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ABSTRACT
Nowadays in many real-world scenarios, high speed data
streams are usually with non-uniform misclassification costs
and thus call for cost-sensitive classification algorithms of
data streams. However, only little literature focuses on this
issue. On the other hand, the existing algorithms for cost-
sensitive classification can achieve excellent performance in
the metric of total misclassification costs, but always lead
to obvious reduction of accuracy, which restrains the prac-
tical application greatly. In this paper, we present an im-
proved folk theorem. Based on the new theorem, the exist-
ing accuracy-based classification algorithm can be converted
into soft cost-sensitive one immediately, which allows us to
take both accuracy and cost into account. Following the idea
of this theorem, the soft-CsGDT algorithm is proposed to
process the data streams with non-uniform misclassification
costs, which is an expansion of GDT. With both synthetic
and real-world datasets, the experimental results show that
compared with the cost-sensitive algorithm, the accuracy in
our soft-CsGDT is significantly improved, while the total
misclassification costs are approximately the same.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
data mining ; I.2.6 [Artificial Intelligence]: Learning—
concept learning ; I.5.2 [Pattern Recognition]: Design Me-
thodology—classifier design and evaluation

Keywords
Data stream mining, cost-sensitive classification, decision
tree, incremental learning
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1. INTRODUCTION
In data mining applications, such as medical diagnosis,

credit fraud detection, and intrusion detection, the data vol-
ume is always very large and continuously growing. These
applications can be modeled as a typical classification prob-
lem of data streams. At present, in the field of data stream
classification the major concern is accuracy-based learning
[2, 3, 4, 15], which aims at minimizing error rate. However,
the real-world data streams always come with non-uniform
misclassification costs, therefore the existing data stream
learning algorithms, which don’t take misclassification cost
into account, do not perform well.

In the scenario of credit fraud detection, the misclassifica-
tion error, which is made in judging the bad user behaviors
that cause huge economic losses as normal behaviors, is al-
ways much more serious (in other words, high cost) than the
opposite type of error, which judges someone as bad when
they are in fact with normal behaviors. The similar scenar-
ios also exist in intrusion detection, medical diagnosis and
real-time business decision-making. In this paper, we model
these applications as a cost-sensitive classification problem
of data streams.

Another important issue is that, to minimize total mis-
classification costs, existing cost-sensitive classification algo-
rithms always result in high error rate [5]. The low accuracy
of the algorithms restricts their practical application great-
ly. Here we concentrate on how to build a soft cost-sensitive
classifier model for data streams, which takes both accuracy
and cost into account.

In this paper, firstly, based on the folk theorem [14] and
GDT [8], we present the Cost-sensitive Gaussian Decision
Tree (CsGDT) algorithm to deal with data streams with
non-uniform misclassification costs. Then, following the idea
of the folk theorem, we propose an improved theorem, which
is proved and analyzed in Section 3.2. The new theorem
allows us to convert the existing accuracy-based algorithms
to be soft cost-sensitive immediately. Furthermore, based on
the new theorem and GDT and OcVFDT [6], soft-CsGDT
algorithm is proposed for cost-sensitive classification of data
streams, which can make a trade-off between accuracy and
cost. At last, we evaluate the classification performance of
CsGDT and soft-CsGDT on both synthetic and real-world
datasets.

The rest of this paper is organized as follows. Section
2 gives a brief review of related work. In Section 3, the
problem is formulated and the motivating theories are an-



alyzed. Then in Sections 4 and 5, algorithms CsGDT and
soft-CsGDT are proposed respectively. The experimental
results are shown in Section 6. Finally, Section 7 gives a
conclusion to this work.

2. RELATED WORK
Our work focuses on the soft cost-sensitive classification

of data streams, which is related to two groups of research:
data stream classification and cost-sensitive classification.
Both of them are the challenging problems in data mining
research in recent years [13].

Data stream classification has been extensively studied in
data mining research [3, 9, 4, 15]. There are mainly two
kinds of solutions: single-model learning [3] and ensemble
learning [2, 15]. The former keeps updating the single clas-
sification model with the new instance, while the latter uses
parts of the data stream to construct a series of base models.
Domingos and Hulten have proposed a single-model decision
tree learning system , VFDT, which is one of the art-of-the-
state methods [3]. In recent years, Rutkowski et al. have
corrected a mathematical error of VFDT and proposed the
GDT (Gaussian Decision Tree) [9, 8].

Cost-sensitive classification, which focuses on minimizing
total cost, is practical in various domains, thus lots of at-
tempts have been made to study this issue in the last decades
[5, 14, 10, 7]. The existing algorithms can be grouped in-
to two categories. The first is a direct method, in which
the classifier is constructed all over again without any for-
mer classifier, such as the ICET [11] and some decision trees
[7]. The other category is the meta-learning method, which
improves the existing accuracy-based classifiers to be cost-
sensitive, representative ones such as [14, 10]. The main
idea of our work to construct cost-sensitive classifier of data
streams belongs to the latter category.

Several recent works also address the cost-sensitive clas-
sification of data streams and soft cost-sensitive classifica-
tion issues. Wang et al. [12] have proposed CSOGD-I
and CSOGD-II algorithms to deal with the data streams
with non-uniform misclassification costs, which use the on-
line gradient descent approach. Our work here is different,
because our algorithm is a decision tree with a strong in-
terpretability. In [5], Jan et al. have introduced a simple
method to improve cost-sensitive classification algorithms to
be soft cost-sensitive immediately. Our work is distinct in
the point that we focus on converting accuracy-based clas-
sification to be soft cost-sensitive.

3. PROBLEM AND THEORY

3.1 Problem Formulation
In this paper, for simplicity, we only consider steady bi-

nary data streams with discrete attribute values1. The cost-
sensitive classification problem of data streams is generally
formulated as follows. S = {s1, s2, . . . } represents a data
stream, the i-th training instance is denoted as si = (x, y, c)
where x is the vector of attributes, y is class label, and c
represents the misclassification cost of the instance.

[
c00 c01
c10 c11

]
(1)

1Concept drift is not considered in this paper.

For a binary data stream, the cost matrix is listed as (1),
where the row represents the actual class and the column
represents the predicted class. Thus, cij means the cost of
predicting an instance of i-th class as belonging to j-th class.
The 0-th class and 1-th class misclassification additional cost
are denoted as c0 and c1 respectively, the relation between
ci and cij is as (2). In the rest of this paper, for simplicity,
we assume cii = 0 and denote c as cost array [c0, c1].{

c0 = c01 − c00
c1 = c10 − c11

(2)

Assume that the instances are from a stationary distribu-
tion D. We denote D as X ×Y ×C, where the X represents
the domain of the input vector of the attributes, Y is the do-
main of the class label, which is {0, 1}, and C is the domain
of the misclassification cost, therefore C ⊂ [0,+∞). The
accuracy-based classification algorithms aim at construct-
ing a model h : X → Y, which can minimize the expected
Error Rate (ER):

ERD (h) =
1

N

∑
(x,y,c)∼D

I [y 6= h (x)]

The N =
∑

(x,y,c)∼D 1 means the total number of the in-

stances of distribution D. The I [·] is the indicator function,
its value is 1 when the argument is true and 0 otherwise.
The cost-sensitive classification focuses on minimizing the
sum of the misclassification cost:

SD (h) =
∑

(x,y,c)∼D

c× I [y 6= h (x)]

Without loss of generality, the sum of the misclassification
cost SD (h) can be replaced with the expected Cost Rate
(CR):

CRD (h) =
1

Nc

∑
(x,y,c)∼D

c× I [y 6= h (x)]

The Nc =
∑

(x,y,c)∼D c means the sum of the instances’ cost.

Following the view of [5], the soft cost-sensitive algorithms
aim at minimizing the weighted sum of CR and ER:

SumD (h) = α×CRD (h)+(1− α)×ERD (h), α ∈ [0, 1] .

Thus, only when the lowest value of SumD (h) is acquired,
can we construct a soft cost-sensitive classifier learning mod-
el, which takes both accuracy and cost into account.

3.2 Motivating Theory
In this section, firstly, we review the folk theorem [14],

and furthermore a more general theorem is put forward on
the basis of it.

A basic folk theorem states that if we build an accuracy-

based classifier from D̂ :

D̂ (x, y, c) ≡ c×D (x, y, c) (3)

then the classification model is cost-sensitive for distribution
D. From (3), we can know that an instance (x, y, c) from D
is corresponding to a number of c identical instances from



D̂. Then the instance number N̂ of D̂ is:

N̂ =
∑

(x,y,c)∼D̂

1 =
∑

(x,y,c)∼D

c = Nc.

Theorem 1. (Translation Theorem) For all distribution-
s, D, there exists a constant Nc =

∑
(x,y,c)∼D c, then for any

classifier h:

CRD (h) = ERD̂ (h)

Proof.

CRD (h) =
1

Nc

∑
(x,y,c)∼D

c× I [y 6= h (x)]

=
1

N̂

∑
(x,y,c)∼D

c× I [y 6= h (x)]

=
1

N̂

∑
(x,y,c)∼D̂

I [y 6= h (x)]

= ERD̂ (h)

From Theorem 1, we can get that, if we create a distribu-

tion D̂, which is constructed from the original distribution D
according to (3), then the accuracy-based classifier learned

from D̂, would be cost-sensitive for the instances from D.
In the remaining part of this section, we will discuss how to

build a soft cost-sensitive classifier, which can get the similar
CR with the cost-sensitive algorithm, and achieve the lower
ER. Motivated by the idea of [5], we focus on minimizing
the weighted sum of ER and CR.

Theorem 2. For all distributions, D, for any fixed vari-

able α ∈ [0, 1], we create a new distribution D̃:

D̃ (x, y, c) ≡
(
α× c+ (1− α)× Nc

N

)
D (x, y, c) (4)

we note that:

Ñα =
∑

(x,y,c)∼D

(
α× c+ (1− α)× Nc

N

)
then for any classifier h:

SumD (h) = ERD̃ (h) (5)

Proof.

SumD (h) = α× CRD + (1− α)× ERD

=
α

Nc

∑
(x,y,c)∼D

c× I [y 6= h (x)]

+
(1− α)

N

∑
(x,y,c)∼D

I [y 6= h (x)]

=
1

Nc

∑
(x,y,c)∼D

(
α× c

+ (1− α)× Nc
N

)
× I [y 6= h (x)]

=
Ñα
Nc
× 1

Ñα

∑
(x,y,c)∼D̃

I [y 6= h (x)]

=
Ñα
Nc
× ERD̃ (h)

= ERD̃ (h)

where Ñα =
∑

(x,y,c)∼D

(
α× c+ (1− α)× Nc

N

)

= α
∑

(x,y,c)∼D

c+ (1− α)× Nc
N

∑
(x,y,c)∼D

1

= α×Nc + (1− α)× Nc
N
×N

= Nc

The left side of (5) is the weighted sum of CR and ER that
we want to minimize, while the other side is the expected
Error Rate (ER) that many existing algorithms focus on. In
other words, Theorem 2 states that by creating a distribu-

tion D̃, the accuracy-based classifier can be improved to soft
cost-sensitive one immediately.

For a finite dataset, the N and Nc are both constant, thus
the ratio Nc

N
is known. However, since the data stream is

endless, as time progresses, both N and Nc tend to infinity.
While for the steady data stream, the instances are drawn
from a stationary distribution D, therefore, the true value
of ratio Nc

N
is also a constant. As long as the ratio Nc

N
is

known, Theorem 2 can be applied to the scenario of data
streams. In fact, an individual process is added to estimate
the ratio Nc

N
during handling the data stream, in order to

make use of Theorem 2.

4. CSGDT
Theorem 1 shows that the accuracy-based classifier can

be converted into a cost-sensitive one immediately, by con-

structing a distribution D̂. In this section, on the basis of
Theorem 1 and GDT [8], CsGDT (Cost-sensitive Gaussian
Decision Tree) is proposed to process a data stream with
non-uniform misclassification costs.

4.1 Constructing Distribution D̂

According to Theorem 1, an instance (x, y, c) from D cor-

responds to c instances of D̂, then we can add a weight w (k)
to each instance from distribution D whose class label is k,
this method is equivalent to building a separate distribution

D̂.

w(k) = ck (6)

ck is the k-th class’s misclassification cost. Since the distri-
bution D is stable and misclassification cost c of each class
is fixed, then the weight w (k) would be fixed.

There are several details of how to use the instance’s
weight in the decision tree algorithm. Firstly, the instance’s
weight is used to alter the probability p(k|q) to weighted
probability pw(k|q) (7), which will be used in the calcula-
tion of information gain.

pw (k|q) =
w (k)nkq∑
i w (i)niq

(7)

pw(k|q) means the k-th class’s weighted probability at node
q and niq means the number of the instances whose class
label is i at node q.

Secondly, after the decision tree model has been construct-
ed, the k-th (8) class should be used to label the leaf q, this
strategy is essential to achieve the same effect of building a

separate distribution D̂.



Figure 1: Experiment with α of single soft-CsGDT

k = argmax
j
{w (j)njq}, j ∈ {0, 1} (8)

4.2 Building CsGDT
The Gaussian Decision Tree (GDT) is designed to classi-

fy data streams with high accuracy, which uses the Gaus-
sian approximation bound to select the best attribute dur-
ing the growth of the decision tree. In this section, based on
the framework of GDT [8], CsGDT (Cost-sensitive Gaussian
Decision Tree) is proposed by doing as follows: firstly, use
weighted probability pw(k|q) (7) to calculate the information
gain; secondly, label each leaf with k-th class (8).

5. SOFT-CSGDT
Based on Theorem 2, GDT and OcVFDT [6], we propose

soft Cost-sensitive Gaussian Decision Tree (soft-CsGDT) al-
gorithm to take both cost and accuracy into account.

5.1 Constructing Distribution D̃

Based on the analysis in Section 4.1, to construct distri-

bution D̃, we just need to modify w(k) as (9).

w (k) = α× ck + (1− α)× Nc
N

(9)

ck is the k-th class’s misclassification cost.
Fig.1 demonstrates a property of soft cost-sensitive clas-

sification. The experiment is conducted on synthetic data
with training data size N = 2000k, please refer to Section
6.1 for more details. Fig.1 shows that, with various values
of α, the Cost Rate always changes, and the lowest Cost
Rate sometimes does not occur at either α = 0 nor α = 1,
while some intermediate value of α can result in better per-
formance. That’s because the cost-sensitive algorithm lead
to overfitting when only costs are concerned. This property
also has been observed in [5]. On the basis of this property,
we build a forest of decision trees with various values of α,
and select the most appropriate one as the final classifier.

5.2 Building Soft-CsGDT
As in the scenario of data stream, the ratio Nc

N
in (9) can’t

be known in advance, then a process is added before the core
algorithm to estimate the ratio. The measured value of Nc

N
keeps being updated so as to approaching the real value.
Finally, after the model has been finished, the leaf will be

labeled with class k according to (8). As the best setting
of α in (9) is unknown, we select ten possible values of α,
from 0.1 to 1. Then, we obtain a forest, T , with ten different
soft-CsGDTs.

The most appropriate tree in T is then chosen by eval-
uating the performance of each separate soft-CsGDT with
a block of validating instances. The instances in the vali-
dating block are randomly selected from S with probability
pvalidate, and the size of the validating block is nvalidate. As
soon as the validating block is full, the instances inside it
will be used to assess each tree in T , and then the validat-
ing block is cleared. Finally, the assessment data is used to
select the most appropriate tree as the final classifier. The
algorithm for constructing soft cost-sensitive gaussian deci-
sion tree is listed in Algorithm 1.

Algorithm 1 : soft-CsGDT algorithm

Input:
a stream of instances, S;
a set of discrete attributes, A;
an array of misclassification cost [c0, c1], c;
the relative importance of CR, β;
the threshold of the proportion of minority class, th;
the number of instances used to estimate Nc

N
, nratio;

one minus the desired probability of choosing the correct
attribute at any given node, δ;
user-specified tie threshold, τ ;
the number of instances between check the leaf, nmin;

Output: soft cost-sensitive gaussian decision tree.
1: V alidatingBlock = φ, T = φ;
2: for each i ∈ [1, 10] do
3: Initialize a tree Ti with only a leaf L0 (the root);
4: Ti.L0.A = A, T = T ∪ Ti;
5: end for
6: Estimate Nc

N
using the first nratio instances of S;

7: for each latter instance s ∈ S do
8: Update Nc

N
;

9: for each i ∈ [1, 10] do
10: Compute w = [w(0), w(1)] with α = i

10
, following

Formula (9);
11: Grow(Ti,w, s, δ, τ, nmin)
12: end for
13: if Random() ≤ pvalidate then
14: V alidateBlock = V alidateBlock ∪ s;
15: if |V alidateBlock| == nvalidate then
16: Assess(T, V alidateBlock);
17: V alidateBlock = φ;
18: end if
19: end if
20: end for
21: if V alidateBlock 6= φ then
22: Assess(T, V alidateBlock);
23: end if
24: return GetBestTree(T );

In Algorithm 1, Step 1 to 6 are an initialization process;
a forest of 10 trees can be obtained from Step 7 to 12; then
in Step 13 to 23, the trees are assessed with the validat-
ing block. The procedure Grow(Ti,w, s, δ, τ, nmin) can con-
struct a single soft cost-sensitive decision tree, where w =
[w(0), w(1)] is the array of class weights, more details will be
introduced in Section 5.3. The function Random() generates
a random number in [0, 1]. The Assess(T, V alidateBlock)



is used to assess the classification performance of trees in
T . Finally, the procedure GetBestTree(T ) returns the most
appropriate tree chosen from forest T , more details are il-
lustrated in Section 5.4.

5.3 Growth of Single Soft-CsGDT
Based on GDT [8], the construction procedure of single

soft-CsGDT is illustrated in Algorithm 2.
Algorithm 2 can be divided into two parts. In the first

part, from Step 1 to 2, the instance s passes throw soft-
CsGDT tree from the root to a leaf (denoted as Lq) and
then the class’s label of node Lq is updated (Step 2). In
the second part, Step 3 to 20 are the growth process of the
tree. For each available attribute at Lq, information gain
is calculated with weighted probability pw(k|q). Once the
condition of Step 13 is satisfied, leaf node Lq will be replaced
with an internal node by splitting on the best attribute Aa.

Algorithm 2 : Grow(Ti,w, s, δ, τ, nmin)

Input: Refer to Algorithm 1 for the details of input param-
eters;

1: Lq = Ti.sort(s);
2: Label node Lq with class k, following Formula (8);
3: Nclass = numOfClassesAtNode(Lq);
4: Ninstances = numOfInstancesAtNode(Lq);
5: PminClass = proportionOfMinorityClassAtNode(Lq);
6: if Nclass > 1 and Ninstances%nmin == 0 and
PminClass > th then

7: for each Ai ∈ Lq.A do
8: Compute G(Ai) using weighted probability follow-

ing Formula (7);
9: end for

10: Choose attribute Aa and Ab with the highest and
second-highest G;

11: 4G = G(Aa)−G(Ab);
12: Compute ε following the Formula in [8];
13: if 4G > ε or 4G ≤ ε < τ then
14: Split on attribute Aa;
15: for each branch of the split do
16: addChildLeaf();
17: Set the attribute set of the ChildLeaf as

Lq.A\{Aa};
18: end for
19: end if
20: end if

5.4 Tree Selection
Ten single trees are trained in Algorithm 1, then aiming

at the goal to balance cost and accuracy, we will select the
most appropriate tree as the final classifier model.

By using the validating block to assess each tree Ti ∈ T ,
the following statistics are collected:

• nk, the count of the instances whose actual class label
is k in the validating block.

• mi
k, the count of the instances misclassified by tree Ti,

whose actual class label is k in the validating block.

As soon as the validating block is full, the procedure
Assess(T, V alidateBlock) will be called to collect the statis-
tics listed above. The statistical data of each run of the same
tree Ti should be accumulated together.

The following formula is used to evaluate the performance
of each tree Ti ∈ T :

wSum(Ti) = β × CRi + (1− β)× ERi

where CRi =

∑
k ckm

i
k∑

k cknk
, ERi =

∑
km

i
k∑

k nk

β is a user-specified parameter, which represents the relative
importance of CR.

The most appropriate tree is selected by:

Tj = argmin
i

(wSum(Ti)), 1 ≤ i ≤ 10

Let |A| be the number of attributes, v be the maximum
number of values for an attribute, |C| be the number of
classes, d be the depth of the decision tree, N be the number
of instances of data stream S, then the time complexity of
Algorithm 1 is O(N |A||C|dv) + O(N |A||C|dvpvalidate) =
O(N).

6. EXPERIMENTS
In this section, we evaluate the classification performance

of CsGDT and soft-CsGDT, and the experiments are con-
ducted on both synthetic data and real-world data. Fur-
thermore, as CsGDT is a cost-sensitive classification of data
streams, thus the comparison of CsGDT and soft-CsGDT
can be used to show the strong ability of soft-CsGDT to
balance cost and accuracy.

All of the experiments are implemented on the platform
of MOA [1], and the environment is a PC with Windows 7
OS, Core 2 Duo CPU and 4G memory.

6.1 Synthetic Data
In this part, each algorithm runs twelve times on synthet-

ic dataset, and the average statistics are used as the results.
After each run, a size of 50k instances are used for test-
ing. Please refer to Section 6.1.1 for more details about the
synthetic dataset.

The default parameter values of each algorithm are set as
Table 1. Those settings remain unchanged unless there is
another statement.

Table 1: Experiment Parameters
PARAMETER VALUE
c [0.1, 0.9]
β 0.65
th 0.05
nratio 2000

δ 10−7

τ 0.05
nmin 200
nvalidate 200
pvalidate 0.1

6.1.1 Generating Synthetic Data Stream
The synthetic data is similar with [8], which is generated

by a synthetic random tree. At the first dmin levels of the
tree, all the nodes are split to spread. At each following
level, p percent of nodes will be replaced by leaves, while the
others will go on splitting with a random assigned attribute,
which hasn’t ever been used in the path from the root to



Figure 2: Comparison of CsGDT and C4.5CS mc

this node. There is also a parameter dmax, which limits the
depth of the synthetic tree. After the tree is built up, each
leaf is labeled with a class randomly. In the experiments, we
create twelve different synthetic random trees, all of which
have the same basic setting with 100 binary attributes, two-
class label, p = 0.15, dmin = 3 and dmax = 18.

6.1.2 CsGDT vs. C4.5CS mc
In order to evaluate the classification performance of Cs-

GDT, we carry out the first experiment to compare CsGDT
with C4.5CS mc [10]. The parameters of C4.5CS mc are set
as [10]. In Fig.2, the horizontal axis represents the training
data size N , the vertical axis represents Cost Rate (CR). For
the limitation of random access memory, the maximal data
size for C4.5CS mc is N = 800k. From Fig.2, we get to know
that, when N ≤ 800k, with the same size of dataset, CR of
C4.5CS mc is lower than CsGDT. Most importantly, when
N > 800k, as the growth of data size, CsGDT can achieve a
significant improvement in CR. Thus, CsGDT is an efficient
algorithm to build the cost-sensitive classifier model of data
streams.

6.1.3 Analysis of Parameters in soft-CsGDT
Another experiment is conducted, to study the influence of

β. For soft-CsGDT, we set N = 4000k, c = [0.1, 0.9], both
GDT and CsGDT are selected as benchmark algorithms.
The results are shown in Fig.3.

From Fig.3, we can know that as the growth of β, ER in-
creases gradually, while CR decreases rapidly when β ≤ 0.6.
In fact, the parameter β represents the relative importance
of Cost Rate (CR), user can set it according to the specific
environment. In the following experiments, we focus on re-
ducing ER, while guaranteeing the lowest CR, therefore we
set β = 0.65.

6.1.4 CsGDT vs. soft-CsGDT
In this group of experiments, we compare the performance

of CsGDT and soft-CsGDT, GDT is used as the benchmark
algorithm. For soft-CsGDT, we set nratio = 2000 to esti-
mate Nc

N
.

First, we conduct the experiment with different training
data size. The results are shown in Fig.4. In Fig.4(A) and
Fig.4(B), the horizontal axis represents dataset size N , the
vertical axis represents ER and CR, respectively. From Fig.4
all of the following can be observed. First, with different
size of training dataset, GDT can get lower error rate (ER)

than CsGDT, but leads to unacceptable high cost rate (CR).
That’s because GDT is an accuracy-based algorithm which
focuses on minimizing the ER. Second, CsGDT can achieve
obvious low CR, but results in high ER, which is due to
that CsGDT is just a cost-sensitive algorithm which aims
at minimizing the CR. Last, soft-CsGDT can achieve the
similar CR with CsGDT, while a significant reduction in
ER compared with CsGDT.

Next, we examine the performance of both CsGDT and
soft-CsGDT with a variety of misclassification costs, and the
GDT is used as benchmark algorithm. A new parameter
cratio = c0

c1
is used to represent the cost’s difference, where

ck, k ∈ {0, 1} is the misclassification cost of the k-th class.
Since the distribution of the synthetic data streams are even,
then we only conduct the experiments with cratio ≥ 1. The
experiments are carried out with training data size N =
4000k. Fig.5 shows that, as cratio increases from 1 to 35,
CR of CsGDT greatly decreases, with a significant growth
of ER. While ER of soft-CsGDT changes smoothly, which is
significantly lower than CsGDT, and CR is about the same.
That is, with a wide range of cratio, soft-CsGDT can achieve
better performance than CsGDT. The explanation for this
result is that soft-CsGDT can take both CR and ER into
consideration, while CsGDT only focuses on CR.

6.1.5 Running Time and Size of the Tree
In this part, we give a view of the final decision trees of

the three algorithms. The experiment is conducted with
various values of training data size N , and the other input
parameters are set as Table 1. The results are illustrated in
Table 2, the first column represents training data size N , the
remaining columns are the running time, the total number
of nodes and the number of leaves of the final decision tree.
Note that, the running time here only contains the time of
building the classifier model. The time of both generating
synthetic data streams and I/O are not included.

6.2 Real-world Data
In the following experiment, we choose the real-world KD-

D CUP’99 dataset to investigate the performance of both
CsGDT and soft-CsGDT.

6.2.1 Dataset and Preprocessing
The KDD CUP’99 dataset contains 4898431 instances. A

typical instance is composed of 7 nominal attributes and
34 numerical attributes. Since the algorithm GDT can on-
ly deal with the nominal attribute, then we should add a
preprocessing step to discrete the numerical attributes. we
adopt the similar processing with [8], each numerical at-
tribute’s range is divided into 15 chunks, the value of these
attributes are replaced with the index number of the chunk.
As GDT can only deal with two-class data streams, we
also need to aggregate the four types of networks attack-
s (′dos′,′ u2l′,′ r2l′,′ probe′) as one ′bad′ class, the ′normal′

class remains the same. After preprocessing, the proportion
of ′bad′ class is 80.14%.

We select a number of 50k instances for testing random-
ly, and the other parts used to train the classifier mod-
el. The parameters of the algorithms are set as follows:
th = 0.005, δ = 10−5, β = 0.65. In particular, to evaluate
the general classification performance of CsGDT and soft-
CsGDT, we conduct a group of experiments with various
values of c, the other parameters are set as Table 1.



Figure 3: Experiment with β of soft-CsGDT

Figure 4: Comparison of CsGDT and soft-CsGDT

Figure 5: Experiment with Cratio of CsGDT and soft-CsGDT

6.2.2 Experiment Result
With each value of cost array c, we run each algorithm

twelve times with different order of sequence S, and the
averaged experiment results are displayed in Table 3.

In Table 3, the first two columns give the values of cost
array c, ′norm′ represents the ′normal′ class and ′bad′ rep-
resents the other four classes. The other columns summarize
the experiment results: the middle three columns are ER,
and the last three are CR.

It is obvious from Table 3, despite of the uneven distribu-
tion of the data, CsGDT always achieves a low CR, while

soft-CsGDT acquires a similar CR (always a bit lower CR),
and a more lower ER than CsGDT. In addition, the perfor-
mance of soft-CsGDT remains stable with various values of
cost array c.

7. CONCLUSION
In this paper, we focus on the cost-sensitive classification

of data streams. Following the idea of the folk theorem,
we upgrade it and propose a new theorem, which allows us
to improve accuracy-based classifier to be soft cost-sensitive
immediately by constructing a new distribution from the o-



Table 2: Running Time and Size of the Tree

N
GDT CsGDT soft-CsGDT

Time(ms) #Nodes #Leaves Time(ms) #Nodes #Leaves Time(ms) #Nodes #Leaves
100k 776.40 9.7 5.3 792.12 8.0 4.5 8183.60 10.2 5.6

1000k 7844.40 78.8 39.9 7941.43 66.8 33.9 86496.59 72.3 36.7
10000k 93034.60 644.3 322.7 93125.91 551.5 276.2 960368.52 610.5 305.8

100000k 1010805.44 4427.2 2214.1 1102372.31 3675.5 1838.2 12615947.93 4253.2 2127.1

Table 3: Experiment on KDDCUP99
c Error Rate(%) Cost Rate(%)

norm bad GDT CsGDT soft-CsGDT GDT CsGDT soft-CsGDT
0.1 0.9 0.40± 0.08∗ 0.70± 0.04 0.43± 0.20 0.35± 0.11 0.18± 0.01∗ 0.20± 0.03
0.3 0.7 0.40± 0.08 0.63± 0.15 0.33± 0.09∗ 0.37± 0.09 0.39± 0.05 0.31± 0.11∗

0.7 0.3 0.40± 0.08 0.34± 0.09 0.31± 0.08∗ 0.45± 0.10 0.32± 0.10 0.31± 0.09∗

0.9 0.1 0.40± 0.08∗ 0.56± 0.10 0.42± 0.18 0.55± 0.19 0.23± 0.03 0.19± 0.06∗

(those with the lowest mean are marked with ∗; those within one standard error of the lowest one are in bold)

riginal distribution. Based on the new theorem, GDT and
OcVFDT, we propose soft-CsGDT algorithm to deal with
data streams with non-uniform misclassification costs, which
can make a trade-off between accuracy and cost. The ex-
perimental results on both synthetic and real-world datasets,
show that soft-CsGDT can guarantee similar Cost Rate with
cost-sensitive classification, at the same time, it achieves a
significant improvement in Error Rate.
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