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1. INTRODUCTION

Learning is the ability to modify current behavior by usimg i

display changes over time. On many occasions, two or more ge-formation about the past. Time series models allow for afi@al

nerative processes may switch forcing the abrupt replactofe

fitted time series model by another one. We claim that therinco

poration of past data can be useful in the presence of cosbépt
We believe that history tends to repeat itself and from titne,
it is desirable to discard recent data reusing old past aafset-
form model fitting and forecasting. We address this chakelng
introducing an ensemble method that deals with long-merrimry
series. Our method starts by segmenting historical timesdata
to identify data segments which present model consistefiogn,
we project the time series by using data segments which ase cl
to current data. By using a dynamic time warping alignmentfu
tion, we try to anticipate concept shifts, looking for siarities be-
tween current data and the prequel of a past shift. We ewatuat
proposal on non-stationary and non-linear time series.chiese
this we perform forecasting accuracy testing against wedivwkn
state-of-the-art methods such as neural networks andtticeauto
regressive models. Our results show that the proposed chetio
ticipates many concept shifts.

Categoriesand Subject Descriptors: H.2.8 [Information Systems]:

Database ApplicationBata Mining
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system to analyze new sequential data to automaticallyegirdj
into the future. This can help people make decisions foriptess
future scenarios.

Time series models are inductive, therefore they requaedb-
tected data structures are consistent with current datalandvith
future unseen data records. Thus, a main challenge forithegi
the generalization ability of the proposed model.

Usually, time series are controlled by dynamic generatie p
cesses. Indeed, in many situations, time series are gal/bynsvo
or more overlapping switching generative processes. Isetisee-
narios, in order to fit new incoming data, an abrupt replacero
one model by a new model is needed. Progressive data changes
(or concept drifts) may be incrementally incorporated iittee se-
ries models in a natural fashion. In fact, time series modats
be recomputed using sliding windows, replacing old datands
with new ones. However, regular data changes can lead td-stab
ity problems. On the other hand, abrupt data changes (orepbnc
shifts) may require the discarding of recent data, forcinfif & new
model. In general, we refer this problem as the stabiligsptity
dilemma[13], which is the ability to learn new informatioritout
discarding previously acquired knowledge.

Time series models can cope with several data aspects. &or st
tionary data, ARMA model<]4] are able to perform accuratefo
casts. Sometimes, non-stationary data displays statipvenen
the original time series is differenced. For this kind ofadARIMA
models are appropriatel[4]. However, previous models amid
in their effectiveness if the data shows non-linearity. Anter
of strategies address this problem by using neural netw2rs
which are able to accurately fit non-linear data. Finallynetimes
data can be fitted by modeling two or more data regimes which
switch from one to another according to a set of estimated dat
thresholds. These models are known as threshold auto sagres
models [14]. In any case, the stability-plasticity dilemimaar-



geted using an incremental learning strategy that aim to ligam
the data sequence by taking snapshots of the evolving détia. T
approach is focused on learning the latest snapshots arsideon
ers that a single evolving model can explain the data geparat
process. The learning goal of this method is to keep an ugdate
version of the model.

In the machine learning domain, the stability-plasticitigichma
is addressed by using ensemble-based methaodls [17]. Théke me
ods work on labeled data and attempt to identify past datsfol
which are consistent with current data. In this directigalitsng
historical data into windows of fixed length is a common picact

predictor ensemble for predicting non-stationary timeeserThe
method extracts several fuzzy IF-THEN rules from input-oait's
of the time series together with memberships functions diate
reducing the prediction error. Rule bases are evolved ugngtic
algorithms and afterwards the membership functions aré/esto
in the same manner. In order to enhance the predictabiligaoch
rule, an ensemble of rules that combines genetically thdtheg
fuzzy predictors is created by an equal prediction-erroighte
ing method. Experimental results showed that the prediitiabf
the ensemble of rules outperforms the predictability of single
fuzzy predictor. In[[24] the Aggregated Forecast Througipdzx

Then, a weak learner is created from each data chunk. Here thenential Re-weighting algorithm (AFTER) was proposed. The a

model selected for the sequel is the one that has the lowestfer
the current data. We follow this idea to design our proposal.

In time series modeling ensemble-based approaches hagalto d
with an important challenge: a uniform data segmentaticatesy
can be orthogonal to how multiple generative processegaicitto
produce the observed data. Thus, the direct applicationsgrable
techniques to time series can be unsuccessful. In ordeatond
this problem, we propose the construction of time seriesrabes
by segmenting past data into segments which offer modeligons
tency, i.e. segments that allow the detection of a time seniedel
with good fitting properties. We explore the use of a top-down
strategy for the time series segmentation step, creatimgege-
ries tree representation. Then, a set of data segmentscaresred
from the time series tree by following a bottom-up merge proc
dure. Finally, we conduct model fitting on current data aadlos-
est past data segments. The distance between time seniesrisg
is implemented by a dynamic time warping distance functfat t
detects the best alignment between segment-pairs. Atdimswe
study two segment matching strategiesCé)sest segmenivhich
merges current data with the closest past data segment) &mkb
segment aheadvhich selects the following model consistent data
segment, trying to anticipate the change in the underlyatg gro-
cess.

The remainder of the paper is organized as follows. In Se&io
we summarize related work. In Sect[dn 3 we introduce our otkth
Experimental results are shown in Secfign 4. Finally we hate
in Sectior’b.

2. RELATED WORK

The idea of considering multiple generative processesria fie-
ries has been studied before for classification tasKs [I®achieve
an autonomous system able to distinguish between soberuwrsk d
drivers, a memory based times series procedure was dedelope
The authors considered that time series are generated ffiemedt
underlying mechanisms. Therefore, classification algoré were
used to recognize the class of the target time series. Thgmé&mon
procedure consists of collecting time series samples fhendiffer-
ent classes and fitting theand 3 parameters of the corresponding
ARMA model. The ARMA coefficients are used to build a knowl-
edge representation able to recognize the class of unthliebe
series. To classify unseen time series, their ARMA coeffitsieare
estimated and compared to past series using a distancenaebsu
nally, time series are classified according to the classeoh#darest
member of the knowledge memory.

The combination of different forecasting models was regiémn
[9]. According to this work, the combination of multiple irvétiual
prediction models leads to increased forecasts accurasically,
when different forecasts are combined, the risk of foreeasts is
diversified.

Ensemble models for forecasting purposes were proposesh@m
others, in[[16/_24.18]. IN[16], Kim et al. proposed a genetizzy

thors argue that the uncertainty in finding an accurate &stiug
model can be reduced by combining different models. In the al
gorithm, different ARIMA models were combined using a weigh
ing scheme. The weights were sequentially updated acaptdin
the past performances of their respective models. Empinesalts
showed that the AFTER algorithm reduces the error when tisere
difficulty in identifying the best model. A nonlinear neunakt-
work ensemble model was proposed[in/[18] for financial time se
ries forecasting. Different neural networks models weneegated
and selected using principal component analysis. The erleam
then constructed using a support vector machine regresisidg]

a number of recurrent neural networks were trained on eiffer
data examples and combined using a boosting based algofithm
[8] a two level ensemble learning approach for time serieslior
tion was developed using radial basis function networkise&rest
neighbor and self organizing maps. The ensemble model & abl
to detect regularities in non-stationary time series ardezes a
better performance than the individual models.

Besides the ensemble approach discussed below, the cembina
tion of models can also be formed over a set of training sete D
to the fact than in forecasting problems the training proceds
applied over one single training set, the dataset can beatpd
using bootstrap. The bootstrap aggregating or baggingoappr
refers to the idea of combining different forecasts traioeer the
bootstrap-replicated training sgt [6]. Kilian and Inoud@ssed the
problem of having a number of relevant predictors that iiadizlly
have weak explanatory powér [15]. They used a bagging approa
to perform forecasts from multiple regression models. Tlaénm
argument of the authors is that bagging is a suitable apprfmc
situations in which predictors are moderately large retato the
sample size. I [19] the bagging approach was extended &ostémn
ries using asymmetric cost functions for predicting sigms guan-
tiles. Unlike financial returns which may not be predicteukit
variance, sign, and quantiles may be predictable. Resbitsnzd
showed that bagging may improve the binary prediction inlsma
samples.

3. TIME SERIESENSEMBLE METHOD

In this section we introduce our forecasting framework, alahi
is divided into three parts: 1) A top-down segmentationteta
which identifies past data segments with good model comsigte
properties, 2) A bottom-up merge segment strategy whichesdd
the parsimony/representativeness tradeoff, and 3) Anralignt strat-
egy that looks for the closest past segments.

3.1 TheTop-down segmentation strategy

Our method, which has the goal of identifying meaningfultpas
data sequences for forecasting purposes, starts by geatiree
representation of the historical time series sequencesdoTihis
we follow a top-down segmentation strategy which looks far t



best partition of the sequence according to a given modetseh
criteria. The partition algorithm evaluates each sequespdie by
measuring the likelihood of the model fitting procedure tthtseg-
ments. The best split is the one which maximize the log Iiasid
of the fitted models. Then, the two time series sub sequeraes g
erated by the partition algorithm are segmented by receirsiis
to the top-down algorithm. The following procedures impérn
our strategy.

TOP — DOWN(S, i, j, L)
1:if j > ithen

p < PARTITION(S[i, j])

pivot <~ i+p—1

if length(S[i, pivot]) > Lthen
TOP — DOWN(S[i, pivot], i, pivot, L)

end if

if length(S[pivot + 1, j]) > Lthen
TOP — DOWN(S[pivot + 1, j], pivot + 1, j, L)

end if

10: end if

DO NTRWN

PARTITION(S)
1: ML < —10°
2: for i = 2tolength(S) — 1 do

3:  modell « ModelFitting(S[1,i])

4: model2 « ModelFitting(S[i 4 1,length(S)])
5:  L; < length(S[1,i])

6: Ly« 1ength(S[i + 1,length(S)])

7 Wi L1+L2

8 w2 o

9: Lik < wi -modell.Lik + ws - model2.Lik
10: if Lik > ML then

11: pivot + i

12: ML < Lik

13:  endif

14: end for

15: return pivot

To segment the entire time seri@the initial call is as follows:
TOP — DOWN(S, 1, length(S), L). We introduce a minimum length
parameterL to avoid the split of extremely short time series seg-
ments.

The key to the algorithm is theARTITION procedure, which
splits each segment according to a model consistencyiaritéfe
use the maximum likelihood identification strategy propbsy
Akaike [1] as a model consistency criteria. The maximumliike
hood estimation is a well known time series model detectiethod
used to select ARIMA models, which allows the identificatmin
data segments which display good model fitting properties.

A family of ARIMA models may be evaluated for each segment
by using step-wise algorithms, a strategy which helps irstgch
of model coefficients which was proposed by Hyndman and Khan-
dakar [20]. ThenPARTITION evaluates the quality of each split
S[1,i] andS[i + 1, length(S)] for each value of the index in
{2, length(S) — 1}. After that, the best ARIMA model is fitted
to each time series segment and the likelihood of each medet i
trieved. A global likelihood measuieik for the split is calculated
by weighting each model likelihood by the time series segmen
length, penalizing by the length the model fitting of extrénsiort
segments. Finally, the position of the data point arounctivithe
maximum global likelihood is reached is returned toThe — DOWN
algorithm, which recursively split the segments around tie-

ment. We call this element thea vot of the sequencel0P — DOWN
loops while the end and start sequence index elemieatsl j sat-
isfy the conditionj > i.

We use a concrete example to explain how our segmentation
strategy works. A tree structure produced by our strategy i@al-
world time series is shown in Figuré 1. The lower figure shdves t
political perception about a given 2008 U.S. presidentiett®n
candidate. Each time series point represents daily pplaeitcep-
tions. A total of 120 points are represented in the time semigich
corresponds to the first four months of the campaign. Thermuppe
figure shows the tree produced by our top-down segmentat@n p
cedure, where the vertical axis represents the likelihdodach
time series split.
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Figure 1: Treestructure produced by our top-down segmenta-
tion strategy over a 2008 U.S. presidential election opinion time
series.

The tree produced by our procedure provides a way to viializ
how different subsequent time series segments are. Therdlos
split is to the tree leaves, the more consistent the segraeator
a model fitting procedure. For example, the segments betdeten
points 35-41 and 41-49 are very close each other, suggektihg
unique model can be fitted in the interval 35-49. On the otheadh
the segments between 98-109 and 109-120 were splitted dthos
the top of the tree, indicating that two models are possiklyded
to get a better description of the 98-120 segment.

We use a data model consistency criteria which is based ol a co
lection of ARIMA modeling properties. However, a commoniim
tation of using ARIMA modeling is that model selection campiyn
a significant number of potential candidate models. In ttesario,
an exhaustive evaluation of every candidate model is utipedc
The state-of-the-art registers several efforts towardsess$ing the
ARIMA model selection task. These methods attempt to autema
model selection procedures. We consider a gerHRIA(p, d, q)
model for stationary series of thieth order difference, given by
the following expression:

Yo =gV +.. + qﬁthd,p +er—the—1— ...

where the variablege, } are a sequence of unobserved and inde-
pendent zero mean white noise random variablesarid the tar-
get variable. In the case of seasonal data, a generalizedrsda
ARIMA model ARIMA(p, d, q) X (P,D, Q). may be selected, where
m is the seasonal frequency. The model selection task camesp
to the estimation of the valugs q, P, Q, d, D, andm. We do this by
following the method proposed by Hyndman and Khanddkar, [20]
which is based on the diffuse prior approach introduced bspDu
and Koopman[[12]. The diffuse prior approach starts by choos
ing proper difference values andD, allowing a posterior proper
likelihood comparison between models of the same order.eTo s

- Qqet—m



lect the difference orders of the model, the model selectiethod
conducts a set of unit-root tesfs [11] for a null hypothedinm
unit-root. A set of successive unit-root tests are condlife an
increasing sequence dfvalues until a first insignificant result is
achieved. For seasonal data, a Canova-Hansef test [7]dsctel
to find a proper value for the seasonal frequency. Then, > 1
(i.e. the displays a relevant seasonal component), therelifte or-
der of the seasonal component is also determined by folpaset
of unit-root tests. Finally, an exhaustive grid search isteated to
select the values df, q and possiblyp andQq, if D # 0, by min-
imizing the Akaike information criterig [1]AIC), defined by the
following expression:

AIC = —21g(L) +2(p+q+P+Q+k), 1)

wherek = 1 if d or D are non zero values, ardis the maximum
likelihood of the fitted model. Notice that the first part oéthrc
criteria represents the maximum likelihood model selectiote-
ria, and the second part is a penalizing factor which helpecse
parsimonious models, i.e. to avoid to choose over paraineter
models.

Globally, our partition procedure selects the data pointiad
which the likelihood of both data segments is maximized. éxev
theless, our strategy attempts to also address the traafespfitting
extremely short data sequences, where very simple modgibena
fitted, decreasing the second factor of Eq. (1). To achieveoa g
balance between data representativeness and model paysiveo
calculate a global fitness function which is a weighted crrmaen-
bination of the likelihood of both segments and their lesgtie-
scribed as follows:

Lik = wy - L(My) + w - L(My), 2

wherew; andw, are given byﬁ andﬁ, respectively. No-
tice thatM; andM, are the modefs which optimize thac crite-
ria for a given pair of segmentS; and Sz, where the length of
each segments is; andL,, respectively. Thus, our split criteria
fits the Akaike optimum model for each segment (local optaniz
tion of likelihood and parsimony) but the split is orientey the

maximum likelihood criteria, which is weighted by each segin

into two very dissimilar parts. Indeed, the use of the Akaikiee-
rion function may lead to very simplistic models becausedhides
a parsimony component.

We address this situation by defining an automatic bottom-up
strategy which verifies the results produced by the top-dseg:
mentation procedure, correcting and avoiding anomaldlits syp/e
fix the case where a naive model with one coefficient was sslect
(i.e. the model considers only the bias component) by mgrtiis
segment with its closest segment, fitting a new model to tine-co
position of both segments. If the new model has at least twe6-co
ficients (i.e. is at least an AR(1) or MA(1)) the merge proaedu
stops, otherwise the merge procedure is repeated. Weatasiur
bottom-up merge strategy in Figure 2.

(@) (@] (@) (@) (e) (@)
160 175 187 198 208 223
B AR(1) MA(1) B AR(2)

MA(2) +/ B
\ |
I
ARMA(1,1) /

Figure 2: Thebottom-up merge strategy.

The segments 160-175 and 198-208 are fitted by a couple of bi-
ased one component models (denotedBhy Then, the bottom-
up strategy merges the segment 160-175 with 175-198 (nate th
this segment is as well composed of a couple of segments fitted
with models of two coefficients) producing’a(2) model. As this
new model has three coefficients (the bias coefficient andvibe
coefficients defined by the second order moving average model
the procedure stops. To fix the 198-208 case, the bottomrap st
egy merges this segment with the one included between the val

|ength. ThUS, Eq (2) can be expressed as a minimum-maximum ues 208-223. HOWeVer, the new mOde| generated iS a|SO ajbiase

split criterion function, given by the following expressio

Max  {w - L(MinATC(M; = S1,...0))

+ W .L(l\/[jinAIC(Mj = st+1,m,N))}. 3)

3.2 TheBottom-up merge strategy

Despite the fact that the criterion function we have justdbesd
is designed to achieve a good balance between data re@tgent
ness (i.e. segment length) and model fitting (i.e. likelthaad par-
simony), we cannot ensure that the tree structure produgedib
top-down strategy may lead to extremely simple short seggnd@n
some extent this situation is controlled by the split ciiterfunc-
tion, which in practice, tends to avoid over segmentatiorthesy
inclusion of the segment length in the split criterion fuootde-

one, forcing the merge of the segment 198-223 with the one in-
cluded between the values 160-198. As the new model fittenl is a
ARMA(1, 1), the procedure stops.

The bottom-up strategy ensures that every time series sggme
will be explained by a model, discarding over segmented. data
the previous example, the bottom-up strategy withdraw tiitél
five segments by replacing them with only one model.

3.3 Forecasting: Looking for similar data se-
guencesin the past

We index each time series segment identified by our top-down
/ bottom-up segmentation strategy in an ensemble. BaseHeon t
available history of the time series up to a given time paintwe
would like to forecast the value df;,, , , whereh is the number
of steps ahead, also known as hops. In practice, we are stedre
in the projection ofm hops ahead, wherne is a seasonal regular
frequency of interest.

We consider two baseline forecasting cases, which exptoee f

fined in Eq. 3. We also use a parameter which defines a minimum casting accuracy under two dissimilar scenarios: A shamary

segment length (denoted hY) to be considered by the partition

procedure (see lines 4 and 7 in @ — DOWN procedure). But our
procedure cannot avoid the partition of a given segmentajtterL

scenario, where the historical data is discarded for fataog pur-
poses, and a long-memory scenario, where all the availaéeisl
considered for forecasting.



Short-memory forecasting.

The data that needs to be projected is composed of therlast
observed data points. A short memory strategy will foretiast
series by using only the current data, fitting a model on therta
data points and projecting them steps ahead, discarding past data
for forecasting purposes.

Long-memory forecasting.

sents a single occurrence of an underlying data generatoegs.
Thus, merging current data and its closest segment can help t
reconstruction of a better model.

Closest segmentorks well only if the underlying data genera-
tive process does not change in the nexsteps. One way to anti-
cipate a change is to aggregate current data with the ldatatata
segment which is contiguous to the closest segment. Sindé
series segmentation is oriented towards model consistdrehis-

We consider the complete set of past data as the currentalata t torical segment ahead can be an occurrence of a differemgeat-

be forecasted. Then, we fit a model over the entire obserueal ti
series, projecting itn steps ahead.

We explore the feasibility of two new strategies, fekisest seg-
ment which adds to current data the closest historical datasegm
Second, we consider the strategye-segment aheadhich adds
current data to the segment whose previous segment is tloses
the current data.

Closest segment forecasting.

The data to be projected is the current data and the historica
segment which is closest to the last pasibbserved data points.
The composition of both segments is forecastedteps ahead.

One-segment ahead forecasting.

The data to be projected is the current data and the historica
segment whose previous segment is closest to therlastserved
data points. The composition of both segments is forecasted
steps ahead.

We describe each forecasting strategy in Fiilire 3.

One segment ahead

Closest segment

Long memory

‘

Short memory

<-closest segment - = < ---m last points - - 7>‘<7 -m steps ahead =
o OO Ct; ——————————————— o

Figure 3: Theforecasting strategies.

Closest segmerndone segment aheadquire a distance func-
tion evaluation between the current data and each indeséatical
segment. We use a flexible way to determine a distance mdasure
tween two sequences. As both sequences may be out-of-phase,
use an alignment procedure to find the optimal alignment &etw
both sequences according to a given distance function. prbis
cedure known a®ynamic Time Warping (DTWiyas first used to
match out-of-phase audio signals. Despite the fact thaDfhé/
performance may be deteriorated by outliers, we use it duts to
alignment flexibility. As a distance function we considee tBu-
clidean distance.

Closest segmeiboks for the most similar historical sequence to
expanding the current data for which the model will be fitted a
forecasted. The rationale is that the current data gemenatocess
can be better described if we add current data with similsir geata.
As data generative processes may change frequently, rgeatie
series segments of short time span, data in a single segeyet r

rative process. Thus, merging current data with the segatead
of the closest segment can facilitate the detection of agdhanint.

4. EXPERIMENTAL RESULTS

We conduct experiments on different types of time seriessb t
the abilities of the proposed forecasting strategies uddtarent
scenarios. The forecasting performance of the proposategtes
is studied using both synthetic and real data time series.

41 Timeseries
We use the following time series in our experiments:

Synthetic control chart time series.

This dataset contains a number of time series synthetigatr-
ated by changing data processes described by Alcock andpgdano
los [2]. These series corresponds to different classes mfrao
charts. We recover the series classified in the upward shift a
downward shift classes. Each series has 60 sarﬂpm use the
series numbered as 401 and 501, that will be denoted in ttli®se
asUpward andDownward.

Prey-predator time series.

These experimental time series represent the number af-prot
zoan per ml measured every twelve hours over a period of 3§ day
The series were registered in the experiments of VeilleBkgbout
the population fluctuation of a prey-predator system, wéetbe
prey isParamecium aureliand whereas the predator specieBiis
dinium natsuturfl. The initial part of the data is non-stationary. We
use both series of 70 samples for each one, denoted in thisrsec
asParamecium andDidinium.

River flow.

This series shows the monthly river flow for the lowa River mea
sured at Wapello, lowa, for the period September 1958 throug
August 2006. It has 576 data samples. The flow was measured
in cubic feet per second. Some parts of the data show noariige
In terms of history, this is the longest time series congiden our
experiment. We use the complete series, denoted in this section
asflow.

US elections 2008.

These series show daily perceptions of candidates of th8 200
US presidential election, Barack Obama and John McCain. The
series were generated by processing public Twitter messaug
by inferring opinion polarity of users regarding each grgitcord-
ing to a sentiment analysis method based on a lexican [23s&h
series were introduced inl[5] and show the polarity measiméte
United States during the period of June 2008 through Novembe
2008. We denote each seriesddama andMcCain.

!Seeihttp: /7 archi ve.ics. uci . edu/ m / dat abases/
2Seefht t p: // www. buseco. nonash. edu. au/ ~hyndman
3Seefhttp: // wat er dat a. usgs. gov/ | a/ NW S/ SW
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4.2 Methods

We study the use of different models for the forecasting. step

Table 1: Accuracy resultsfor the Upward time series

|| ME [ RMSE [ MAE [ MPE | MAPE |

a base model we consider the ones achieved by the ARIMA model | LM + ARIMA -1.33| 543 | 4.79| -4 12
selection procedure proposed by Hyndman and KhandakarIf20] LM + NNET 391 | 521 |411| 9 9
addition, we investigate the use of neural networks fordasting LM + SETAR 0.18 | 5.67 | 4.74| O 12
[21], which have shown advantages to fit non linear data. liyina SM + ARIMA -0.19| 4.17 | 3.61| -1 9
we also investigate the use of threshold autoregressivein @] SM+ NNET -0.73| 6.19 | 5.31| -3 13
for forecasting purposes, which have shown good propefties SM + SETAR 6.44 | 7.09 | 6.44| 15 15
switching data processes. CS + ARIMA -0.83| 559 | 4.84| -3 12
CS +NNET 7.74 | 873 | 7.74| 18 18

Neural Networks. CS + SETAR 8.01 | 854 | 8.01| 19 19
We explore the performance of the "Neural network nonlinear AHEAD + ARIMA || -0.61| 4.18 | 3.51| -2 9
autoregressive model" for forecasting, which was propagetbng AHEAD + NNET -0.72| 410 | 352| -2 9
[21]. This model considers a single hidden layer, possibithw AHEAD + SETAR || -2.38| 4.81 | 4.26| -7 11

skip-layer connections and a linear output. The model isneséd
using a BFGS optimization method. We denote this methoden th
results section agNET. Table2: Accuracy resultsfor the Downward time series

| | ME | RMSE | MAE | MPE | MAPE |

Self exciting threshold autoregressive model. LM + ARIMA -1.1 ] 357 | 314 -14 | 26
We explore the performance of the "Self exciting threshald a LM + NNET -8.36| 10.21| 9.01| -68 | 72
toregressive model (SETAR)", which was proposed by Gewekle a LM + SETAR -0.93| 3.71 | 351 -17 | 33
Terui [I4]. This model allow more flexibility by considerina SM + ARIMA -0.36| 4.21 | 3.76| -10 | 30
regime switching behavior, where the switch from one regime SM + NNET -1.26| 341 | 281 -14 | 23
another is triggered by a threshold which is conditionedsist pal- SM + SETAR -2.04| 3.9 |348| -22| 30
ues. We consider two regimes and a threshold which is sgarche | CS + ARIMA -0.45| 3.79 | 342 -11 | 28
over a grid of feasible values. The AR order of the lower anglnp CS + NNET -0.73| 341 | 268 -12 | 22
regimes is equal to 1, considering a delay parameter equals 3 CS + SETAR 0.66 | 3.93 | 343| -2 | 25
AHEAD + ARIMA || -1.17| 3.07 | 3.02| -12 25

We use the neural networks implementation provided in th&RN AHEAD + NNET -1.57| 3.7 32 | -18 | 27

R package, version 7.3/ The SETAR method is included in the AHEAD + SETAR || 3.63 | 5.24 | 4.23| 19 24

TSDYN R package, version 0.80 Finally, the ARIMA model
selection procedure is provided in the FORECAST R Package, v

sion 3.211. sults achieved by the closest segment strategy. Thesesrdkid-

trate the fact thapward is a short memory time series but shows
changes that are properly detected by the one segment ahaiad s
egy. Something similar occurs with thewnward time series. As
Table[2 shows, the best results are achieved by the cloggaese
and one ahead segment strategies, with a couple of veregtter
ing results achieved by neural networks and setar, showiag t
Downward presents non linearities.

4.3 Resultson synthetic data

In a first experiment we explore and test the forecasting-capa
bilities of the proposed methods with tiigward andDownward
synthetic time series introduced in subsecfiol 4.1. We tdethe
methods by.M (long memory)SM (short memory)¢s (closest seg-
ment), andAHEAD (one segment ahead).

We start the evaluation with tH&ward andDownward series.
We do this by considering the first 40 points as the histodeaa,
and the subsequent 20 data points as the future unseen. ptats
consider forecast windows of 5 steps ahead, that is ta.say,40,
and four forecasts window{41 : 45], S[46 : 50|, S[45 : 55], and
S[56 : 60]. For example, the forecasts for the windep1 : 45]
consider that the current data is the sequesiee : 40], for the
window S[46 : 50] the current data iS[41 : 45] and so on. The
initial segmentation over the sequerse : 40] is considered for
every forecasted window. Finally, we compare the real g&ta :

60] with the forecasted data obtained by using each of the discus -
methods. Tableg 1 afid 2 show the accuracy results fartherd very cloge to the ones achieved by the one segment ahead-, show
andDownward series, respectively. ing in thl§ case that the use of A'RIMA models may be improved

Table[d shows that the short memory method is very compet- by replacing the long memory with the one segment ahead strat
itive with the one segment ahead strategy. We can observe tha €9y In the case dbidinium, in Tablel4, we note that the results
the neural networks and the setar methods based on the one seg@chieved by the long memory setar and the one segment ahead
ment ahead are better than the long memory and the short memor ARIMA strategies are very close. These results illustratg ais

and in particular, these outcomes significantly outperfénenre- both series have a short history, the impact of the use oftizdatis
limited. However, one segment ahead shows again, goodsesul

We evaluate the accuracy performancetdéw by fixing to =
504. Then, the remainder 72 data samples were reserved for fore-
casting purposes, considering projections of 12 hops atheathe

4.4 Resultson real world data

We start the analysis by evaluating the performance of tite-me
ods in theParamecium andDidinium series. We fix, at 50, re-
serving the last 20 samples for forecasting purposes. Waid@&n
forecasted windows of 5 samples, that is to say, we fix the num-
ber of hopsm = 5. As these series have 70 samples, we obtain
4 forecasted windows in the interval between 51-70. We shaw t
accuracy results for these series in Tables Jand 4.

Tabld3 shows that the best results are achieved by the long me
ory strategy with a setar based forecasting model. Thesésese

‘Seeiht T p: /7 W, St at S. oX. ac. UK/ pub/ MASSA
5Seefhtt p: /7t sdyn. googl ecode. com
5Seejhtt p: /7 r obj hyndman. cont sof t war e/ f or ecast


http://www.stats.ox.ac.uk/pub/MASS4
http://tsdyn.googlecode.com
http://robjhyndman.com/software/forecast

. . eriods favors the identification of better models for fastm
Table 3: Accuracy resultsfor the Paramecium time series P 9

purposes.
| ” ME | RMSE | MAE | MPE | MAPE | Finally, for the Obama andMcCain series we fixedo, = 120.
LM + ARIMA 21.01|35.82| 29.81| 19 | 46 that is to say, we consider the first four months as the histbri
LM +NNET 8.98 | 26.79| 21.36| -3 | 37 data, projecting the series until the 156-th day. We consigea
LM + SETAR 11.95]| 20.96| 15.21| 10 | 21 frequency of interest 7 hops. As the series have 156 samptes,
SM + ARIMA 16.47| 50.84| 45.52| -18 | 83 obtain 5 forecasted windows in the interval between 121uigio
SM + NNET 6.48 | 49.59| 47.02| -32 | 96 156. Accuracy results are shown in Tatles 6[@nd 7.
SM + SETAR 5.97 | 34.69| 26.75| -12 49
CS + ARIMA 26.17| 40.05| 34.98| 24 51
CS + NNET 13.21| 37.64| 32.66| -3 60 Table 6: Accuracy resultsfor the Obama time series
CS + SETAR 3.11 | 24.44| 18.01| -1 | 27 | [ ME | RMSE [ MAE | MPE | MAPE |
AHEAD + ARIMA || 10.48| 19.78| 15.79| 6 25 LM + ARIMA 0.005 ] 0.069] 0.051] -4 18
AHEAD + NNET 15.49| 33.63| 28.14| 6 51 LM + NNET 0.008 | 0.078| 0.061| -4 20
AHEAD + SETAR || -4.06 | 37.32| 24.16| -10 37 LM + SETAR -0.009| 0.077! 0.054| -9 20
SM + ARIMA 0.013 | 0.068| 0.048| -5 17
SM + NNET -0.011| 0.071| 0.051| -7 19
Table4: Accuracy resultsfor theDidinium time series SM + SETAR -0.016| 0.081| 0.058| -12 22
| | ME | RMSE [ MAE | MPE | MAPE ] CS + ARIMA -0.012| 0.072| 0.048| -10 | 18
LM + ARIMA 214 | 7271 [ 4521 -32 | 47 CS +NNET 0.007 | 0.071) 0.051| -4 | 18
LM + NNET 261 | 90.38 | 71.05| -58 87 CS + SETAR 0.002 | 0.072| 0.055| -5 19
LM + SETAR 531 | 65.61 | 40.08| -18 35 AHEAD + ARIMA || -0.015| 0.051| 0.039| -5 12
SM + ARIMA -63.91| 182.53| 143.9| -155 | 203 AHEAD + NNET | -0.014} 0.052| 0.041} -5 | 12
SM + NNET 419 | 121.61| 84.67| -72 112 AHEAD + SETAR || -0.011| 0.059 | 0.045| -4 12
SM + SETAR -5.38 | 109.35| 77.21| -46 84
CS + ARIMA -45.69 | 148.78| 101.8| -130 | 152
CS + NNET 13.58 | 98.97 | 74.36| -49 86
CS + SETAR -62.61| 171.15| 111.7| -156 | 176 Table 7: Accuracy resultsfor theMcCain time series
AHEAD + ARIMA || 5.59 | 68.91 | 38.81| -16 | 35 | [ ME | RMSE | MAE | MPE | MAPE |
AHEAD + NNET -7.08 | 90.30 | 73.83| -66 | 93 LM + ARIMA -0.044] 0.127] 0.101] 188 304
AHEAD + SETAR || -20.19| 94.79 | 69.78 | -62 81 LM + NNET 0.009 | 0.2271 0.142| 196 | 299
LM + SETAR -0.025| 0.126 | 0.095| 190 | 279
SM + ARIMA -0.017| 0.129| 0.121| 216 | 299
fact that the data presents an annual seasonal frequencthisAs SM + NNET -0.009| 0.114| 0.083| 190 | 252
series has 576 samples, we obtain six forecasted windowkein SM + SETAR -0.006 | 0.233| 0.142| 216 | 232
interval between 505 through 576. We show the results iné[@bl CS + ARIMA 0.012 | 0.125| 0.098| 188 | 233
CS + NNET -0.055| 0.181| 0.136| 231 | 337
CS + SETAR -0.033| 0.231| 0.141| 160 | 222
Table5: Accuracy resultsfor the f1ow time series AHEAD + ARIMA || -0.008 | 0.097| 0.046| 122 | 142
| ” ME | RMSE | MAE | MPE | MAPE | AHEAD + NNET -0.009 | 0.091| 0.115]| 130 153
M + ARIVIA 1817 ] 64891 5302 102 120 AHEAD + SETAR 0.024 | 0.253| 0.122| 177 | 216
LM+ NNET -1441| 6784 | 5421 | -103 | 125
LM + SETAR -1661 | 7437 | 6097 | -123 | 144 Table[® shows that the results achieved for@hema series are
SM + ARIMA -1604 | 6498 | 5262 | -101 | 122 very precise for every method evaluated. In this case thebadts
SM + NNET 2443 | 7326 | 6134 | -139 | 154 are achieved by the one segment ahead strategy, but thakis ires
SM + SETAR -2006 | 8018 | 6748 | -131 | 151 fact are very close to the ones achieved by the other methiogs,
CS + ARIMA 2120 | 6987 | 4833 | -20 74 trating that this series shows low variability. On the othend, the
CS + NNET =742 | 6480 | 5062 | -83 | 106 McCain series shows a very significant noise level, which explain
CS + SETAR -1536 | 6670 | 5336 | -101 | 119 that the quality of the results is more limited. The resuitisve that
AHEAD + ARIMA 914 | 6232 | 4879 | -84 | 105 the use of a one ahead segment strategy also offer goodstabult
AHEAD + NNET -2005| 7275 | 5995 | -126 | 144 lustrating that a short memory strategy may discard retepast
AHEAD + SETAR || -1255| 7118 | 5706 | -106 | 127 data and a long memory strategy may include irrelevant pest d

achieving the one segment ahead strategy a good balancedretw

i both scenarios.
As Table[® shows, the best results are achieved by the closest

segment strategy combined with the ARIMA model. In fact, the
model selection procedure detects seasonality, whiclamgWwhy 5. CONCLUSION
in this case the use of a seasonal ARIMA offers good perfooman We propose two new forecasting strategies which considgr pa

results. We can observe that by replacing the long memotytiwi data to conduct a model selection procedure. We evaluaterthe
closest segment strategy, the ARIMA accuracy achievesfisignt posed strategies against two baselines, along memorggyratich
improvements (around 40 MAPE points and 80 MPE points) which considers the whole history for model selection, and a shern-

in fact is a very remarkable result. This fact indicates tahat ory strategy, which discards past data. We evaluated ounadst

flow is a long memory series, but the discarding of some past databy combining them with three different models: ARIMA, nelura



networks and SETAR. We evaluate our methods considering non[13] S. Grossberg. Nonlinear neural networks: Principles,
linear/linear data, non stationary/stationary data, tdloog time

data, and seasonal/non seasonal data. In every case, tloé use

selective memory offers benefits against a short or long mgmo
strategy. In particular our results show that the use of tleeseg-
ment ahead strategy outperforms many of the evaluated agtho
showing its abilities for change detection and forecasting
Currently, we are extending our proposal to properly workhwi
high frequency data, allowing to us the evaluation of theppsed
methods in financial time series. Preliminar results shat this
framework may offers improvements for forecasting purgose

6.

This work has been partially supported by FONDEF DO911185.

ACKNOWLEDGMENT

[14]

[15]

[16]

[17]

Marcelo Mendoza was supported by project FONDECYT grant [18]

11121435. Felipe Bravo-Marquez was supported by a CONICYT
Master Scholarship. Barbara Poblete was supported by FONDE

CYT grant 11121511 and U-INICIA VID 2012, grant 3/0612, Uni-
versity of Chile.

7.
(1]

(2]

(3]

[4]

[5]

[6]
[7]

(8]

9]

[10]

[11]

[12]

REFERENCES

H. Akaike. Maximum likelihood identification of Gaussia
autoregressive moving average modBiemetrika
60:255-265, 1973.

R. J. Alcock, Y. Manolopoulos, D. E. Laboratory, and D. O.
Informatics. Time-series similarity queries employing a
feature-based approach.lim7 th Hellenic Conference on
Informatics, loanninapages 27-29, 1999.

M. Assaad, R. BonAl, and H. Cardot. A new boosting
algorithm for improved time-series forecasting with
recurrent neural networkiformation Fusion9(1):41 — 55,
2008. Special Issue on Applications of Ensemble Methods.
G. E. P. Box and G. M. Jenkin3ime Series Analysis:
Forecasting and ControlPrentice Hall PTR, Upper Saddle
River, NJ, USA, 3rd edition, 1994.

F. Bravo-Marquez, D. Gayo-Avello, M. Mendoza, and

B. Poblete. Opinion dynamics of elections in twitter. In
LA-WER pages 32-39. IEEE Computer Society, 2012.

L. Breiman. Bagging predictorddachine Learning
24:123-140, 1996. 10.1023/A:1018054314350.

F. Canova and B. E. Hansen. Are seasonal patterns canstan
over time? atest for seasonal stabiliigurnal of Business &
Economic Statisticsl3(3):237-52, July 1995.

A. Chitra and S. Uma. An ensemble model of multiple
classifiers for time series predictidnternational Journal of
Computer Theory and Engineering(3):1793-8201, June
2010.

R. T. Clemen. Combining forecasts: A review and annaetate
bibliography.International Journal of Forecasting
5(4):559-583, 1989.

K. Deng, A. W. Moore, and M. C. Nechyba. Learning to
recognize time series: Combining arma models with
memory-based learning. Proceedings of the 1997 IEEE
International Symposium on Computational Intelligence in
Robotics and AutomatioiCIRA 97, pages 246—,
Washington, DC, USA, 1997. IEEE Computer Society.

D. A. Dickey and W. A. Fuller. Likelihood ratio statiss for
autoregressive time series with a unit rdétonometrica
49(4):1057-72, 1981.

J. Durbin and S. J. Koopmamime series analysis by state
space methodsolume 24. Oxford University Press, 2001.

[19]

[20]

[21]

[22]

(23]

[24]

mechanisms, and architecturdkeural Networks
1(1):17-61, 1988.

N. T. J. Geweke. Bayesian threshold autoregressivestaod
for nonlinear time seriedournal of Time Series Analysis
14:441-454, 1993.

L. Kilian and A. Inoue. Bagging time series models.
Econometric Society 2004 North American Summer
Meetings 110, Econometric Society, Aug. 2004.

D. Kim and C. Kim. Forecasting time series with genetic
fuzzy predictor ensembl¢éEEE Trans. Fuzzy Syst
5:523-535, 1997.

L. I. Kuncheva.Combining Pattern Classifiers: Methods and
Algorithms Wiley-Interscience, 2004.

K. Lai, L. Yu, S. Wang, and H. Wei. A novel nonlinear nelura
network ensemble model for financial time series
forecasting. In V. Alexandrov, G. van Albada, P. Sloot, and
J. Dongarra, editor€Somputational Sciencefd ICCS 2006
volume 3991 ot ecture Notes in Computer Scienpages
790-793. Springer Berlin / Heidelberg, 2006.

T.-H. Lee and Y. Yang. Bagging binary and quantile
predictors for time seriesournal of Econometrigs
135(1-2):465-497, 00 2006.

C.-S. 0ng, J.-J. Huang, and G.-H. Tzeng. Model
identification of arima family using genetic algorithms.
Applied Mathematics and Computatjd64(3):885 — 912,
2005.

H. Tong.Non-Linear Time Series: A Dynamical System
Approach (Oxford Statistical Science Series,@}ford
University Press (UK), July 1993.

B. G. Veilleux. An analysis of the predatory interactio
between paramecium and didiniudournal of Animal
Ecology 48(3):787-803, 1979.

T. Wilson, J. Wiebe, and P. Hoffmann. Recognizing
contextual polarity in phrase-level sentiment analysis. |
Proceedings of the conference on Human Language
Technology and Empirical Methods in Natural Language
ProcessingHLT '05, pages 347—354, Stroudsburg, PA,
USA, 2005. Association for Computational Linguistics.

H. Zou and Y. Yang. Combining time series models for
forecastinglnternational Journal of Forecasting
20(1):69-84, 2004.



	Introduction
	Related work
	Time series ensemble method
	The Top-down segmentation strategy
	The Bottom-up merge strategy
	Forecasting: Looking for similar data sequences in the past

	Experimental results
	Time series
	Methods
	Results on synthetic data
	Results on real world data

	Conclusion
	Acknowledgment
	References

