
Maintaining connected components for infinite graph
streams

Jonathan Berry
Sandia National Laboratories∗

Matthew Oster†
Rutgers University

Cynthia A. Phillips
Sandia National Laboratories∗

Steven Plimpton
Sandia National Laboratories∗

Timothy M. Shead
Sandia National Laboratories∗

ABSTRACT
We present an algorithm to maintain the connected compo-
nents of a graph that arrives as an infinite stream of edges. We
formalize the algorithm on X-stream, a new parallel theoret-
ical computational model for infinite streams. Connectivity-
related queries, including component spanning trees, are sup-
ported with some latency, returning the state of the graph at
the time of the query. Because an infinite stream may eventu-
ally exceed the storage limits of any number of finite-memory
processors, we assume an aging command or daemon where
“uninteresting” edges are removed when the system nears ca-
pacity. Following an aging command the system will block
queries until its data structures are repaired, but edges will
continue to be accepted from the stream, never dropped. The
algorithm will not fail unless a model-specific constant frac-
tion of the aggregate memory across all processors is full. In
normal operation, it will not fail unless aggregate memory is
completely full.

Unlike previous theoretical streaming models designed for
finite graphs that assume a single shared memory machine or
require arbitrary-size intemediate files, X-stream distributes a
graph over a ring network of finite-memory processors. Though
the model is synchronous and reminiscent of systolic algo-
rithms, our implementation uses an asynchronous message-
passing system. We argue the correctness of our X-stream
connected components algorithm, and give preliminary exper-
imental results on synthetic and real graph streams.
∗Sandia National Laboratories is a multi-program laboratory
managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the U.S. De-
partment of Energy’s National Nuclear Security Administra-
tion under contract DE-AC04-94AL85000.
†Supported by the U. S. Department of Homeland Security
under grant award number 2008-ST-104-000016. The views
and conclusions contained in this document are those of the
authors and should not be interpreted as necessarily represent-
ing the official policies, either expressed or implied, of the U.
S. Department of Homeland Security.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
BigMine ’13, August 11-14, 2013, Chicago, IL, USA
Copyright is held by the owner/author(s).
Publication rights licensed to ACM.
ACM 978-1-4503-2324-6/13/08 ...$15.00.

Keywords: Streaming graph algorithms, stream-
ing models, parallel distributed computing

1. INTRODUCTION
In classic (finite) streaming applications, data are gener-

ated piece by piece from external processes such as sensors.
The computing system does not have space to store the entire
stream, but we still must compute global information about it.
Streaming problems are similar to online algorithms, where
data arrives piece by piece and the algorithm must make irre-
vocable decisions now without knowledge of future inputs. In
streaming algorithms, one must decide not only what to com-
pute, but also what to store in limited memory.

Our primary application is cybersecurity. Streaming cyber
data can represent relationships between entities that are of-
ten modeled as graphs. Analysts could infer interesting things
from such graphs, but generally cannot keep up with today’s
streams. Further, institutions will likely have difficulty hiring
enough analysts to keep up with tomorrow’s streams. We wish
to develop practical fundamental streaming graph algorithms
to partially automate the analyst’s task.

We present a real-time graph mining methodology for an-
swering queries about connected components in a streaming
graph. Our algorithm is based on a new theoretical stream-
ing model that stores the whole graph in a distributed system
with periodic bulk deletions. Connected components are fun-
damental topological structures involving global information,
but other structures could be mined, such as component span-
ning trees and path queries.

In the classic streaming model, the input is a finite series of
edges, each represented by the pair of vertex endpoints. For a
finite graph, this series is an arbitrary permutation of its edges,
possibly with repetitions. The output is a (vertex, label) pair
for each vertex such that two vertices have the same label if
and only if they are in the same connected component.

An algorithm for the classical streaming model [5, 6, 8] has
parameters s, the amount of space available to the algorithm,
p, the number of times the algorithm can see the same in-
put stream (called the number of passes), and sometimes the
amount of computational time required per stream element,
which should be small. For a finite stream, a single-pass algo-
rithm cannot output two vertices, say u and v, with different
labels until the entire stream has passed. Otherwise the last
edge could join the previously disjoint components contain-
ing u and v, and the algorithm will have made an irreparable
mistake. In fact, the algorithm cannot forget any vertex name,
since if the algorithm outputs and forgets vertex u, the last

edge could be (u, v) for some new vertex v, which would then
be mislabeled. Thus a one-pass algorithm must remember the
names of all nodes, which is Ω(n) names or Ω(n logn) bits
in the worst case. In 2009, Demetrescu et al. reported having
found no published streaming graph algorithms with both sub-
linear space and passes. [3]. We are not aware of any such al-
gorithms in the intervening years. Henzinger et al. proved that
any p-pass streaming algorithm for connected components for
a graph requires Ω(n/p) space [5]. So any algorithm that uses
a constant amount of space requires Ω(n) passes.

Some theoretical models have relaxed the strict classical
streaming model to allow more than a constant amount of space,
that is, allowing space that is a function of the graph size, or al-
lowing the algorithm to alter the stream for subsequent passes.

Demetrescu et al. [3] introduced the W-Stream model, where
“W” stands for “write.” In this model the algorithm is allowed
to write a new stream as it processes the finite stream. Thus
in each pass of the algorithm, it reads the altered stream it
produced in the previous pass. This model assumes an ex-
ternal file system large enough to store the intermediate file
the stream is reading and the next intermediate file it is writ-
ing. W-Stream is a more restricted and realistic version of the
StreamSort model that Aggarwal et al. [1] introduced in 2004.
The latter allows external memory sorting, which W-Stream
does not. Demetrescu et al. developed an elegant W-Stream
algorithm that gives a nice tradeoff between space and num-
ber of passes: O((n logn)/s) passes for any given amount of
space s. They also prove an Ω(n/s) lower bound in the W-
Stream model, so their algorithm is within a logn factor of
optimal. Theirs was the first non-sorting-stream-based algo-
rithm to work with o(n logn) space. Our algorithm is based
on this W-Stream algorithm. We describe the Demetrescu et
al. algorithm in some detail in Section 2.

These algorithms all assume finite streams, but cyber data
streams for active systems have no obvious end. So they are
better modeled by infinite streams. In an ideal world, edges
would stream forever into an infinite store, analysts would
query it, and the query answers would pop out instantly.

In cyber analysis, infinite edge streams can gradually ex-
pose ever growing, but instantaneously finite graphs such as
portions of the Internet or World-Wide Web. Such streams
may have many duplicate edges, limiting the grah growth rate.
However, eventually graph storage requirements might exceed
any system’s memory. So we model periodic bulk deletions of
edges, most easily specified by an aging operation.

The only parallel dynamic connected components algorithm
for infinite graph edge streams that we are aware of is the work
of Ediger et al. [4]. They have a shared-memory algorithm for
power-law social networks where there can be explicit edge
deletion, such as “unfriending”. The experiments in [4] indi-
cate that their algorithm can handle 240,000 updates per sec-
ond on 32 processors of a shared-memory Cray XMT when
most actions are insertions, updates are processed in batches,
and the user can tolerate some error between full recomputa-
tions. The observed graph must fit entirely into the available
shared memory at any given point, even though the stream can
be infinite. The experiments in [4] process edge insertions and
deletions in batches of one thousand (throughput 11, 800) to
one million (throughput 240, 000). All updates in a batch are
processed in parallel. Thus, queries can only happen between
batches, at granularities of thousands to millions of updates.

R-MAT graphs, used in experiments in [4], are a standard
input set for the GRAPH 500 benchmark [7]. Given appropri-
ate parameters, R-MAT graphs have a scale-free degree distri-
bution, but they do not necessarily have other properties com-
mon in social networks such as high clustering coefficient [12].
Probably graphs with more local triangles would allow the
triangle-finding heuristic in [4] to work even better. More re-
cent unpublished results demonstrate the algorithm processing
over one million updates per second [2] in some cases.

We introduce X-Stream, a streaming model motivated by
the cyber analyst’s ideal, but having realistic limitations. We
give an X-Stream connected components algorithm that also
maintains a spanning forest. Generally it is difficult to build an
efficient arbitrarily-large shared-memory system. We consider
distributed-memory architectures where we can theoretically
use an arbitrary number of processors, and hence an arbitrary
(though finite) amount of memory to store the graph. An al-
gorithm for our model must not fail for space reasons unless
the entire distributed memory is asymptotically full. Queries
have some latency, depending on type, but are correct for the
graph at the time of the query. The operator or a daemon must
monitor storage availability. When storage levels become dan-
gerously low, the operator must explicitly remove a sufficient
number of relatively less interesting edges. The model sup-
ports arbitrary predicates to determine which edges to delete,
provided the test is quick. For this discussion, we assume the
operator ages edges older than a time t (s)he chooses, on the
assumption newer edges are more interesting. Daemons can
choose t based on a set of rules. If the system doesn’t age
soon enough or aggressively enough, then the system might
fill, and thus fail. In the monotonic setting where edges never
leave, like the finite-stream static setting, we could throw away
extra edges that connect vertices known to be in the same com-
ponent. But we now may need them to repair components af-
ter edge removal.So X-Stream connected components requires
distributed storage of the whole graph. During aging, we dis-
allow queries while we rebuild our data structures, but we con-
tinue to accept and correctly handle new edges.

Because the system may be out for an indeterminate amount
of time during aging, it is best that this happens during a time
when the operator can best tolerate the query outage. This
might be at night when system usage is lower. The daemon
should periodically warn the operator of impending automatic
aging, which will likely be days ahead of the event, so the
operator can manually induce an aging at a better time.

2. THE W-STREAM CONNECTED COM-
PONENTS ALGORITHM

Our X-Stream algorithm – particularly the graph represen-
tation – is based on that in [3], which we call W-Stream for
short. Our algorithm has additional complexity to handle ag-
ing and infinite streams.

In the W-Stream algorithm, each pass contracts a set of dis-
joint connected subgraphs into single nodes until each con-
nected component is represented by a single node. The stream
in each pass has two contiguous parts. The first part repre-
sents the current partially contracted graph, and the second
part stores the nodes that are inside the contracted pieces. In
the input stream, the first part is the whole uncontracted graph
and the second part is empty. In the output from the last pass,
the first part is empty and the second part gives the final com-

ponent labels for each node.
During the first pass, the algorithm computes connected com-

ponents using union-find data structures until the memory of
size s is full. In the union-find data structure, each partial
component found so far has a root node, which is the leader
of the current component. At this point, the processor starts
to emit the second stream, outputing the graph with the cur-
rent components contracted into a single node represented by
the leader. When edge (u, v) arrives, the processor looks to
see if the endpoints have been seen yet. The algorithm finds
the leaders for the node(s) that have been seen before. If both
nodes have been seen and the leaders are the same, the edge is
discarded. Otherwise the edge spans two current components
and must be output to the next stream. The algorithm replaces
the node name of a previously seen node with its component
leader name. If the node is new, the name is unchanged. This
is called relabeling an edge. The algorithm relabels all the
remaining edges in the stream, then emits a dividing marker,
indicating the beginning of the second part of the stream. It
then outputs a (node, leader) pair for each node hidden in a
contracted component.

Subsequent passes are processed in much the same way.
Some of the nodes in the data structure now represent con-
tracted subgraphs, but the algorithm treats the leaders like any
other node. In the second part of the stream, for each (node, la-
bel) pair, the algorithm determines if the label has been pulled
into a new (higher-level) component with a new leader. If so,
it relabels the node. Thus the nodes in the second part of the
stream are always represented by the most up-to-date leaders.

3. THE X-STREAM MODEL
X-Stream is a follow-on model to W-Stream, hence uses the

next letter in the alphabet. X-Stream does not use intermediate
files. Instead the graph is distributed in a ring of processors as
shown in Figure 1.

Figure 1: The X-Stream architecture

The system has p processors plus an I/O processor. The I/O
processor sends the input stream to the first processor and re-
lays information, such as query responses, to the operator from
the last processor. Processor pi has si bytes of local memory,
though for this paper, we simplify, assuming all processors
have the same memory size s. We denote the total memory
across all p processors as S. We assume p � s since even
on massively-parallel machines, each processor has at least
megabytes and usually gigabytes or more of local memory.
Each processor has a rank determined by its place in the ring.
The processor that receives the stream input from the I/O pro-
cessor has rank 0, and is called the head. The last proces-

sor has rank p − 1, and is called the tail. If a processor has
rank r, then the processors with ranks 0, 1, . . . , r − 1 are up-
stream with respect to processor r and processors with ranks
r+ 1, . . . , p− 1 are downstream. Processors have unique IDs
and addresses. When we refer to processor Pi, we mean the
processor with rank i. Processors can reconfigure the ring,
changing rank if necessary. This is necessary for our con-
nected components algorithm. The input stream and the op-
erator always interface to the I/O processor, which does not
change roles.

As Figure 1 illustrates, X-Stream looks like an “unrolling”
of the W-Stream model, with each pass represented by a pro-
cessor. Indeed, the W-Stream algorithm for a finite stream will
simply “fill-and-spill” from one processor to the next, with the
last processor finally emitting the component labels. There
is a link for feedback communication from the last processor
to the I/O processor, which is necessary for maintaining data
structures for an infinite stream with bulk deletions.

We model the communication as synchronous. It’s possible
to implement X-Stream algorithms in an asynchronous envi-
ronment, and in fact we do. That is also likely to be more
efficient. However, it is simpler to think of all processors com-
municating to the processor immediately downstream and re-
ceiving information from the processor immediately upstream
at the same time. We assume messages hold a constant number
of elements, such as a constant number of node names. Mes-
sages need not all be the same size, but they must obey a fixed
upper bound. As a helpful mental image, we think of each
message as fitting into a “basket.” In an asynchronous imple-
mentation, messages or baskets will travel at various rates, but
we always process them in order so the data structures and an-
swers match those of a synchronous implementation. We have
found the synchronous simplification useful for designing al-
gorithms.

The input stream must not fully consume the bandwidth be-
tween processors. The processors must communicate to main-
tain the graph data structure and answer queries. We assume
that the stream input rate (edges and queries) is only 1/kth the
maximum bandwidth around the ring, where k is the band-
width expansion parameter. As shown in Figure 1, a block
of k baskets moves between processors on the ring each tick.
Two black baskets are reserved for the input stream (see Sec-
tion 4.1 for further explanation). Algorithms can use the re-
maining k − 2 white baskets for maintaining data structures
and answering queries with non-constant-sized output. We re-
quire k ≥ 3, since the algorithm requires at least one bas-
ket for processors to communicate with each other outside the
stream. The I/O processor is the only processor with multi-
ple input and output channels. Its only job is to take at most
k−1 baskets of information on the feedback link from the tail,
output any information meant for the operator, and bundle the
remaining baskets of feedback information plus the 1 basket of
input from the stream into a size-k block it sends to the head.

There are several theoretical ways to measure performance
of an X-Stream algorithm: 1) k, the bandwidth expansion pa-
rameter. 2) The time required to process a message. 3) The
amount of space used per node or edge, for a graph algorithm.
4) The amount of memory guaranteed in use when an algo-
rithm fails for lack of storage anywhere in the system. 5) Time
to stabilize after a bulk edge removal. 6) Query reponse la-
tency, which must always be at least p time steps. A good

algorithm should not fail unless Ω(S) space is holding rele-
vant data. In this case, the constant in the Ω term can also be a
relevant measure.

All of these measures can also be evaluated experimentally
and in practice. Practitioners can also compare algorithms
based on streaming rate, that is, how many stream elements
the algorithms can process per second.

4. ALGORITHM OVERVIEW
This section contains a high-level description of our X-Stream

algorithm for maintaining the connected components of a stream-
ing infinite graph. There are numerous details necessary for
correctness which we must omit due to space restrictions. We
introduce notation and terms as needed since many would be
difficult to understand out of context. We use the terms “node”
and “vertex” interchangeably.

X-stream has three major modes: Normal: Not in one of
the other two modes. Aging: between the start of an aging
operation and the restoration of data structures, when the sys-
tem emits a token re-enabling queries. Emptying: A single
processor must delegate responsibility for (that is, send down-
stream) all of its data, so it can become the new tail. This is
necessary in theory for our algorithm to maintain components
on an infinite stream with a finite number of processors, but
we haven’t needed it in practice.

In our algorithm, each edge is stored in exactly one proces-
sor1, and processors know only the nodes that are endpoints of
the edges they store. Each edge is stored in a constant number
of data structures. Thus it is easier to think of each processor
as defining storage notions such as “full” based on number of
edges rather than bytes 2.

The graph is stored in a nested manner from rank 0 to p,
similar to passes in the W-stream algorithm. Each processor
holds local components, which appear as if contracted to a
single node from the perspective of the downstream proces-
sors. When an edge arrives at a processor, we call its endpoint
nodes (whether real nodes or contracted subgraphs that look
like nodes) building blocks (BB). A building block containing
exactly one node is called primitive.

A processor joins building blocks into a local component
representing a higher-level contraction with respect to the full
graph. The contracted view of a local component becomes a
building block for a downstream processor. From the point of
view of a single vertex, this looks like “nesting dolls,” where
the connected subgraph to which it belongs is progressively
included in larger connected subgraphs. For example, in Fig-
ure 2, the primitive vertices gathered into LCX in an upstream
processor are included in LC Z for processor P2, which is in
turn part of LC C in processor P3.

The distinction between a building block and a local com-
ponent is largely one of perspective. Each processor accepts
building blocks as input. It creates new local components
(LCs) from building blocks and connecting edges. Each such
subgraph is created once as a local component, sent as output,
and then consumed as input by exactly one processor, where
the same (sub)component, now contracted, is considered a BB.

1An edge can be transiently stored by two processors during
aging, but that is only for at most p timesteps
2We assume storage for node names is bounded. Techni-
cally, this requires preprocessing the stream, maintaining node
names in a hash table, perhaps over many processors.

LCs (or BBs depending on context) are named with the pro-
cessor that created them and a serial number.

When a local component is contracted to form a BB for a
downstream processor, its substructure is largely hidden from
the processor P that consumes it. The only vertices a pro-
cessor knows are the endpoints of the edges it stores, since
knowlege of the endpoints is part of the knowledge about the
edge. For example, in Figure 2, vertex v1 is inside BB A for
P3, but since P3 has no edge with endpoint v1, it does not
know about it. Other than the edge endpoints in a BB, the only
information P has about the BB is a count of the total number
of primitive vertices in the subgraph represented by the BB.
This is fundamental to the model of a set of distributed, fixed-
sized memories. If the BB carried the names of all the vertices
in the subgraph it represents, without holding edges against
which to amortize their storage, we would no longer have a
constant space bound per edge. Furthermore, for a connected
graph, the processor that creates the component that represents
the whole graph would have to know all the nodes. The node
(BB) information also couldn’t be sent in a single message.

4.1 Processing edges in normal mode
When the algorithm begins, processorP0 accepts edges which

arrive as pairs of nodes, each in a primitive building block,
and maintains connected components with a union-find data
structure. Each edge that starts a new component or joins
two previously-separate components is a spanning tree edge.
That is, these edges form a spanning tree of each component
found so far. A new edge that falls within a component (both
endpoints in the same component) would be dropped by the
W-Stream algorithm. However, the X-stream algorithm must
store it, because any edge may be critical for correct connec-
tivity after aging. We call such edges non-tree edges. If an
edge is a duplicate (already seen), the processor updates the
edge timestamp.

Processor P0 becomes full when it can store no more edges,
leaving a minimal working space for answering queries, pro-
cessing new edges, etc. When processor P0 becomes full, it
“seals off.” This is equivalent to the point in the W-Stream al-
gorithm when the processor starts generating the next stream.
At this point, P0’s local components (LCs) are determined.
They may change due to aging or emptying, but not in normal
operation. Processor P1 now becomes the filling processor.
There is always one filling processor, the only processor that
computes components with new edges that arrive on its input.
All processors upstream of the filling processor are sealed.

Suppose a new edge ([u,Bu], [v,Bv]) arrives at sealed P0,
where u and v are the vertices and Bu and Bv are (one-node)
primitive building blocks. Processor P0 relabels the edge end-
points, changing only the building block name. For example,
in processing the endpoint u, P0 checks if it is storing any
edges with endpoint u (that is, if it knows u). If so, it re-
places Bu with the name of the local component that contains
u. Otherwise, the building block name is unchanged.

If, after relabeling, the two endpoints are in different LCs,
then P0 sends the edge downstream where it will connect com-
ponents later. If the two endpoints have the same LC, then P0

keeps the edge as a non-tree edge if it has room. Before the
first aging operation, processor P0 will not have extra space,
since it was sealed for lack of space and no edges have aged.
However, later on, after aging, it may have gained some space.
If there is no space for this edge, then the processor labels the

Figure 2: An example of the nested data structure.

edge as a storage edge, marked as stored for P0 (using P0’s
ID). The edge is stored in a special data structure by the first
downstream processor that has room.

The filling processor, the first non-sealed processor in rank
order, creates connected components as described above, though
generally the building blocks may be non-primitive, represent-
ing multiple nodes. If an edge comes in labeled as storage, and
the processor is not full, it will store it, at least temporarily.
Suppose the filling processor is full, but some of the edges it
holds are storage for upstream processors. If another storage
edges comes in, it sends it downstream to the next processor
that has room. If the filling processor receives a real edge that
is either a spanning tree edge (linking two current LCs) or a
non-tree edge within one of its LCs, it keeps that new edge
and sends an arbitrary storage edge that it was holding down-
stream. We can think of storage edges as filler. They can be
stored anywhere. So whenever a processor has a chance to take
an edge it would like to store (spanning tree, non-tree), then it
keeps the better edge and jettisons a storage edge. The filling
processor seals only when full of real (non-storage) edges.

In general, after aging as the system is settling into a normal
(post-start-up) state, a storage edge will go downstream, per-
haps cycling around to P0 and continuing downstream until it
finds a processor that is not full. If a processor sends out an
edge for storage and that edge goes all the way around with-
out finding a place to stay, then the system is totally full. This
will not happen with a daemon, but could with insufficiently
attentive operators in a manual system.

We reserved two (black) baskets out of the K for the input
stream. If there were no such restriction and all k buckets
were full in a single tick arriving at the tail, that would either
starve the input stream or lead to unbounded back up on the tail
processor. We require two black baskets reserved for the input
stream because each stream edge may have to go all the way
around once, passing back through the I/O processor, before
settling into a processor as storage. In more detail, when a
stream edge e arrives, the I/O processor puts it into a black
basket. If the edge goes into storage it may cycle past the
head. In this case, it remains in the black basket as it travels
through the I/O processor and a new stream edge takes the
second black basket. Edge e will settle into a processor before
it reaches the processor that sent it into storage. Otherwise, the
system will fail from being totally full. Therefore, the black
basket e is using will be emptied by the second time through.

4.2 Queries
The system can handle a variety of connectivity-related queries

including: 1) Are vertices u and v in the same connected com-
ponent? 2) Return a component name and one vertex for all
the components with size less than ` (small components). 3)
Return all the vertices in small components (components with
at most ` vertices). 4) What are the neighbors of node u? 5)
Return a spanning tree of the component that contains vertex
u. The system can also handle maintainence queries such as
how many more edges the system can hold, or, equivalently,
percentage full, how many edges currently have a timestamp
older than t, etc.

In the list above, the first is an example of a constant-size
query. This query is answered with guaranteed latency, the
time to move from the head to the tail. When this query ar-
rives, each processor relabels the endpoints. If the endpoints
ever acquire the same LC name, then the answer is yes. Other-
wise, if the filling processor finds they have different LCs after
relabeling there, it returns no. The answer passes down to the
tail, which communicates the answer to the I/O processor.

Other queries, such as listing all the nodes in the small com-
ponents have non-constant-sized answers. Each component in
the answer will have no more than ` vertices, but ` may be a
function of the graph size and there could be an unbounded
number of such components. Here is how we answer this
query, illustrated in Figure 2 for ` = 6. The query passes
down the line of processors, so processors can prepare to an-
swer. Sealed processors have stable components, but the fill-
ing processor must remember small components so the query
is correct for the time of asking.

The head processor uses white baskets to send the informa-
tion about all its small components. If a processor has a small
component with non-primitive building blocks, it relabels the
BBs as the information goes by. For example, in Figure 2, pro-
cessor P3 has small LC C. It relabels the nodes in BBs A and
B as they stream by. If a processor has LCs that are not small,
but contain small BBs, then it removes the small BB informa-
tion as it goes by. For example, in Figure 2, the processor(s)
that create(s) BBs X and Y send their contents downstream,
since it is possible they are small components. Processor P2,
however, knows that BBs X and Y merge into a component
with too many nodes. So processor P2, does not relabel or
propagate the messages for the nodes in X or Y .

When the head processor has sent all its small-component
information, it passes a (query fulfillment) token to the next
processor, which sends out all the primitive BBs it holds that
are in small components, and so on. When the filling processor
receives the token and has sent out all the information involv-
ing primitive vertices it holds, then the filling processor issues

an “all done” token to the operator.
If an aging command arrives while a non-constant query

is still unfinished, the system does not finish answering the
query. The operator has the option to wait for the query before
aging if the system is not in a critical state. We assume there is
at most one active non-constant query in the system at a time.

4.3 Aging
When an aging command arrives, the message travels down-

stream to all processors. Each processor deletes edges that
have aged out, either by removing a few edges in each time
step or by multithreading deletions in a threadsafe way.

Connectivity queries are not allowed during aging. We will
discuss how to handle new incoming edges during aging at the
end of this section. If there has been any emptying since the
last aging, there is an initial storage repair step at the start of
aging (see Section 4.4).

As with the query fullfillment token, there is a token that
passes from the head to the tail during aging. We call it the
“snowplow,” since it leaves clean processors behind it. The
processor with the snowplow completes the removal of any
edges it has not removed while waiting for the snowplow to
arrive. It then goes through five stages to clean up after aging:
1) Resolve, 2) Recompute, 3) Recycle storage, 4) Release
unattached building blocks, and 5) Split broken BBs if neces-
sary. These phases are designed to repair the data structures
and restore the properties listed in Section 5.

The Resolve stage removes uncertainty caused by upstream
splits. Specifically, suppose a processor built an LC with a BB
that splits into q pieces due to aging. The processor knows
about several vertices inside the original BB: those with edges
that connected that BB into the LC. It does not know which
piece each vertex belongs to. For example, suppose in Fig-
ure 2, that BBA in P3 had more than 3 vertices inside and that
after aging, A split into two pieces. P3 does not know which
piece vertices v2 and v3 belong to. Processors that originally
created the broken BBs generally cannot tell the downstream
processors how to place vertices into the subpieces because it
may not know about all the vertices in the BB. For example,
in Figure 2, if LC C created in P3 were to split, it could not
tell a downstream processor where to place vertex v1. We say
that the split creates a purgatory. This is a data structure that
represents uncertainty about which child BB a vertex belongs
to. The splitting BB is relabeled to be a purgatory and ver-
tices are moved to new BBs (one BB per new piece) as the
processor learns where to put them. We call such moves the
resolution of vertices. Some vertices may already be resolved
when the snowplow arrives. For example, when a new edge
arrives during aging that involves a vertex in purgatory, the
relabeling process tells the processor which BB the vertex be-
longs to. Thus relabeling any vertex from the head resolves all
purgatories for that vertex along the chain of processors.

In this first stage of aging, the processor sends out resolution
requests for all the vertices in purgatory, one by one, or in
small batches. The request goes downstream to the tail, and
then goes back to the head along the feedback link. The head
then puts the vertex in an initial BB, either a primitive one if
the processor doesn’t know it, or the appropriate LC from the
head if it does know it. The request passes downstream with
each processor relabeling the component name as appropriate
until it arrives at the processor that requested the information,
resolving the vertex.

The processor then recomputes its connected components.
This is done in a threadsafe manner while handling the input
stream. We will describe the handling of new edges below.

After the processor has recomputed its connected compo-
nents, it asks for all its storage edges back. These storage
edges might reconnect pieces that have fallen apart or may
now be able to fit on that processor. This is also done with a
recycle token. The processor passes this token (labeled with
its ID) to its downstream neighbor. That processor then uses
white baskets to send out all the storage edges it’s holding for
the snowplow processor. Each recycling edge will go back
around to the head and arrive at the requesting processor. Cor-
rect implementation involves details such as edge replacement
if the snowplow becomes full and handshaking between pro-
cessors to maintain correct edge timestamps.

After all storage edges have recycled, the processor with the
snowplow may have building blocks it originally picked up
from upstream that are isolated. That is, no remaining edges
connect them to other BBs in the processor. It then releases
these BBs. To release a primitive BB (single vertex), the pro-
cessor sends a release message, saying which LC the vertex
used to belong to. There is at most one processor downstream
that consumed that LC as a BB. This processor recognizes the
LC name. If it knows the vertex (has an edge with it as end-
point), it creates a new primitive BB, removing the vertex from
its original BB. If it does not know the vertex, it reduces the
vertex count in the BB by one, relabels the BB, and sends the
release message downstream. If the release message goes all
the way past the filling processor, then the vertex is forgotten;
there are no edges adjacent to it left in the system. We must
omit a discussion of releasing non-primitive BBs and how re-
leasing interacts with storage due to space restrictions.

Finally, if an LC has broken into multiple pieces, the pro-
cessor announces a split of the LC. It tells the processor that
consumed this LC how many pieces it has split into. This is
the mechanism that creates the purgatories described above.
Each of these pieces is labeled with a temporary piece name
acquired during recomputation. Whenever an edge touches
one of these pieces during relabeling (e.g for a new edge or
a recycled edge), we give the piece a real LC name, which it
uses consistently from then on. Any piece that is not named by
the end of aging is a terminal LC, the last LC for the current
component.

After splitting, the processor passes the snowplow down-
stream. The filling processor buffers new edges during its time
as the snowplow processor, starting with the recomputation
phase. When the filling processor finishes, including process-
ing any buffered edges, the snowplow token becomes an “end
of aging” message to the operator. This signals it is now safe
to ask queries.

When a new edge arrives during aging, processors still re-
label. If the snowplow has passed, the processor treats new
edges as it would in normal mode. If the snowplow has not
arrived yet, the processor optimistically assumes its LCs are
intact and labels and acts according to the old structure. These
will be repaired, if necessary, as the snowplow advances. If
a new edge arrives while the processor has the snowplow, the
action depends upon the stage of cleaning. Before recompu-
tation is complete, it acts as if the snowplow hadn’t arrived.
This includes keeping any edges that might be non-tree edges
in the old structure. After recomputation but before splitting,

if the edge is going downstream, it still relabels according to
the old LCs, even if the LC may split. Any edge that “belongs”
to it (with endpoints inside an old LC) is treated as if it were
being recycled. That is, it can reconnect components that fell
apart, etc. After a split is announced, new edges are relabeled
according to the split structure, with the processor naming the
pieces as necessary. If a new edge comes in that involves a
component set to split but the split has not been announced,
the processor can prepend the split information in front of the
edge information in the same basket. The split information
travels only to the processor that consumed the old LC.

4.4 Emptying
It’s possible after aging that the system has reasonable room

for more edges, but the last open processor has started to fill.
For the algorithm to continue, there has to be another empty
processor that the filling processor can spill into when it no
longer has free space to accept any tree or non-tree edge that
arrives. If the head processor holds few enough edges (where
this is defined below) it can empty, sending its edges to other
processors, and become the new tail. If the head processsor is
not empty enough, we find one that is, empty it, and splice it
into the ring as the new tail. If there is no such processor, then
the algorithm is using a sufficiently large constant fraction of
all memory and fails due to inadequate application of aging.
The emptying process requires arbitrary network connectivity
between the processors and is more complicated, but does not
affect the correctness of the connected components algorithm.

The full emptying procedure is beyond the scope of this
paper, but we now give the basic idea. Suppose the empty-
ing processor is the head, which will be the case as long as it
has sufficiently few non-storage edges. Each LC is composed
completely of primitive vertices. The processor will send the
contents of its LCs one by one downstream. The processor
that consumed each LC as a BB will accept responsibility for
its edges. If this is a terminal LC, the filling processor ac-
cepts it. The BB, originally a black box, is refined, giving it
additional internal structure. This is the only way a processor
can gain a tree edge when it is not filling and not reconnecting
during aging. Refinements are usually simple, but in rare cases
can lead to significant complication.

The emptying procedure guarantees that the empyting pro-
cessor will finish emptying before the filling processor fills un-
less the memory is asymptotically full. Specifically, it will
succeed unless at least ((k − 2)/(k − 1))(S − ε) memory is
full, for a small constant ε > 0 (k is the X-stream bandwidth
expansion parameter). For the minimum value k = 3, this
mean just under half the memory is full. For larger values of
k, the usage fraction improves. As we mentioned before, if
the algorithm fails for memory outside of emptying, then the
memory is completely full.

THEOREM 1. If the connected components algorithm fails
for space during emptying because the emptying processor
does not empty before the filling processor fills, then at least
k−2
k−1

(S− ε) of the memory is full, where S is the total memory
across all processors, ps.

PROOF. Omitted for space.
Emptying and aging can co-exist. Aging-related edge feed-

backs halt temporarily, freeing white baskets for the emptying
processor. Since there is no required time to recover from ag-
ing, this delay is acceptable.

If the system is not aging, it must handle queries during
emptying. The main complication is a primitive building block
traveling downstream during a refinement when a query ar-
rives. But since the query is following the traveling node,
the node will have settled in some processor before the query
catches it.

Because there is some reorganization of responsibility among
the processors, some of the edges in storage may now be incor-
rectly labeled. That is, the processor that placed it in storage
may now no longer have an LC structure for which that edge
is a non-tree edge. This is true for all storage for the empty-
ing processor. It could also be true for for some LCs in other
processors, if the refinement cascaded downstream. Note this
can only happen if the receiving processor is completely full
of spanning tree edges. An easy strategy is to consider stor-
age suspect for all processors that sent refinements. There are
heuristic ways to reduce the number of suspect storage edges
such as marking storage with LC and internal BB marks for the
endpoint to better identify only those that must be repaired.

We repair storage edges by recycling them. When the stor-
age edge goes back to the head and pretends to be new, it is
relabeled and eventually handled by the correct downstream
processor. If there has been any emptying since the last aging
and there is a new aging command, the system must repair all
storage before starting the snowplow protocol.

5. CORRECTNESS
We sketch an argument that the connected components al-

gorithm is correct. We sketch correctness for the query “Are
vertices u and v connected?” Similar arguments prove the cor-
rectness of other related queries. The following properties of
the distributed data structure hold when queries are enabled:

Property 1 : Each LC is a connected set of at least 2 BBs.

Property 2 : Every vertex in the system appears in exactly
one primitive building block.

Property 3 : Each non-primitive building block is consumed
by at most one LC.

Property 4 : Storage edges do not affect the connectivity struc-
ture.

These properties suffice for correct query responses. Proofs
are omitted for space.

LEMMA 2. Properties 1-4 hold whenever querying is en-
abled.

THEOREM 3. There exists a processor P that gives ver-
tices u and v the same label if and only if the vertices are
in the same connected component.

THEOREM 4. The amortized bound for union-find can be
made deterministic for this algorithm.

6. EXPERIMENTS
We have developed a prototype implementation of our al-

gorithm in C++ using the phish streaming library [10,11]. We
handle normal operation as described in Section 4.1 and ag-
ing as abstracted in Section 4.3. We have not yet had a need
to implement emptying. Although phish can be run on huge

0.0 0.5 1.0 1.5 2.0
Edges 1e7

104

105

106

107

E
d
g
e
s

p
e
r

se
co

n
d

16 million R-MAT edges

Mean: 3.5e+05 edges/s

10 million real edges Mean: 1.1e+06 edges/s

normal deletion recomputation recycling release post after

Figure 3: X-stream prototype results: a real stream of 10 million edges, and a stream of 16 million R-MAT edges

distributed-memory supercomputers, we ran our preliminary
experiments on a single node shared memory Linux worksta-
tion with 50 GB of RAM and 16 Intel Xeon cores clocked at
3.47GHz.

Plimpton et al. [9] give phish benchmarks indicating the
maximum sustainable communications throughput we can ex-
pect on this platform is roughly 400 million bytes per second.

We use k = 3 for our X-stream expansion factor. We pack-
age 20 of these 3-tuples into a message bundle that has size
roughly 2K. However, we note that the algorithm will process
these edges in sequence, so queries are correctly answered at
the granularity of a single edge.

Figure 3 depicts X-stream runs on two streams: (a) ten mil-
lion edges generated from a real stream of Sandia data, and
(b) the 16 million edges of an R-MAT graph with 221 vertices,
edge factor 8, and SSCA-2 parameters (0.45, 0.15, 0.15, 0.25).
The real stream features a significant proportion of repeated
edges, which speeds the computation and limits the amount of
recycling necessary. In both cases, every tenth vertex pair is
interpreted as a connectivity query instead of a new edge.

Stream (a) consists of 30 million baskets coming from the
I/O processor. An aging event is triggered at basket 11,000,000,
but only roughly 8000 edges need to be recycled. Furthermore,
the graph induced by these edges has about 189,000 unique
edges. In aggregate the 10 million edges are processed at an
aggregate rate of roughly 1.1 million edges per second. This
translates to a throughput of roughly 100 million bytes per sec-
ond. The figure shows the instantaneous edge processing rates
throughout the computation.

Stream (b) contains no repeated edges and requires the re-
cycling of almost 4 million edges during aging. The aggregate
edge processing rate of roughly 350,000 edges per second.

The code will soon be available in the phish library. Down-
load phish and view documentation at http://www.sandia.
gov/~sjplimp/phish.html.

7. CONCLUSION
The system will generally work with heterogeneous sys-

tems. Most operations are effectively constant (e.g. using hash
tables), or can be done lazily using multiple threads. For lazy
data structure updates or aging computations, the amount of
work can be chosen to balance the amount of work for each
message across all processors. So processors that have larger
data structures may do effectively slightly slower lazy work,
requiring more time during aging. Theorem 1 holds when S is
the sum of non-uniform space amounts over all processors.

8. REFERENCES
[1] G. Aggarwal, M. Datar, S. Rajagopalan, and M. Ruhl.

On the streaming model augmented with a sorting
primitive. In Proceedings of the 45th Annual IEEE
Symposium on Foundations of Computer Science
(FOCS 2004), 2004.

[2] D. Bader. Personal communication, 2012.
[3] C. Demetrescu, I. Finocchi, and A. Ribichini. Trading

off space for passes in graph streaming problems. ACM
Transactions on Algorithms, 6(1):6:1–6:17, Dec. 2009.

[4] D. Ediger, E. J. Riedy, D. A. Bader, and H. Meyerhenke.
Tracking structure of streaming social networks. In 5th
Workshop on Multithreaded Architectures and
Applications (MTAAP), May 2011.

[5] M. R. Henzinger, P. Raghavan, and S. Rajagopalan.
Computing on data streams. In J. M. Abello and
J. Vitter, editors, External Memory Algorithms, pages
107–118. DIMACS series in Discrete Mathematics and
Theoretical Computer Science, Volume 50, 1999.

[6] I. Munro and M. Paterson. Selection and sorting with
limited storage. Theoretical Computer Science,
12:315–323, 1980.

[7] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A.
Ang. Introducing the graph 500. In Cray Users’ Group
(CUG), May 2010. Current Graph 500 information at
http://www.graph500.org/.

[8] S. Muthukrishnan. Data streams: Algorithms and
applications. http://www.cs.rutgers.edu/
~muthu/stream-1-1.ps, 2012. [Online survey
apparently started in 2004; accessed October 26, 2012].

[9] S. Plimpton, B. Benner, J. Berry, K. Chiang, J. Doak,
J. Ingram, P. Kegelmeyer, S. Mitchell, C. Phillips, T. M.
Shead, and B. Wylie. Streaming data analysis for
cybersecurity. Technical Report SAND2013-0366,
Sandia National Laboratories, Albuquerque, NM, 2013.

[10] S. Plimpton and T. Shead. Phish library. http:
//www.sandia.gov/~sjplimp/phish.html,
2013. [accessed February 13, 2013].

[11] S. Plimpton and T. Shead. Streaming data analytics via
message passing with application to graph algorithms,
2013. submitted.

[12] C. Seshadhri, A. Pinar, and T. Kolda. An in-depth study
of stochastic Kronecker graphs. In ICDM’11:
Proceedings of the 2011 IEEE International Conference
on Data Mining, Dec. 2011. To appear in JACM.

