direct method for comput-
ing xk+1

i requires computing the matrix (ATA+ρI)−1. The
resulting matrix never changes throughout the entire opti-
mization process. Storing this result allows the distributed
optimization method to perform a very computationally in-
tensive task once and reduce all future xk+1

i computations
steps. Caching the values used to compute xk+1

i to disk
allows a 2.2GHz Intel Core i7 laptop to solve a univariate
3.9GB Lasso regression problem in approximately 17 min-
utes.

4.2 Bayesian Regression GGM Learning
Unlike the direct methods, the Bayesian approach assumes

a global Wishart prior for the precision matrix. Using this
global prior over the precision matrix allowed Fan Li [16]
to prove that the Bayesian approach estimates a globally
optimal precision matrix over all possible variable orders.
That is to say, under the Bayesian formulation presented
by Fan Li [16], all variable orderings should theoretically
produce the same precision matrix.

The Wishart prior used by Fan Li [16] is defined asW (δ, T ).
δ represents a user defined hyperparameter and T is a hy-
perparameter diagonal matrix who’s entries are governed by
the following distribution:

P (θi) =
γ

2
exp(

−γθi
2

) (15)

1This version assumes we are only splitting the optimization
problem across the training samples, and not the features.
It is possible to split across both. [3] presents the ADMM
formulation for supporting this functionality.



γ is a user defined hyperparameter. Using the above prior
and some additional derivations, Fan Li [16] derived the fol-
lowing maximum a posteriori (MAP) distributions for all β
and all ψ−1:

P (βi|ψi, D) ∝

exp(

∑D
n=1(xni −

∑N
j=i+1 βijxnj)

2 +
√
γΨi

∑N
j=i+1 |βij |

−ψi
)

(16)

P (ψ−1
i |θi, βi, D) ∝ P (D|Ψ−1

i , βi, θi)P (βi|Ψ−1
i , θi)P (ψ−1

i |θi)

∼ Gamma(
δ + 1 +N − 2i+ |D|

2
,∑N

j=i+1 β
2
ijθ

−1
i + θ−1

i +
∑D

n=1(xni −
∑N

j=i+1 βjxnj)
2

2
)

(17)

Maximizing P (βi|ψi, D) with respect to βi is equivalent to
solving a Lasso regression problem with the regularization
hyperparameter λ set to

√
γψi [16]. The original authors

derived these formulations to work with microarrays, which
typically contain 10,000 to 12,000 variables, but have very
few samples. This allowed the authors to use conventional
optimization methods to solve for βi. However, the E+
data set used in this work contains several million data vec-
tors, which mostly invalidates conventional optimization ap-
proaches. Rather than using the fast grafting algorithm2

used by [16], we solve the Lasso regression problems using
ADMM (Section 4.1).

After obtaining βi’s MAP estimate, it can be used to
maximize P (ψ−1

i |θi, βi, D) with respect to ψi. However,
P (ψ−1

i |θi, βi, D) is dependent upon the hyperparameter θi
and Fan Li [16] noted that there is not a known method
to analytically remove the hyperparameter via integration.
This means numerical methods are required to approximate
the integral over the hyperparameter. There are many nu-
merical methods for computing approximates to definite in-
tegrals, such as Trapezoidal method and Simpson’s Rule.
However, the integral over θi is unbounded from above, be-
cause θi’s values exist in the interval [0,∞), which means
Eq. 17 must be transformed to a bounded integral for the
numerical methods to be applicable. Given, Eq 17’s com-
plex nature and Li’s [16] recommendation to use sampling
to approximate ψ−1

i , we elected to use E[ψ−1
i |θi, βi, D] as

our estimates for ψ−1
i , which is the MAP estimate under a

Gamma distribution. Based on Fan Li’s [16] MAP distribu-
tion, we derived the following maximum likelihood estimate
(MLE) equation for ψ−1

i :

ψ−1
i =

δ − 1 +N − 2i+ |D|∑N
j=i+1 β

2
ijθ

−1
i + θ−1

i +
∑D

n=1(xni −
∑N

j=i+1 βijxnj)2

(18)
Given a fixed θ−1

i , we can estimate a ψ−1
i sample by com-

puting the maximum likelihood estimate (MLE) (Eq. 18).
By computing multiple MLE samples according to the θi’s
distribution defined in Eq. 15, we are able to estimate
E[ψ−1

i |θi, βi, D] using weighted sampling. In order to use
weight sampled, we sample Eq. 15 using its CDF and a
unifrom distribution on the interval [0,1]. This means our

2A gradient based constrained set optimization method.

final ψ−1
i estimate is computed using the following equation:

ψ−1
i =

1

M

M∑
j=1

ψ̂j
−1
P (θj) (19)

where M is the total number of samples and ψ̂i
−1

is a sample
computed using Eq. 18. Afterward a few iterations between
estimating βs and ψ−1s, we use the final estimates to com-
pute the GGM’s precision matrix (Eq. 7).

5. RESULTS
In order to assess how well the GGM estimates building

parameters, we experimented with three data sets – Fine
Grain (FG), Model Order 1 (MO1), and Model Order 2
(MO2). The first data set contains building simulations
built from small brute force increments across 14 building
parameters. The MO1 data set contains 299 building simu-
lations and ∼150 building parameters. The building param-
eters were independently set to their minimum or maximum
value, while other parameters were set to their average value.
This results in two simulations per building parameter. The
MO2 data set contains pairwise minimum and maximum
combinations across the same building parameter set.

Using the FG data set, we built a GGM using 250 simula-
tions sampled without replacement, and evaluated the model
using 150 test simulations simulations. In addition, we built
a GGM using the entire MO1 data set. The resulting model
is evaluated using 300 sampled MO2 simulations.

Analyzing Figure 1 illustrates that the building param-
eter estimates using the GGM are mostly better than the
estimates generated by randomly guessing using a [0, 1] ran-
dom distribution. The overall GGM’s absolute error rate
is statistically better with 95% confidence than the uniform
distribution’s error rate – 4.05±0.98 vs 5.07±1.01. However,
only the error rates for variables 1, 2, 3, 8, 10, 11, 12, 13,
and 14 are statistically better than their random guessing
counterpart. The other variables are not statistically differ-
ent.

While the other variables are not statistically different,
there is not a clear indication that the GGM model fails to
represent these variables. This indicates that the GGM over-
all is successfully modeling the FG building parameters. In
fact analyzing Figures 1(a) indicates that the GGM isolates
the building parameter’s means very well. While the uni-
form distribution matches the mean and variances (Figure
1(b)), it appears the matching is only possible because the
actual building parameters have a large distribution range,
which mostly centers at 0.5, the uniform distribution’s ex-
pected value.

Similar to the FG data set results, the Bayesian GGM
presents excellent performance on the MO2 data set (Figure
2). The Bayesian method is better than a uniform distri-
bution at estimating all building parameters. The Bayesian
GGM has better overall error — 13.01±0.85 vs 41.6936±2.13.
In addition, the model produces statistically better predic-
tions for all variables.

6. DISCUSSION
While the parameters in FG and MO2 have well defined

means, they have instances where they significantly devi-
ate from their estimated means, which is not well implied
by results (Figure 1(a) and 2). Figure 3(a) illustrates that
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Figure 2: Bayesian GGM’s parameter estimates compared against the actual parameter values on 300 ran-
domly sampled MO2 simulations.
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Figure 1: Compares Bayesian GGM’s error against
a [0, 1] uniform distribution’s error on estimating FG
building parameters. Additionally, it shows how es-
timates align with test building parameter values.

variable three from Figure 2(a) is occasionally zero, which
is vastly different from its estimated mean from the MO1
data set — 0.996. In fact, under a standard Gaussian model
these variable changes are essentially not representable, be-
cause these values are on the distribution’s tail. However,
it is not impossible for the model to estimate a parameter
value towards the distribution’s tail if the observed evidence
supports that hypothesis. This implies that variables whose
estimates do not have significant shifts towards the tail, ei-
ther have very little effect on the overall simulation’s output
as a whole or the model is does not represent the necessary
dependencies to represent the shift.

Figure 3(a) shows how the GGM estimates correspond
with variable three overall, as well as how they correspond
with the building parameter being zero. When the actual
building parameter is zero, the simulation between 200 and
250’s parameter estimate may be shifting towards the dis-
tribution’s tail, but the other estimates are most definitely
not shifting. In addition to variable three, other variables
within the MO2 data set present the same behavior.

The FG data set presents similar behavior. Figure 3(b) il-
lustrates that parameter values which deviate from the mean
are harder to estimate as well. The GGM focuses primarily
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Figure 3: Figure 3(a) highlights that building pa-
rameter three has values that occasionally differ
greatly from the parameter’s mean, and Figure 3(b)
compares parameters estimated via a genetic algo-
rithm and gradient optimization.

on predicting the parameter’s mean, which is expected. A
Gaussian model should focus its estimates around the mean,
and have difficulty estimating outlier or distance values, be-
cause their likelihood’s are fairly low. This implies that our
models, under their current hyperparameter values, are fit-
ting the means very closely and not allowing the model to
explore other possible assignments using a gradient infer-
ence method. Using different hyperparameter settings may
allow the model to introduce additional variance within the
overall estimation process, which may be desirable.

7. CONCLUSION & FUTURE WORK
Our FG and MO2 experimental results indicated that

the GGM performs well at estimating building parameters.
Overall, the Bayesian models built using the FG and full
MO1 data sets are statistically better than the uniform dis-
tribution, which is expected. However, our current GGMs
have difficulty estimating parameters that deviate signifi-
cantly from the mean. This implies we need to explore dif-
ferent hyperparameter settings, which may induce more es-
timation variance, or possibly a mixture model approach,
which will allow more variable means.
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