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ABSTRACT

One important challenge in data mining is the ability to deal
with complex, voluminous and dynamic data. Indeed, due to
the great advances in technology, in many real world appli-
cations data appear in the form of continuous data streams,
as opposed to traditional static datasets. Several techniques
have been proposed to explore data streams, in particular
for the discovery of frequent co-occurrences in data. How-
ever, one of the common criticisms pointed out to frequent
pattern mining is the fact that it generates a huge number
of patterns, independent of user expertise, making it very
hard to analyze and use the results. These bottlenecks are
even more evident when dealing with data streams, since
new data are continuously and endlessly arriving, and many
intermediate results must be kept in memory. The use of
constraints to filter the results is the most common and used
approach to focus the discovery on what is really interest-
ing. In this sense, there is a need for the integration of data
stream mining with constrained mining. In this work we
describe a set of strategies for pushing constraints into data
stream mining, through the use of a pattern tree structure
that captures a summary of the current possible patterns.
We also propose an algorithm that discovers patterns in data
streams that satisfy any user defined constraint.
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1. INTRODUCTION

To undertake the rapid growth of data, everywhere and
in a great variety of fields, the area of Data Mining emerged
with the goal of creating methods and tools capable of an-
alyzing these data and extracting useful information, that
companies can exploit and apply to their businesses. For-
mally, data mining [4] is defined as the nontrivial extraction
of implicit, previously unknown, and potentially useful in-
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formation from data.

Frequent itemset mining [1, 15], or just pattern mining,
plays an important role in data mining, aiming for the dis-
covery of frequent co-occurrences in data (called patterns).
However, one of the common criticisms pointed out to data
mining, in particular to pattern mining, is the fact that it
generates a huge number of patterns, independent of user
expertise and expectations, making it very hard to under-
stand and use the results [6]. The truth is that, for pattern
mining, if we make the support too high, only already known
patterns are found, or none at all. Otherwise, if the support
is set too low, the number of patterns explode, and it is very
difficult to distinguished the real useful patterns among the
many uninteresting ones. A balance is required, and ways to
limit the number of results, as well as to focus these results
in user expectations, are needed.

Several ways have been proposed to minimize these bot-
tlenecks (e.g. mining closed and maximal patterns), being
the use of constraints to filter the results, the most com-
mon and used approach. Constraints are an efficient way
to reduce the number of returned patterns and increase the
efficacy of pattern mining, by returning less but more in-
teresting results, in the user and application points of view.
Some types of constraints have been proposed, as well as sev-
eral algorithms that are able to push each individual type
of constraints [17, 18, 14, 16, 15, 10, 3, 11]. However, these
algorithms assume that all data are available from the start.

In many real world applications, data appear in the form
of continuous data streams, as opposed to traditional static
datasets. A data stream is an ordered sequence of instances
that are continuously being generated and collected. Be-
ing able to deal with these unbounded quantities of data is
considered one important challenge of data mining.

Since data are not all available a priori, and may be ar-
riving at high speeds, algorithms have to sacrifice the cor-
rectness of the results by allowing some counting errors, and
must maintain a memory-resident summary data structure
(also called synopsis data structure), that stores only the
information that is strictly necessary to avoid loosing pat-
terns [12]. Despite these challenges, several algorithms have
been proposed to find frequent patterns in data streams [13,
5, 12].

Nevertheless, these algorithms still suffer from the same
bottlenecks as traditional pattern mining, and the conse-
quences of the huge number of patterns is even more visible
and problematic. On one side, the summary data structure
needs to keep not only all current patterns, but also the min-
imally frequent itemsets that might become patterns later.



If the number of patterns usually returned is already huge,
the number of itemsets that these structures must keep is
even higher. This implies large amounts of memory and ex-
tra processing time. On another side, results are likely to be
analyzed several times across the stream, which means that
the more results are kept in the structure, the more has to
be processed every time.

There is therefore an urgent need for the integration of
stream mining with constrained mining. To the best of our
knowledge, the only algorithms designed to find constrained
patterns from data streams (approzCFPS [9] and its vari-
ations) are only able to push constraints that follow one
specific property (succinctness).

In this paper we describe and discuss a set of strategies
to push constraints into data stream mining, through the
use of a pattern tree as a synopsis data structure. We also
propose a generic algorithm, called CoPT4Streams (Con-
straint Pushing into a Pattern Tree for Streams), that com-
bines and implements these strategies and is able to dy-
namically discover all patterns that satisfy any user defined
constraint. CoPT/Streams pushes constraints into the pat-
tern tree structure in an efficient way, by taking advantage
of the properties of constraints, and filters all patterns and
possible patterns in that tree, resulting in a much smaller
summary, and therefore less memory and time are needed.

The paper is organized as follow. Section 3 provides the
background for constrained and stream mining, as well as
the related work. The proposed strategies and algorithm are
presented in section 4, and experimental results are shown
in section 5. Finally, section 6 concludes the work.

2. PROBLEM STATEMENT

Frequent pattern mining (PM) aims for enumerating all
frequent patterns that conceptually represent relations among
discrete entities (or items). Depending on the complexity of
these relations, different types of patterns arise, with the
transactional patterns being the most common. A transac-
tional pattern is just a set of items that co-occur frequently.
A well-known example is a market-basket, the set of items
that are bought frequently in the same transaction.

The oldest and more studied constraint in pattern mining
is the minimum support threshold [1], which states that, to
be interesting, a pattern must occur more than the given
threshold. In fact, what we call traditional PM corresponds
to the discovery of frequent itemsets from data. Hence, con-
strained PM is perceived as the use of constraints beyond
the minimum support, i.e. the discovery of frequent itemsets
that satisfy some constraints.

Formally, let I = {i1,42,...,im} be a set of distinct liter-
als, called items. A subset of items is denoted as an itemset.
A superset of an itemset X is also an itemset, that contains
all items in X and more. The support of an itemset X is the
number of its occurrences in the dataset, and X is frequent
if its support is no less than a predefined minimum support
threshold: sup(X) > o € [0, 1].

DEFINITION 1. A constraint C is a predicate on the pow-
erset of I [16], i.e. C : 27 s {true, false}. An itemset X
satisfies a constraint C, if C(X) = true.

In this context, a pattern corresponds to a frequent item-
set that satisfies the constraint C, i.e. sup(X) > o AC(X) =
true. And the problem of constrained pattern mining is to
find all patterns in a dataset.

The previous definitions consider that the dataset is mined
all together. Let us now assume that the dataset is a data
stream, where new transactions arrive sequentially in the
form of continuous streams. Formally, a data stream D; =
Bi1 U By U ...By is a sequence of batches, where By is the
current batch, By the oldest one, and each batch is a set of
transactions.

As it is unrealistic to hold all streaming data in the limited
main memory, data streaming algorithms have to sacrifice
the correctness of their results by allowing some counting
errors. These errors are bounded by a user defined maximum
error threshold, € €]0, o[, such that o > e. Thus, the support
calculated for each item is an approximated value: sup’(X).

An approzimate pattern is an itemset whose estimated
support is no less than the minimum support threshold, mi-
nus the maximum error allowed, i.e. sup’(X) > (o — ¢).

In a constrained environment integrated with data streams,
a pattern is an approximated frequent itemset that satisfies
the constraint, i.e. sup’(X) > (0 —¢) A C(X) = true. And
the problem of constrained pattern mining over data streams
consists in finding all approximate patterns in D;.

3. BACKGROUND

The integration of constrained mining and streams mining
is non trivial, since both areas present a set of challenges that
need to be addressed and combined. In this section we first
provide some background on constrained mining and then
on the characteristics of stream mining.

3.1 Constrained Mining

Constraints are filters on the data or on the results, that
capture application semantics and allow the users to express
their needs, and somehow control the search process and
focus de algorithms on what is really interesting [2].

There are several types of constraints. According to their
semantics and form, they can be divided in several cat-
egories, such as content constraints, filtering the content
of the discovered patterns; length constraints, limiting the
number of items in each pattern; and more complex ones,
like temporal constraints, that take into account a temporal
dimension.

How to enforce these constraints into pattern mining de-
pends heavily on the constraints in question. Performing
an extensive search is often not a viable solution, mostly
due to the size of the search space. Fortunately, studies
show that constraints have some properties that provide ef-
ficient strategies to prune the search space and improve the
selection of patterns that satisfy them. These “nice” prop-
erties [15] have been proposed in the literature, and existing
ones are described next.

3.1.1 Constraint Properties

In its basis, a constraint can be anti-monotonic, mono-
tonic, or none.

Anti-monotonicity (AM) A constraint is anti-monotonic

if and only if, whenever an itemset X wviolates it, so does
any superset of X.
The minimum support threshold is the best known and sim-
ple example of an AM constraint [1], according to which an
itemset is frequent if its support is greater or equal to a user
defined threshold. It is AM in the sense that if an itemset
is infrequent, so does any of its supersets.



Monotonicity (M) A constraint is monotonic if and only

if, whenever an itemset X satisfies it, so does any superset
of X.
An example is the item constraint: C(X) = ({i,j} C X).
If an itemset satisfies the constraint (i.e. contains all the
desired items), all supersets will also satisfy it. However,
if an itemset violates the constraint, a superset can satisfy
it, by introducing the missing items.

In addition to anti-monotonic or monotonic, constraints
can also be, at the same time, succinct.

Succinctness (S) In its essence, a constraint is succinct if
it is possible to enumerate all possible patterns, based only
on items from the alphabet I [14].

A simple example is the value constraint C'(X) = X.price <
€100. We can select from the alphabet all items X; with
price < €100, and the itemsets that satisfy C are exactly
only those in the strict powerset of X;. This is a succinct
anti-monotonic constraint (SAM), as supersets of itemsets
with some item with price > €100 will never satisfy it.

There are constraints that are not overall anti-monotonic
neither monotonic, and therefore it is not easy to push them
in an efficient way. However, with some assumptions, many
of them can be converted and treated as that. In this sense,
constraints can also be prefiz- or mized-monotone.

Prefix-Monotonicity A constraint is prefiz-monotone’if
there is an order of items that allows the algorithms to treat
it as anti-monotonic or monotonic [16]. By fixing an or-
der on items, each transaction can be seen as a sequence,
and therefore we can use the notion of prefixes and suf-
fixes, as the first or last items in the ordered transaction,
respectively.

Formally, a constraint C' is prefix anti-monotonic (PAM)
(resp. prefix monotonic (PM)) if there is an order R over
the set of items, and assuming each itemset X = i1i2...in
is ordered accordingly to order R, such that, whenever an
itemset X violates (resp. satisfies) C, so does any itemset
Wlth X as preﬁx (X/ =XU {’in+1} = leglnln+1)

For example, an aggregate constraint like C'(X) = avg(X) >
20, is not monotonic neither anti-monotonic. But, if we or-
der the items in a value-descending order, an itemset X
has higher average than its supersets X', and C is prefix
anti-monotonic: if X satisfies C, also all its supersets X'.

Mixed-Monotonicity A constraint is mized-monotone if
it can be considered both anti-monotonic and monotonic,
at the same time, for different groups of possible values
(positive and negative )[11].

Formally, let the set of items I be divided into two disjoint
groups based on their monotonicity relating to a constraint
C: let I*™ be the set of anti-monotonic items, and I,
the set of monotonic items. Then, a constraint is mixed
monotone if, for any itemset X: (a) whenever X satisfies
C, all supersets of X formed by adding items from the I
group, also satisfies C; and (b) whenever X violates C,
all supersets of X formed by adding items from the 74M
group, also violates C.

!Prefix-monotone constraints were first proposed with the
name of convertible constraints [16, 15].

This property was proposed in particular for sum con-
straints. C(X) = sum(X) > v, for example, is monotonic
for positive values (including zero), and anti-monotonic for
negative values.

3.1.2 Related Work

There are several algorithms for pushing constraints of a
specific type or that have a specific property. The problem
is that those algorithms are specific, and there is no general
algorithm capable of incorporating any constraint, and still
taking advantage of constraint properties at the same time.

Srikant et al. [17] were the first to introduce item con-
straints, the first different from minimum support. They
proposed three apriori-based algorithms, MultipleJoins, Re-
order and Direct, that are able to deal with boolean com-
binations of these constraints, i.e. of the form ¢ € S or
i € S. Succinct constraints were first proposed by Ng et
al. [14], as well as an apriori-based algorithm, called CAP
(Constrained APriori). Later on, [10] proposed FPS (FP-
tree based mining of Succinct constraints) that uses the same
techniques but in a pattern-growth approach. These algo-
rithms are only able to push succinct constraints. Pei et al.
[16] proposed prefix-monotone constraints as well as a pat-
tern growth algorithm, FIC (Frequent Itemset mining with
Convertible constraints), that is able to push them into the
discovery process, by growing only valid prefixes. Finally,
mixed monotone constraints were recently proposed by Le-
ung et al. [11], in particular for sum constraints, along with
a pattern-growth algorithm FPM (Frequent Pattern mining
for Mixed monotone constraints). The problem of the above
algorithms is that none of them is able to deal with data
streams.

3.2 Stream Mining

A data stream is an ordered sequence of instances that
are continuously being generated and collected. The nature
of these streaming data make the mining process different
from traditional data mining in several aspects: (1) data are
not all available a priori, and therefore each element should
be examined at most once; (2) new data may be arriving at
high speeds, so the processing of each element should be as
fast as possible; (3) memory usage should be limited, even
though new data elements are continuously arriving; (4) the
results generated should be always available and updated;
and (5) the results should be as accurate as possible.

This implies the definition of some counting error, smaller
than the minimum support, that allows the algorithms to
discard part of the data that is not promising. Itemsets that
occur less than the maximum error are infrequent and can
be discarded, and itemsets that occur more than the error,
but less than the minimum support, are possibly frequent,
and should be kept in some summary data structure, since
they may become frequent later.

Several algorithms have been proposed to find frequent
patterns in data streams [12], being Lossy Counting [13] and
FP-Streaming [5] the most known. FP-Streaming, proposed
by Giannella et al., is an efficient algorithm that adapts FP-
Growth [7] to find frequent unconstrained patterns over a
data stream. They make use of the FP-tree structure and
its compression properties to maintain time sensitive fre-
quency information about patterns. The stream is divided
into batches and a tree structure (called FP-stream) is up-
dated at every batch boundary, so that it contains all the



current patterns. Each node in this tree represents a pattern
(from the root to the node) and its frequency is stored in
the node, in the form of a tilted-time window table, which
keeps frequencies for several time intervals.

Since what defines what is promising or not depends only
on the number of occurrences of an itemset, this tree must
usually keep a lot of possibly frequent patterns, which re-
sults in poor performance, not only in terms of the memory
needed, but also on the time needed to update this tree.
This problem could be addressed by using constraints not
only to filter what is necessary to keep in the tree, but also to
define what is promising or not in a user perspective, mak-
ing the results less and more interesting at the same time,
and therefore increasing the performance and applicability
of pattern mining results. Unfortunately, both of the above
algorithms cannot handle constraints.

Leung et al. [9] was the first to propose the integration
of data streams with constrained mining, with two algo-
rithms, ApprozCFPS and EzactCFPS (Approximated and
Exact Constrained Frequent Patterns for Streams), for find-
ing all approximated or exact patterns, respectively, in data
streams, that satisfy succinct constraints. Both algorithms
are able to push succinct constraints deep into the algorithm
FP-Streaming. The ideas are simple and consist in, for SAM
constraints, remove all single items that violate the con-
straint before processing each transaction; and for SM con-
straints, for each batch, divide the items into mandatory and
optional items, and order transactions so that mandatory
items appear first, and therefore there is only the need to
mine itemsets that first contain the mandatory items. More
recently, they also proposed an adaptation (aCoCo [8]), that
uses an optimized FP-Tree for when the memory is limited.
While the algorithms efficiently push constraints into data
stream mining, they are only able to handle constraints that
are succinct.

4. PUSHING CONSTRAINTS INTO DATA
STREAMS

In this work we describe a set of strategies for pushing
constraints into stream pattern mining, through the use of a
pattern tree structure, similar to the FP-Stream [5]. We also
describe a generic algorithm, called CoPT4Streams (Con-
straint Pushing into a Pattern Tree for Streams), that com-
bines and implements these strategies and is able to dynam-
ically discover all patterns that satisfy any user defined con-
straint. CoPT4Streams pushes constraints into the pattern
tree structure at each batch boundary in an efficient way, by
taking advantage of the properties of constraints, and filters
all patterns and possibly patterns in that tree, resulting in a
much smaller summary, and therefore less memory and time
needed.

Since it is an algorithm that is applied to the pattern
tree, any data streams algorithm can be used along with
our CoPT4Streams, provided that it uses a pattern tree as
its synopsis data structure.

4.1 Pattern-Tree

A pattern-tree is a compact prefix tree structure that
holds information about patterns. In the streaming envi-
ronment, each node of a pattern tree contains an item, an
approximate support and a maximum error, and edges link
items that occur together, forming the patterns. Therefore,

each node in a pattern-tree corresponds to an approximate
pattern, composed of the items from the root to this node,
and the estimated support and error attached to this node.
As a prefix tree, patterns that share the same prefix also
share the same nodes corresponding to that prefix. And
therefore, the size of the tree is usually much smaller than
having them in a list or a table, and the search for an itemset
is usually much faster.

Note that this description corresponds to a basic pattern
tree. Each node may contain more fields, if they are nec-
essary for the streaming algorithm, and the strategies for
pushing constraints into the pattern tree remain the same.
An example is an FP-Stream [5], that contains in each node
a table of frequencies for several time intervals, instead of
just one frequency.

4.2 Naive Approaches

A naive approach, named CoPT4Streams+, is to perform
a simple depth-first search (DFS) to traverse the tree and
test all nodes for the constraint, independently of its prop-
erty (note that, when we test a node for a constraint, we
mean that we test the itemset corresponding to that node).
However, it is not the most efficient approach, since not all
nodes need to be tested. We can take advantage of con-
straint properties and perform a constrained DFS, stopping
the search at some points and avoiding unnecessary tests.

Another possible approach is to push the constraint right
before inserting each itemset in the pattern-tree. However,
while this may be better in terms of memory, because the
pattern-tree would never have unpromising itemsets, this
means that we have to test every itemset. By scanning the
tree, we may skip the constraint checking of a lot of itemsets.

4.3 Efficient Constraint Pushing Strategies

In order to push constraints into a pattern-tree, we define
a set of strategies that can be used, based on constraint
properties.

Since we are integrating data streams and constraints,
some questions arise. Note that the pattern tree must be
updated in every batch, to renew the current approximated
frequent itemsets. And therefore the order in which the
items in patterns are inserted in the tree must remain the
same across the batches. (1) Data are not available a priori,
and so we do not know all possible items in the beginning.
In the cases where the order of items matter (e.g. for prefix-
monotone constraints), new items that should be placed be-
tween already known items may appear. Is it possible to ef-
ficiently take advantage of constraint properties, even when
the order of items changes? (2) In a static application, in-
valid itemsets could be removed from the tree, since they do
not satisfy the constraint (for both AM and M constraints).
In a data stream, these itemsets could reappear in follow-
ing batches, and valid supersets of current invalid itemsets
could also appear later (in the case of M constraints). Can
we, at some batch, remove itemsets in the tree that violate
the constraint?

The answer is yes to both questions, essentially because
for a pattern to appear in the pattern tree (i.e. to be ap-
proximately frequent), all of its subsets must appear too.
But we will delve into these questions further ahead.

We assume that constraints have fixed parameters (for ex-
ample, min(X) < v, in which v is a fixed threshold), i.e. pa-
rameters that do not depend on the number of transactions



seen so far, and do not change across different batches (e.g.
we do not consider constraints like min(X) < min(all items
seen so far)). This makes the satisfaction of constraints per-
manent, meaning that, if an itemset satisfies (reps. violates)
a constraint in some batch, it always satisfies (reps. violates)
the same constraint, in any later batch.

4.3.1 Anti-Monotonicity:

Pushing an AM constraint (Caar) is pretty straightfor-
ward. While performing a DFS, if the node:

(a) Satisfies Canr: keep it in the tree;

(b) Violates C'ans: there is no need to search its subtree be-
cause all supersets also violate the constraint. There-
fore we can prune the tree and remove this node, as
well as all of its children.

Answering to question (2), for AM constraints, itemsets
that violate the constraint can be removed, because they
will never satisfy the constraint, and even if they reappear in
later batches because they are frequent, they will be removed
again, because they violate the constraint.

4.3.2 Monotonicity:

To incorporate a monotonic constraint (Chs), we cannot
remove nodes that violate it, because the supersets of this
node (its children) can satisfy it. So, while traversing the
tree, if the node:

(a) Satisfies Cas: keep it in the tree. We do not need
to scan the subtree, because all supersets satisfy the
constraint, and there is nothing to remove.

(b) Violates Cis: If it is a leaf node (has no supersets), we
can remove it, as well as all parents that become a leaf
because of this elimination. If it is not a leaf, continue
the search to its children, since they can satisfy the
constraint.

Answering again to question (2), for M constraints, all
itemsets with no supersets in the tree (leafs) that violate the
constraint can be removed, because they will never satisfy
the constraint. Note that, if some valid superset appears
in later batches, it means that both that itemset and the
superset are frequent, and therefore both will appear in the
tree, in the same branch. However, only the superset will
be returned as pattern, because it is the only one valid.
Summing, there is no need to keep an invalid itemset in the
tree, while it has no valid supersets.

4.3.3  Succinctness:

In the presence of a succinct constraint, we can apply
the strategies for Cans or Chur, whether it is succinct anti-
monotonic (Cgan) or succinct monotonic (Cgar), respec-
tively. However, the succinctness of a constraint allow us
to know, by looking for single items, which of them satisfy
or not satisfy the constraint. Therefore, we can use that to
obtain a more efficient search.

With this in mind, we can first divide the items into two
groups: items that satisfy or are necessary to the satisfac-
tion of the constraint, I°; and items that violate, or are not
necessary to the satisfaction of the constraint, I¥. And be-
fore inserting itemsets into the pattern-tree, we can order
the itemsets according to those groups.

Csanm: With a SAM constraint, single items that violate
it can be discarded. If we order items in itemsets so
that IV appears before I° (I closer to the root and
I’ to the leafs), when applying the Can strategy, we
only need to check the first level of the pattern-tree.
If the node violates the constraint, remove it and its
sub-tree; if the node satisfies, all of its children will
also satisfy, because they belong to I°, so we can also
skip testing for the constraint.

Csar: In the case of a SM constraint, I° contains the manda-
tory items and I’ the optional items. If an itemset
with items from I° satisfies the constraint, all of its
supersets formed by adding items from I° or I’ also
satisfy it. Itemsets with items only from I? violate the
constraint. In this sense, if we order itemsets so that
items from I° appear first than items from IV, when
applying the Cys strategy, we only need to do it un-
til the first node from I° that satisfies (all supersets
satisfy), or until the first node from I”, because if we
arrive to a node from this group, and still need to test
the constraint, it means it has not been satisfied by
items from I°, and the following items (children) will
also not satisfy it because they are optional. In this
case, we do not need to test this node, neither any
child, and we may remove them from the tree.

Succinct constraints refer to question (1), since they need
the items to be ordered according to two groups. This means
that we do not know the overall order a priori, and therefore
new items from the first group may appear and need to
be placed before all already known items from the second
group. This poses no problem, as long as the relative order
of existing items does not change, because if an itemset with
new items appear in the tree, all subsets will also appear,
and all subsets that not include these new items remain with
the same order.

4.3.4  Prefix-Monotonicity:

Since prefix-monotone constraints can only be treated as
AM (Cpam) or M (Cpar) constraints if items are ordered by
a particular order, we just need to sort the itemsets accord-
ing to that order before inserting them in the pattern-tree,
and apply the Canr or Cis strategy, respectively. Otherwise,
we have to traverse the whole tree and check all nodes for
the constraint.

Looking at question (1), and like for succinct constraints,
this order is not a problem, as long as the relative order of
existing items does not change.

4.3.5 Mixed-Monotonicity:

Mixed-monotone constraints (Casiz) are both AM and M,
for different groups of values. In this case, we just have to
divide the items, as they appear, into those groups: 1 AM and
I and put I before I*M in the tree, i.e. sort itemsets so
that items from the I group appear above items from I
The idea is to start with the Cas strategy, until a node that
satisfies it, or a node from I*™ appears. From that node, we
can apply the Can strategy to all of its supersets (children)
and prune invalid nodes from its sub-tree.



4.4 Algorithm CoPT4Streams

Since there are a lot of similarities between the strate-
gies presented above, they can be combined into one single
generic strategy or algorithm. We propose therefore the al-
gorithm CoPT/Streams (Constraint Pushing into a Pattern
Tree for Streams), that is able to efficiently and effectively
push any constraint into a pattern tree, when mining data
streams.

The idea is to run CoPT4Streams over the pattern tree
resulting of the mining of each batch, and using the resulting
smaller tree to mine the next batches. By doing this, the
algorithm is able to filter what is really interesting for the
users, and keep smaller summary structures, which result in
improvements on the memory and time needed, as well as
on the number of the patterns returned.

Since constraint satisfaction is permanent, we can perform
an extra optimization (besides using constraint properties)
and only compute the satisfaction of some node once, by
e.g. keeping one flag in each node indicating if it satisfies or
violates the constraint. Thus, we can mitigate the constraint
checking for nodes that remain in the tree from one batch
to another (nodes closer to the root).

Essentially, to push a constraint, CoPT/Streams works as
follows. For each batch, and for each approximate pattern
discovered by the streaming algorithm, it is ordered accord-
ing to the order of items for that constraint, if exists, and
inserted in the tree (if there is no order, items are put in the
pattern-tree in a support-descending order, which is known
to improve the compactness of the tree [7]).

At each batch boundary, we can push the constraint C
into the pattern-tree, by scanning the tree according to the
constraint property. So, for each node, if the node is new
in the tree (i.e. if we never checked for the constraint), we
can first see, in the case of succinct or mixed constraints, if
the item in the node belongs to the second group of items.
If so, it means the node can be discarded (the constraint
was not satisfied by the first group of items), along with its
children. Then, or in the case of other type of constraints,
we should check for the constraint (and store the result into
the satisfaction flag in the node).

When we know the result of the constraint checking, (1)
if the itemset corresponding to this node satisfies C: (a) C
is mixed and we can change the strategy to AM; (b) C is
monotonic and no child needs testing; or (¢) C is succinct
AM, and also no child needs testing (only the first level of
the tree). (2) if the itemset violates C, it is not a pattern,
and if C'is AM (including SAM and PAM) we can prune
the tree from here.

After checking the constraints, if the node was not pruned,
we can test its children. Finally, after pushing C into the
children, if the node is not a pattern and is a leave, we
can remove it. Note that this final node pruning is made
for every constraint, even if they have no “nice” properties.
However, in this case all nodes need to be tested.

S. EXPERIMENTAL RESULTS

The goal of these experiments is to analyze the behavior
of our algorithm in the presence of a data stream, and all
types of constraints, and prove that CoPT4Streams is able
to effectively and efficiently push them into a pattern-tree
at each batch, taking advantage of their properties.

In these experiments we use a database automatically gen-

erated by the program developed at IBM Almaden Research
Center [1]. The dataset has 100k transactions, with an aver-
age of 10 items per transaction and a domain of 1000 items
(with values from zero to 1000). In addition, in order to
test the mixed-monotone constraint, we consider an equiva-
lent dataset but with negative values (by making values vary
from —500 to 500).

Since the behavior of the algorithm can depend on the
selectivity of the constraints, we use it in our experiments.
Selectivity is defined as the ratio of frequent itemsets that
violate the constraint, over the total number of frequent
itemsets, i.e. how much we can filter. Therefore, we test
CoPT4Streams with several constraints with different se-
lectivities, varying from 10% to 90%. Note that, the more
selectivity, the more we can filter, and the less patterns are
returned. But on the other hand, the less selectivity, the
more patterns need to be kept and returned (and we get
closer to the problems of unconstrained techniques). We
also tested several minimum supports and errors, and since
results are consistent, we present the results for a support
of 0.1% and an error of 0.01% (a common way to define
the error, is € = 0.10), and results presented correspond to
the average of several runs with different constraints with
equivalent selectivity. Also, to have a term of comparison,
we test our algorithm against CoPT4Streams+, a version
that checks all nodes for the constraints (i.e. that does not
take into account constraint properties).

The data streams algorithm used was a simplification of
FP-Streaming [7], that keeps only one support per node
(does not take into account temporal aspects). FP-Streaming
was chosen because it is an efficient algorithm that does not
suffer from the candidate generation problem, and keeps cur-
rent patterns into a pattern tree. The size of each batch is
defined by |B| = 1/¢, which corresponds to 100 batches of
1000 transactions in each batch. By definition, data stream-
ing techniques return more patterns than traditional algo-
rithms for static datasets, and the higher the error allowed,
the more patterns are returned and the less accuracy they
obtain. By incorporating constraints into data streams, we
can filter not only the patterns returned, but also the pat-
terns that must be kept in memory, improving the perfor-
mance of the algorithms, either in terms of time, memory
and results. The computer used to run the experiments was
an Intel Core i7 CPU at 2GHz (Quad Core), with 8GB of
RAM and using Mac OS X Server 10.7.5 and the algorithm
was implemented using the Java (JVM version 1.6.0_37).

We first analyzed the average size of the pruned pattern-
tree. When applying constraints, more itemsets can be dis-
carded, and therefore the pattern tree is smaller than in an
unconstrained environment. In turn, a smaller pattern tree
in every batch may have an impact on the time needed to
update the tree and on the number of constraint checks the
algorithm needed to make. Note that the update time is
perceived as the time needed to process one batch of trans-
actions until the complete update of the pattern tree. Since
the trends are the same, whether a constraint is AM or M,
fig. 1 to 3 show the average results when in the presence
of AM (an average of both AM, SAM and PAM) and M
(both M, SM and PM) constraints. The only difference is
that, in the unconstrained case, as well as for the simple AM
and M constraints, there is no need to sort the items in the
patterns. On the other side, succinct, prefix- and mixed-
monotone constraints require that items are put in the pat-
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tern tree sorted according to some specific order. This means
that all itemsets must be sorted before, which results in an
overhead in time, that depend on that order.

As expected, as the selectivity increases, more itemsets
can be removed from the tree, and therefore the size of the
pattern tree is smaller, as well as the time needed to up-
date smaller pattern trees. We can also confirm in fig. 1
that AM constraints allow us to prune much more itemsets
than M constraints, leading to much smaller pattern trees.
This is explained by the fact that itemsets that violate M
constraints but have supersets that satisfy them, cannot be
discarded from the tree. By similar reasons, AM constraints
need, in average, less time to update the pattern tree than
M constraints. Fig. 2 also shows that pushing AM or M
constraints into the pattern tree results in a decrease of the
update time, even when the selectivity os low.

In fig. 3 we analyze the average number of constraint
checks. We can state that pushing constraints is always bet-
ter, even with the naive approach, CoPT4Streams+, due to
the resulting smaller pattern trees from one batch to an-
other. Nevertheless, taking into account constraint prop-
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Figure 2: Average time needed to update the pat-
tern tree

erties to avoid constraint checks (CoPT4Streams) requires
significantly less number of constraint checks. It is interest-
ing to see that, as the selectivity increases, the number of
constraint checks for AM constraints decreases, because the
number of itemsets that can be discarded increases. But on
the contrary, for M constraints, the number of tests increases
along with the increase of the selectivity. This happens be-
cause the M strategy only stops checking when itemsets sat-
isfy the constraint. And if there are more items that violate
it, more itemsets need to be tested.

The behavior of Mixed constraints is consistent with the
trends presented above: pushing them into the pattern trees
results in much smaller trees, and therefore less constraint
checks and update time, when comparing with both the un-
constrained and the CoPT/Streams+ algorithms. As the
selectivity increases, the number of patterns in the trees de-
creases, as well as the time needed to process them. The
number of constraint checks tends to be constant, indepen-
dently of the selectivity of the constraints.

6. CONCLUSIONS

In this work, we describe a new set of strategies for push-
ing constraints into stream pattern mining, through the use
of the efficient pattern-tree structure. These strategies take
advantage of constraint properties, so that we can filter ear-
lier the frequent itemsets that satisfy each constraint, and
avoid unnecessary tests. By doing this for each batch of
transactions, greatly decreases the size of the pattern trees
that need to be maintained for this streaming environment,
and therefore helps focusing the pattern mining task and
returning much less but more interesting results. We also
propose a general algorithm, named CoPT4Streams, that
combines the defined strategies and is able to dynamically
push any constraint into a pattern-tree, and still taking ad-
vantage of their properties (if some).

Experimental results show that the algorithm is effec-
tive and efficient. The pattern trees maintained are much
smaller, which generally results in less time needed. It also
checks much less nodes and needs less time than an approach
that does not take into account constraint properties.

Despite the benefits of CoPT4Streams, it can be seen as



a post-processing approach (applied after the processing of
each batch), which needs that an unconstrained algorithm
run to first discover all possible frequent patterns. This usu-
ally takes much time, and results in a large quantity of fre-
quent itemsets that need to be put in the pattern tree, and
to be again evaluated later on. As future work, we intend
to create a more balanced approach and use the strategies
proposed here to filter itemsets during the actual discovery
process.
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