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ABSTRACT

Forecasting the occupancy of buildings can lead to signif-
icant improvement of smart heating and cooling systems.
Using a sensor network of simple passive infrared motion
sensors densely placed throughout a building, we perform
data mining to forecast occupancy a short time (i.e., up
to 60 minutes) into the future. Our approach is to train a
set of standard forecasting models to our time series data.
Each model then forecasts occupancy a various horizons into
the future. We combine these forecasts using a modified
Bayesian combined forecasting approach. The method is
demonstrated on two large building occupancy datasets, and
shows promising results for forecasting horizons of up to 60
minutes. Because the two datasets have such different occu-
pancy profiles, we compare our algorithms on each dataset
to evaluate the performance of the forecasting algorithm for
the different conditions.

1. INTRODUCTION

According to the U.S. Department of Energy, energy for
heating and cooling accounts for approximately 35 - 45%
[4] of the total expenditure within a building. With such a
large investment of energy being used to regulate the tem-
perature of a building, any possible areas of improvement in
this area are heavily sought after. Knowledge of occupancy
of people within a building is an important component to
intelligent heating, ventilating and air conditioning (HVAC)
systems. In particular, if occupancy can be accurately pre-
dicted, HVAC systems can potentially be controlled to op-
erate more efficiently. For example, an HVAC system can
pre-heat or pre-cool a room just prior to its use, instead of
always keeping the room at a set temperature. Or, an HVAC
system could take advantage of times when electricity cost
is lower, to chill a cold water storage tank, in anticipation
of needed cooling.

Occupancy data is difficult to acquire and accurate ground
truth values are rare as most buildings do not have sufficient
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infrastructure to properly sense people accurately through-
out the building. One approach is to use simulated models
of occupancy [15, 5]. However, agent based models also tend
not to scale well to large buildings where the large numbers
of agents, rooms and interactions lead to non-trivial solu-
tions. Thus, it is preferable to estimate occupancy from
sensor data rather than simulated data.

Estimating building occupancy from sensor data is an excel-
lent application for data mining. Systems have been devel-
oped that use a combination of simple sensors and wireless
motes. These systems generate a very large amount of data,
and thus offer a challenge and opportunity for data mining
algorithms. Agarwal, et. al [1] created motes using a com-
bination of IR sensors and reed switches placed on doors to
determine the likelihood that a room is occupied. The focus
was not on estimating the number of occupants, but instead
if the room was occupied at all. Mamidi [13] and the Univer-
sity of Southern California have developed a building-level
energy management system using a combination of motion
detectors and environmental sensors to estimate the occu-
pancy of rooms with multiple individuals present. Ground
truth was collected and used as the basis for target values
which were then run through a machine learning algorithm
to accurately estimate occupancy. In both of these instances
the researchers were more concerned with occupancy estima-
tion instead of forecasting.

As mentioned previously, there is an important need for
forecasting building occupancy, and not just estimating the
current occupancy. However, very little work has been pub-
lished to date on forecasting building occupancy, by learning
models that have been derived from sensor data directly.
There is a body of related work, on forecasting vehicular
traffic, using models that have been derived from roadway
sensors. This work and the models used will be described in
briefly in Section 4.

In this work, our occupancy estimates and forecasts are de-
rived from a set of infrared sensors that are densely placed
around a building. The data is collected from two different
types of buildings. The first data set is collected from an
office building. The other data set is collected from a class-
room and research building. We focus on short-term and
medium-term forecasts; i.e., between 10 minutes to 2 hours
into the future. Although building control systems can ac-
cept forecasts up to one day into the future [12], we have
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(a) Colorado School of Mines Brown building second floor.
Sensor nodes (shown as dark circles) are mounted in the ceil-

ing of hallways and rooms.

(b) MERL research lab 7th and 8th floor. Each numbered
square represents a section of hallway covered by a motion
detector.

Figure 1: Location of IR sensors for building datasets.

found that for forecasts more than a couple of hours into
the future it is better to instead rely on historic averages.

The contributions of this paper are as follows: (1) Our work
is one of the first approaches to forecasting building occu-
pancy, as opposed to estimating the current occupancy. (2)
We have developed a modified Bayesian combined forecaster
(BCF), that is capable of performing short and medium-
term forecasts. (3) We demonstrate the efficacy of the mod-
ified BCF on actual building sensor datasets, and provide
insights into what forecasting algorithms will perform best
under the conditions present in these buildings.

The remainder of the paper is laid out as follows: Section
2 introduces the datasets and gives a brief description of
the data collection method and the types of buildings from
which the data was generated. Section 3 discusses the details
of Bayesian combined forecasting along with our modifica-
tions for improvement. In Section 4 we briefly describe the
component models used to train our Bayesian combined fore-
caster. Section 5 gives a discussion of our results. Finally
Section 6 contains our conclusions.

2. OCCUPANCY DATA

Our datasets come from two sources. The first is a com-
bined research and office building from Mitsubishi’s Elec-
tronic Research Lab (MERL) dataset [18]. The second is
a classroom and office building from the Colorado School
of Mines (CSMBB) [7]. Both datasets use passive infrared
sensors (Figure 2) to estimate motion in an area. Due to
the nature of IR sensors, we are only able to detect motion
instead of actual occupancy; for example, a group of three
people would occur as one reading in both systems.

Despite this drawback, real occupancy data would likely be
similar to our data, but with higher variance and higher
means. As the range of occupancy estimates in our two
datasets are quite different and we are able to achieve accu-
rate estimates in both scenarios, we do not foresee problems
when applying our forecasting techniques to more accurate
estimated values. We thus believe this data sufficient to test
our occupancy estimation algorithms.

2.1 Colorado School of Mines Dataset

The Colorado School of Mines dataset is a collection of 50
passive infrared sensors mounted on the ceiling of the second
floor of a class and office room building. The density of the
sensor placement depends on the location within the build-
ing. Outside the auditorium in the lower right of Figure la
is a dense collection of sensors placed approximately every
few meters. Throughout the rest of the building the sensors
are placed roughly every 5 meters. Data was collected for
one academic school year from 2008 to 2009 and there are
more than 23 million sensor readings. To acquire readings,
the sensors were polled every second and recorded data if
motion was detected.

Figure 2: Passive infrared motion detector

This dataset is much different than the MERL dataset as
classes typically provide activity on a rigid schedule during
the day. Also as students have exams and projects, late
night motion is sporadic based on the time of year. The
counts of sensor activations have been aggregated over every
10 minutes. Despite occasional late night motion during
exam time, most nights have no significant motion. For this
reason we focus on data between 7:00am and 7:00pm daily.
A plot of the average activations of all Wednesdays for a
single sensor along with a range of one standard deviation
is given in Figure 3a. The defined peaks in the dataset
correlate to class start and end times when most students
will be in the hallways of the building.

2.2 MERL Dataset

The Mitsubishi Electronic Research Labs dataset is derived
from a collection of over 200 passive infrared sensors place
densely throughout the 7th and 8th floor of a research office
building. The sensors are placed roughly two meters apart
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Figure 3: Average sensor activations for a specific sensor on Wednesdays with one standard deviation range.

on the ceilings, creating a dense sensing area with little non-
sensed space. Readings are taken at the millisecond level,
but due to the sensors’ settling times the inter-detection time
of motion is approximately 1.5 seconds.

The data was collected from March 2006 through March
2008 and there are roughly 53 million sensor readings. This
building is similar to most office buildings with a number of
personal offices along with labs and conference rooms. Em-
ployees have roughly set schedules and holidays are observed
as normal.

The counts of sensor activations have been aggregated every
10 minutes. Because of the lack of significant motion in the
night, we look only at activations that occur between 6:00am
and 7:00pm daily. A plot of the average activations of all
Wednesdays for a single sensor along with a range of one
standard deviation is given in Figure 3b.

Peak motion unsurprisingly occurs during the middle of the
day corresponding to lunch time. There is another small
peak of motion near the start of the day corresponding to
people entering. Near the end of the day, instead of a peak
there is a region corresponding to high variance. This seems
to imply that while people enter at roughly the same time,
there is a significant variance on when people leave the build-
ing.

3. BAYESIAN COMBINED FORECASTING

The BCF approach [16] is one of several types of methods
which attempt to combine other forecasting models for time
series. We selected this forecasting method over other mul-
tiple model forecasting methods (such as mixture of experts
or ensembles of neural networks) due to its modularity and
strong statistical backing. BCF is modular in that it al-
lows for the component forecasting models to come from
any trained forecaster with a well defined distribution of the
forecaster’s mis-forecasts. Its statistical backing comes from
its direct derivation from Bayes’ rule.

This section derives the BCF approach for readers unfamil-

iar with it and then describes some modifications of the ap-
proach which improves its performance for our application.

3.1 Notation

We define the time series dataset used in these models as
{Tt(m }. In our application the data used for these models
comes from a set of M binary infrared sensors. Each T{" is
a 10 minute aggregate of the readings from sensor m reading
at time block ¢.

Forecasts for a given model k from the set of all models K
are represented by

TET = f(Thy ., Ti; 0r). (1)

Thus the forecast of Ti+1 is a function of all past data and
some trained parameterization 6 for that model.

In this work we need to forecast more than one time step into
the future. Future forecasts are performed through iterative
one step ahead forecasts. Also for this work we forecast a
model for each individual sensor and for convenience drop
the m from our forecasting notation. An example of a fore-
cast two time steps ahead of current time ¢ is given by

TFo = f(Tis1, Toy ooy Ti; Ok). (2)

Such a forecast is simply the forecast for one time step into
the future but now with the forecasted value of Tt+1 used
as the most recent datapoint to forecast T;12. Forecasting
in this nature allows for forecasts any number of time steps
into the future.

3.2 Bayesian Combined Forecasting Derivation
To derive BCF we first assume the existence of K models.
From these K models, we want to create a probability distri-
bution on a new random variable z that is used to determine
if model k is the correct model from which to forecast at time
t. To do this we use the notation of Petridis [16] and define
pF as follows

pf :p(Z:k}|Tt7...,T1). (3)

From here we apply Bayes rule and get

pk _ p(Tt‘Z = ]ﬂ,Tt71, ...,Tl) ~p(z = k|Tt71, ...,Tl)
k (T, ..., T1) '

(4)

Notice that p(z = k|T;—1, ..., T1) = pf_;. Thus we can create
a recursive estimation based on prior p¥.

With recursive values for p§ and replacing p(T%, ..., T1) with
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Figure 4: Standard deviation of support vector machine residuals for all Wednesdays in MERL dataset. Time index represents

10 minute intervals from 6:00am to 7:00pm.

a conditional probability on z we get
k __ p(Tt|Z:k,Tt_1,...
t = 5 —.

S p(Tilz=4,Ti 1, ..., T1) - pl_,

()

We use the empirically observed forecasting error for each
model to estimate p(T:|z = k, Ti—1, ..., T1). The forecasting
error for a given model at time ¢ is

ef = Ttk - Tt. (6)

We can use these forecasting errors to estimate a probability
distribution for each model on the random variable e¥. This
is typically modeled as a white noise zero mean Gaussian
process. For our work, we represent this as a distribution
of error terms with some parameterization wy. Thus for
each model the probability error distribution function on
the model error random variable is given by g(ef; ws).

The final equation for the posterior probability of a given
model k is

Py q(Ty — TF;wi)

) = = 1
Zj:l pioy (T = T 5 w;5)

Pl = plz = K[Th, . NG

An example of these changing normalized posterior proba-
bilities for a small section of the MERL dataset is shown in
Figure 5.

Forecasting using BCF is done by either computing a weighted
forecast § time steps into the future for each forecasting
model or by simply selecting the model with the highest
likelihood. For this paper we forecast using a weighted fore-
cast of all models. The forecasting equation is

K
ALL k pk
= E Dt 'Tt+5~
k=1

Tt+5

(8)

3.3 BCF Modifications

In this subsection we discuss a number of modifications to
maximize the effectiveness of BCF for our data. We refer
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Figure 5: Normalized posterior probabilities of component
models on a section of MERL dataset.

to the modified BCF algorithm as Bayesian Combined Fore-
casting for multiple Time Steps or BCF-TS for short. These
modifications enable BCF to work with forecasting horizons
greater than one in the future.

3.3.1 Forecast § time steps into the future

Traditional implementations of BCF in other domains [16,
20] are interested only in 1 time step ahead forecasts. For
our work we require forecasts that are § steps ahead which
requires a small change to the BCF method. Instead of
generating a model’s error distribution from

efc = Ttk — Tt = f(Tt,thl...,Tl;ek) — Tt. (9)

The error distribution is instead generated from

ek = f(Teyoos To—si1, Te—sy ooy T1; 01) — T (10)
The reason for this change is due to the assumption that our
error distribution is an accurate representation forecasting
accuracy. The forecasting error distribution for models at
1 time step into the future is not necessarily the same as
models at § time steps. Thus we compute a different error
distribution for each forecast time step.



3.3.2  Improving model error distributions

Despite other implementations of BCF using fixed error dis-
tributions, our data has clear daily trends. For some of our
models, the forecasted residuals follow these same trends.
See Figure 4 for an example of how the forecasting error
distribution for a trained support vector regression model
on the MERL dataset depends on the time and on the fore-
casting horizon.

To represent a more realistic error distribution instead of
a fixed white noise Gaussian that is commonly used in the
literature, we fit a Gaussian for each 10 minute slice of a
given day. The data from the MERL dataset was used from
6:00am to 7:00pm. The thirteen hours of data used per day
represent 78 time slices. For example taking the data for
each time slice for each Wednesday results in 78 Gaussian
error distributions for each forecasting horizon. These Gaus-
sians are computed from a validation set representing 20%
of our data. It is from this set of models error distributions
that we compute BCF.

As a possible improvement to this set of error distributions,
we note that using a generalized autoregressive conditional
heteroskedastic (GARCH) model [2] or some other appro-
priate model to forecast future variance based on local and
historic changes in variance would likely outperform our time
based average Gaussian models. GARCH models are similar
to seasonal autoregressive moving average models which we
use as one of our component forecasting models.

3.3.3 Model selection thresholding

Diebold [3] cautions against the use of forecasting using a
Bayesian combination of models in all cases. Diebold points
out that under certain situations a convex combination of
forecasts for models may not be optimal, and cases exist
where taking negative likelihood weighting may be optimal.
These conditions are likely to arise during instances where
the data may not be accurately described by any of the
forecasting models.

Furthermore when such cases where no model is able to pro-
vide an accurate forecast, then it is often the case that fore-
casts come from the worst model.

To combat this case, we have implemented a model selection
threshold hjg. If the likelihood of all component models is
below hi, then we forecast from only the model which is
historically the most accurate based on our validation set.

The threshold is different for each model, and should depend
on the error distribution of the model. In practice we have
found that 20 serves as a good threshold. Basing the thresh-
old on o is useful as it provides a threshold value which does
not depend on ef. For a zero mean Gaussian the probability

of the 20 threshold is
1 5

——e
oV2r

Because the Bayesian combined forecasting approach is it-
erative, it is possible that a long section of forecasts that in-
dicate one model correct or incorrect can lead to likelihood
underflow. Due to this problem we adjust our normalized
likelihoods so that no model may reach a value below 0.001.

p(20) = (11)

This empirically chosen value is low enough to not have a
great impact on forecasts while still being high enough to
allow model likelihoods to change quickly.

4. FORECASTING MODELS

As the basis for our BCF we select from some of the most
common models used for time series forecasting. This sec-
tion gives a brief introduction to each of these forecasting
models.

4.1 Seasonal ARIMA model

The Auto Regressive Moving Average Model (ARMA) or
derivations on its form (Auto Regressive Integrated Moving
Average, Seasonal Auto Regressive Moving Average, etc)
have been used in numerous forecasting applications from
economics to vehicle traffic systems. While we have been
unable to find ARMA based models used on building oc-
cupancy data directly, we have found it used to forecast
building energy usage and vehicle occupancy [17, 8, 14]. Its
forecasting accuracy is quite strong and it can serve as a
strong baseline of comparison for a forecasting problem.

Due to that fact that our building data has periodic trends
and a non stationary mean, a seasonal ARIMA model is best
suited to fit our data from the class of ARMA models. The
seasonal ARIMA model is defined as:

$p(B)®y(B*)VIVIT, = 0,(B)Oq(B*)er (12)

where {7} is our observed time series and {e;} represents
an unobserved white noise series (e; ~ N(0,0?) )the values
of which are computed through model training and are not
known a priori. B is the backshift operator which is a func-
tion that allows access to older time readings. For example
BT, = Ti_1 and B°T, = Ti_5. VP is the seasonal difference
operator (VPT; = (1—B*)PT;)and ¢, ®, 6, © are trainable
parameters.

Seasonal ARIMA models are notated as
ARIMA(p,d, q)(P, D,Q)s (13)

where p is the number of autoregressive terms, d is the num-
ber of differences and ¢ is the number of moving average
terms. P, D, and @ all correspond to the seasonal equiva-
lents of p, d, and q. The parameter s is the seasonality of
the model. For a full discussion of seasonal ARIMA models
see Box and Jenkins [2].

Finding the correct values of p, d, q, P, D, Q, s is traditionally
a hard problem. To fit our parameters we use a method
similar to Williams [17]. As a verification of our model, we
applied the LJung-Box test [11] on our set of residual data
for each model. This tests if any of the auto correlation
values on the residual dataset are significantly different from
0. To be valid, the LJung-Box test should return a value of
p > 0.05. Both residual sets passed: p = 0.9964 for MERL
and p = 0.1072 for CSMBB. Our final model parameters can
be seen in Table 1. Notice that the season is different for
each model due to a difference in window of time for each
day that we extracted data.

Forecasting from this model is performed by iteratively for-
ward feeding values of the model into itself. Since the set of



Table 1: The parameter values that were fit for MERL and
CSMBB datasets for a Seasonal ARIMA model

Dataset | p|d|q| P | D| Q]| s
MERL |O0[O|1|O0 | 1]|5]78
CSMBB [0 |1|1|0|1]|3]T72

residuals e from a properly trained seasonal ARIMA model
is described by a white noise Gaussian distribution N (0, o?),
we can take the expected value of the residual at time e¢+1 to
be 0. This leaves us with the following forecasting equation:

$p(B)2p(B*)VVITi1 = 04-1(B)Oq-1(B e (14)

4.2 Historic average

This model is simply the per day average of readings at
each time step. For certain types of data this model is has
been shown to be more accurate than seasonal ARIMA fore-
casting [14], specifically when the data has a strong historic
correlation. Average forecasts have the advantage of being
extremely computationally fast and having a forecast accu-
racy that does not depend on the forecasting horizon. This
result will be shown later.

4.3 Time delayed neural networks

Time delayed neural networks are a special subset of regres-
sion neural networks where the input data is a local history
of data from the time series. Commonly the output is a sin-
gle point forecast from that same time series at some point
t + 9 in the future. The form of our 1 hidden layer time
delayed neural network is:

J m
Tipr = o{> _ winhy [Zwa‘iTt—w + ij} +wo}  (15)

j=1 1=0

where ¢() is a linear activation function on the output layer
and () is the standard sigmoid function. A visual repre-
sentation of the node architecture of a time delayed neural
network is displayed in Figure 6.

Figure 6: Architecture of a time delayed neural network with
m + 1 inputs and J outputs [6].

Forecasting is performed by computing the output for a m+1
length window of time and then iteratively forecasting a set

of time steps in the future by using forecast data as inputs
into the next forecast.

The number of input nodes and hidden nodes for each dataset
is given in Table 2.

Table 2: Number of delayed input nodes and hidden nodes
for MERL and CSMBB datasets

Dataset | Delayed input nodes | Hidden nodes
MERL 15 8
CSMBB 12 8

4.4 Support Vector Regression

Support Vector Machine Regression (SVM) offers a powerful
way to forecast time series. It has been used in the past
successfully to forecast travel times for vehicle traffic [19].

As training SVM’s is not done in the same way as other time
series models, we first had to transform our dataset to a se-
ries of examples with a fixed window. For a fixed window of
size w, training input data is of the form {7y, Ty—1, ..., Tt—w+1}-
Target data is of the form Ty 1. Thus the training examples

which we provided to our SVM was {Tii1, [T, Tt—1, -y Tt—w+1] }-

To perform SVM training we used the popular libsvm pack-
age and as parameter selection is a notoriously difficult prob-
lem for SVM. We followed the guidelines as outlined by Hsu,
Chih-Chang and Lin, creators of the libsvim package [9]. We
first scaled the data by normalizing it between [0, 1]. Then
we searched for our best values of C, € and 7 using the root
mean squared error of the validation set a factor to deter-
mine performance of those parameters.

For both the MERL and CSMBB datasets we used a window
of 5. This happened to be the same window length used by
[19].

5. RESULTS

BCF and BCF-TS (BCF with our specific set of modifica-
tions) were trained and tested using all component models
described above. All of the models were trained on 60% of
the total datasets. Another 20% was used for model valida-
tion and the final 20% used for testing. All results shown
below are on the test set only. Figure 7 shows an sam-
ple section of test data from the MERL dataset along with
BCF-TS forecasts for horizons of 1 and 5. As expected as
the forecasting horizon increases the forecasts become less
accurate.

It is common for one model’s normalized posterior proba-
bility to be near one when that model is currently accu-
rate. Figure 8 shows as example of this behavior. From
time index 1 to 8, the SVM component model has a poste-
rior probability near 1.0 and as a result BCF-TS forecasts
nearly completely from this model. Then from time index 9
on the model’s posterior probability is lower and as a result
BCF-TS uses other model for its combined forecast.

Figure 9 shows the results of the root mean squared error
(RMSE) of forecasts across a forecast horizon up to 10 time
steps (100 minutes) into the future for each model. These



Table 3: RMSE forecast values per model for a horizon equal to one.

Dataset | ARIMA | TDNN | AVG | SVM | BCF | BCF-TS
MERL 5.5 2.67 4.35 | 2.29 | 2.28 2.26
CSMBB 10.94 14.13 | 27.14 | 11.01 | 8.72 8.72

Time index

Figure 7: A comparison of forecasts at various horizons
against real data for an sample time segment using BCF-
TS.
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Figure 8: A comparison of BCF-TS and SVM forecasts at
horizon equal to three against real data.

plots show that BCF-TS has the lowest error. However,
the average model shows itself to be a strong indicator of
future activity for forecasts beyond 60 minutes into the fu-
ture. Forecasts were performed for significantly longer hori-
zons, but the results were uninteresting as the total RMSE
of models converged to roughly the values at a forecasting
horizon of 10 time steps.

In the CSMBB dataset the Seasonal ARIMA model was a
good forecaster of future activity while in the MERL set it
performed significantly worse than even the average model
on all forecasting horizons. This is likely due to a stronger
seasonal component to the CSMBB dataset due class sched-

Table 4: Run times (in seconds) for each forecasting horizon.

Algorithm 1 2 3 5 8 10

Average | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001

ARIMA | 0.043 | 0.045 | 0.046 | 0.053 | 0.058 | 0.063

SVM 0.048 | 0.910 | 0.137 | 0.227 | 0.357 | 0.444

TDNN 20.87 | 21.60 | 21.82 | 21.28 | 22.73 | 22.50

BCF-TS | 20.97 | 21.26 | 21.27 | 21.34 | 21.57 | 21.63

ules. Instead on the MERL dataset there is little seasonal
correlation and thus natural variance from a prior season
may incorrectly affect current forecasts. This result is simi-
lar to that of other papers that use seasonal ARIMA models
[14]; where in the case of strong seasonal data, results are
better for short horizon forecasts, but longer forecasts favor
historic averages.

BCF and BCF-TS were both better at a horizon of one time
step for all component models (see Table 3). In the MERL
dataset standard BCF was outperformed by SVM and later
the average model for all forecast beyond one horizon. How-
ever the BCF-T'S model showed significant improvement in
RMSE scores for all forecasting horizons unto 60 minutes.
For horizons of 10 time steps and greater, the average model
is about as good as the BCF-TS approach.

Table 4 shows the run time in seconds of each forecasting
algorithm at a given forecasting horizon. The times are for
forecasting the entire test set on the MERL dataset for a
single sensor, approximately twenty weeks worth of data. In
general BCF-T'S was slower than any component model, but
the times are still such that real-time forecasting is possible.

6. CONCLUSION

In conclusion, we have developed a method to forecast build-
ing occupancy from data derived from a network of simple IR
motion sensors, and have applied it to two different building
datasets. Our work is novel for its application (i.e., building
occupancy forecasting) and also for the Bayesian combined
forecasting method that we developed to combine the results
of multiple component models. Our results show that our
modified BCF approach yields more accurate forecasts than
any of the component models, for short-term to medium-
term forecasts. As expected, the accuracy degrades as the
forecast horizon grows longer. For forecast horizons greater
than about six time steps (corresponding to 60 minutes)
into the future, the modified BCF method is no better than
a simple historical daily average forecasting model. How-
ever, even short-term forecasts of 60 minutes or less can be
very useful to an intelligent building HVAC system [10].

Future work could potentially improve forecasting accuracy
by incorporating algorithms to more accurately predict the
future error distribution for a model (we suggest using GARCH
models as described in Section 3.3.2). We also made the sim-
plifying assumption that each sensor is independent, so that
a separate model could be developed for each sensor. How-
ever, the sensors are not independent, and it is possible that
improved results could be obtained by fitting a model to a
vector-valued input, consisting of the values of all sensors.
Finally, we hypothesize that occasional anomalies account
for a significant amount of forecasting error. By anoma-
lies, we mean events such as snow days, cancelled classes,
impromptu meetings, etc. If these anomalies could be de-
tected and accounted for in the models, forecasting results
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could be improved.

7. ACKNOWLEDGEMENTS

We acknowledge the support of the National Science Foun-
dation (grant CNS-0931748) as well as Northrop Grumman
Corp and Lockheed Martin Corp.

8. REFERENCES
[1] Y. Agarwal, B. Balaji, R. Gupta, J. Lyles, M. Wei,

[10]

and T. Weng. Occupancy-driven energy management
for smart building automation. In Proceedings of the
2nd ACM Workshop on Embedded Sensing Systems
for Energy-Efficiency in Building - BuildSys 10,

page 1, New York, New York, USA, 2010. ACM Press.
G. Box, G. Jenkings, and G. Reinsel. Time Series
Analysis: Forecasting and Control. John Wiley &
Sons, Inc., 4th edition, 2008.

F. Diebold. A Note on Bayesian Forecast Combination
Procedures. In A. H. Westlund and P. Hackl, editors,
Economic Structural Change: Analysis and
Forecasting, pages 225-232. Springer-Verlag, 1991.

U. DOE. Building Energy Databook, 2010.

R. Goldstein, A. Tessier, and A. Khan.
Schedule-calibrated occupant behavior simulation. In
Proceedings of the 2010 Spring Simulation
Multiconference on - SpringSim 10, page 1, New
York, New York, USA, 2010. ACM Press.

J. Hansen and R. Nelson. Forecasting and recombining
time-series compents by using neural networks. Joural
of the Operational Research Society, 54:307-317, 2003.
W. A. Hoff and J. W. Howard. Activity recognition in
a dense sensor network. In Ist International
Conference on Sensor Networks and Applications
(SNA2009), page 6, 2009.

W.-C. Hong, Y. Dong, F. Zheng, and S. Y. Wei.
Hybrid evolutionary algorithms in a SVR traffic flow
forecasting model. Applied Mathematics and
Computation, 217(15):6733-6747, Apr. 2011.

C. Hsu, C. Chang, and C. Lin. A practical guide to
support vector classification. (1):1-16, 2003.

P. Li, M. Barié¢, S. Narayanan, and S. Yuan. A
Simulation-Based Study of Model Predictive Control
in a Medium-Sized Commercial Building. In

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

International High Performance Buildings Conference,
pages 1-10, 2012.

G. M. Ljung and G. E. P. Box. On a Measure of a
Lack of Fit in Time Series Models. Biometrika,
65(2):297-303, 1978.

Y. Ma, F. Borrelli, and B. Hencey. Model predictive
control for the operation of building cooling systems.
In America Control Conference, 2010.

S. Mamidi, Y. Chang, and R. Maheswaran. Improving
building energy efficiency with a network of sensing,
learning and prediction agents. In International
Conference on Autonomous Agents and Multi Agent
Systems. AAMAS 2012, 2012.

G. Newsham and B. Birt. Building-level occupancy
data to improve ARIMA-based electricity use
forecasts. In 2nd ACM Workshop on Embedded
Sensing Systems for Energy-Efficiency in Buildings
(BuildSys 2010), 2010.

J. Page, D. Robinson, N. Morel, and J.-L. Scartezzini.
A generalised stochastich model for the simulation of
occupant presence. Energy and Buildings, 40:83-98,
2008.

V. Petridis, A. Kehagias, L. Petrou, A. Bakirtzis,

S. Kiartzis, H. Panagiotou, and N. Maslaris. A
Bayesian multiple models combination method for
time series prediction. Journal of intelligent and
robotic systems, 31(1):69-89, 2001.

B. M. Williams and L. a. Hoel. Modeling and
Forecasting Vehicular Traffic Flow as a Seasonal
ARIMA Process: Theoretical Basis and Empirical
Results. Journal of Transportation Engineering,
129(6):664, 2003.

C. Wren, Y. Ivanov, D. Leigh, and J. Westbues. The
MERL motion detector dataset: 2007 workshop on
massive datasets. In ICMI Workshop on Massive
Datasets, 2007.

C.-H. Wu, J.-M. Ho, and D. Lee. Travel-Time
Prediction With Support Vector Regression. IEEE
Transactions on Intelligent Transportation Systems,
5(4):276-281, Dec. 2004.

W. Zheng, D.-H. Lee, and Q. Shi. Short-Term Freeway
Traffic Flow Prediction: Bayesian Combined Neural
Network Approach. Journal of Transportation
Engineering, 132(2):114, 2006.



