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ABSTRACT
Online display advertisers extensively use the concept of a
user segment to cluster users into targetable groups. When
the sizes of such segments are less than the desired value for
campaign budgets, there is a need to use probabilistic mod-
eling to expand the size. This process is termed look-alike
modeling. Given the multitude of data providers and on-
line data sources, there are thousands of segments for each
targetable consumer extracted from billions of online (even
offline) actions performed by millions of users. The major-
ity of advertisers, marketers and publishers have to use large
scale distributed infrastructures to create thousands of user
segments on a daily basis. Developing accurate data min-
ing models efficiently within such platforms is a challenging
task. The volume and variety of data can be a significant
bottleneck for non-disk resident algorithms, since operating
time for training and scoring hundreds of segments with mil-
lions of targetable users is non-trivial.

In this paper, we present a novel k-means based distributed
in-database algorithm for look-alike modeling implemented
within the nPario database system. We demonstrate the
utility of the algorithm: accurate, invariant of size and skew
of the targetable audience(very few positive examples), and
dependent linearly on the capacity and number of nodes
in the distributed environment. To the best of our knowl-
edge this is the first ever commercially deployed distributed
look-alike modeling implementation to solve this problem.
We compare the performance of our algorithm with other
distributed and non-distributed look-alike modeling tech-
niques, and report the results over a multi-core environ-
ment.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
H.2.8 [Database Management]: Database Applications-
Data mining
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1. INTRODUCTION
In this paper we propose a novel distributed in-database

clustering algorithm for look-alike modeling, and demon-
strate that the proposed algorithm is scalable for very large
sized segments, can handle hundreds of input attributes as
modeling parameters (high-dimensional), and is compara-
bly accurate with baseline previously reported approaches
for this task.

In Internet advertising, a group of users that form a tar-
getable audience is termed a segment. This notion of a user
segment is central to ad targeting in both contextual and
display advertising. The entire revenue growth of the online
ad-technology industry is driven by advances in the ability
to segment users efficiently and accurately into cohesive tar-
getable groups, i.e., targetable segments [10]. As opposed to
early stage online targeting mechanisms, which relied only
on user demographics, recent online targeting relies on min-
ing large volumes of user (consumer) events for insights that
can be then monetized. This event data is often augmented
with additional information available about the consumer
from various third-party data providers who continuously
track and probabilistically estimate a particular user’s in-
terests. This enriched consumer profile then enables adver-
tisers to determine the exact combinations of criteria they
want to target for a particular display advertising campaign.
In spite of the multitude of data providers and large volumes
of behavioral data, advertisers are often faced with a short-
age of targetable consumers since ad-campaigns are often
short-term, wide reaching and intended for a broad set of
audiences. Hence, advertisers and marketers have come to
rely on data mining models to enable them to expand the
targetable audience based on the characteristics of the base-
line segment [11]. This is termed look-alike modeling.

Online advertisers today use advanced tools to create a
segment - a homogeneous group of users sharing several be-
havioral characteristics - to indicate a targetable set of users.
In order to be useful, a given segment needs to meet with
three criteria - homogeneity, identifiability and interpretabil-
ity [16]. Segments are usually created towards specific cam-
paigns and the total number of segments can be very large.
Three challenges exist in the context of segmenting big data
- a large number of attributes increasing the dimensional-
ity of segmentation, a sparse distribution of segments across
users and dynamic segments requiring segmentation to be
done quickly on a daily basis.

In order to make useful conclusions from this data, tra-
ditionally, the data is loaded into a relational database or
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Figure 1: Modeling the segment “sports enthusiast” using rule-based approaches (a), regression approaches
(b) and clustering approaches (c).

a warehouse. Most data warehouses do not natively sup-
port mining and analytics, so the data is usually exported
and then processed by external applications (such as the
R statistical computing framework or Matlab). After pro-
cessing, results are imported into the data warehouse again.
While this works well for small data sets, current day data
sets far exceed the capabilities of this process and need to
be processed in a distributed environment. Exporting and
importing adds significant time to the analysis workflow, is
cumbersome and error prone. Thus over the last decade
data analytics are migrating closer to the database [6, 8]
motivating the in-database approach adopted in this work.
However, existing libraries tend to be generic approaches
and fail to cope with the challenges posed by online adver-
tising data.

Online advertising data contains membership information
for billions of users across several thousand segments. To
complicate matters further, membership information is typ-
ically only positive, implying that for a given segment, while
we have a clear definition of who belongs to the segment, we
do not know for sure whether users not belonging to the seg-
ment are truly negative or just unlabeled data. In addition,
the data is also very sparse - very few conversions per impres-
sions. This introduces a fairly well understood problem in
marketing and ad targeting of finding too few users to make
up a targetable audience for a given campaign or ad. This
problem is usually caused by complex campaign rules, lack
of density of third-party data and incomplete or conflicting
user profile information. Consequently, advertisers are of-
ten looking to expand a given segment containing a small
number of users who have responded well to a given cam-
paign. To achieve expansion, advertisers and marketers rely
on look-alike modeling to predict the likelihood of a given
user belonging to a particular segment, based on known at-
tributes about the user. This prediction task is non-trivial
since the datasets often lack negative class labels, are of low-
quality and density and often involve conflicting information
about the same attribute from different data providers.

From a data mining perspective look-alike modeling trans-
lates into a predictive modeling task - given a segment def-
inition in terms of a group of users sharing behavior, our
goal is to assign to all users that do not belong to the seg-
ment, a score indicating how likely the user is to belong to
the segment. The characteristics of a useful segment - ho-
mogeneity (a high similarity amongst the users within the
segment) and identifiability (a low similarity between users

of different segments) naturally lead us towards clustering
approaches for segment expansion.

In this paper we present a fast, accurate algorithm for ex-
panding segments and identifying other segments, which are,
most related to the segment in question. We make several
contributions through this paper :

• we develop a novel distributed in-database k-means
algorithm, which computes segment expansions effi-
ciently

• we compare our algorithm to the current state-of-the-
art in look-alike modeling and demonstrate how our
approach outperforms existing approaches

• we develop a novel approach to compute related seg-
ments with a low overlap in user membership.

2. RELATED WORK
Modeling users based on their propensity to respond to

an advertisement campaign is a problem that has been of
interest to advertisers for several decades. Given a segment
that responds well to a campaign, advertisers are interested
in expanding the segment to other users who would also be
likely to respond well to the same campaign. Conventional
approaches rely on manual rule-based models of segments,
defined by those driving the ad campaigns. Such approaches
characterize segments based on specific demographic rules
applicable to the users within the segment (e.g., age between
18 and 24, annual income lesser than 80,000) [4]. Models are
usually formulated by domain experts and thus, are com-
monly used in scenarios where such domain knowledge is
readily available.

On the contrary, look-alike models allow for a fuzzy def-
inition of segment membership, by identifying users which
resemble those in the segment of interest. As a result, a
look-like model could result in fuzzy definition of segments
combining multiple attributes to differing extents. Several
approaches for look-alike modeling have been developed in
the last decade including regression approaches and frequent
pattern mining approaches. Regression models [17] begin
with a segment of users who respond to a certain ad cam-
paign and fit a description (computationally modeled as a
weighted sum of attributes). Additional users are then as-
signed to the segment based on how well they fit the de-
scription. On the other hand, there have been multiple en-
deavors applying frequent pattern mining to build look-alike



models [3, 11] though none of these models have been imple-
mented over a distributed big data framework or reported
ability to process segments containing millions of users. Such
approaches derive rules from pairs of features that define a
segment. The rules are then applied to expand the segment.
Behavioral data is characterized by a very small number of
conversions or positive class labels in a given campaign, mak-
ing it very challenging to use classification approaches such
as regression or support vector machines in this context.

What the segment expansion process needs is a fast ap-
proach that will capture the behavior of users within the
segments using a limited number of positive class labels,
take into account the high-dimensional variability in those
users, and assign a score to users outside the segment, based
on how similar the user is to the segment.

Our attention now turns towards clustering approaches
for segment expansion. Clustering is defined as the unsu-
pervised classification of patterns (observations, data items
or feature vectors) into groups (clusters) [9]. Clustering has
been used in several related marketing applications [15, 13].
In this work, we develop an algorithm for segment expansion
and look-alike modeling. We model segments as clusters of
users with different characteristics, which we learn through
the k-means algorithm. We then score users based the sim-
ilarity between the user and the segment cluster.

An important aspect in dealing with big advertising data
is dealing with the volume of the data. In the recent years,
there has been a migration of data mining operations from
externals applications to within the database [8, 6]. Addi-
tionally, columnar databases are becoming increasingly pop-
ular as the data management platform for advertising and
marketing datasets due to the increasing amount of enter-
prises adopting key-value pair storage over relational data
models [2, 14, 1]. At the same time, distributed data min-
ing efforts such as Apache Mahout [12] and similar data
mining techniques using Hadoop and Map-Reduce [5] based
implementations are also becoming popular. Distributed
databases have a sophisticated query processing engine that
is able to partition data across multiple nodes very similar to
the Map Reduce paradigm. Emerging in-database analyt-
ics [6, 8] are trying to exploit this highly optimized parallel
query processing engine by writing algorithms which do not
have to worry about distribution since the query processor
will do that quite efficiently on its own.

For instance, MADlib [8] is an open source project working
towards a suite of machine learning, mining, statistical and
mathematical operations for databases completely based on
data-parallel algorithms. Similarly, Bismarck [6] utilizes an
efficient in-database implementation of the incremental gra-
dient descent algorithm to develop numerous data mining
algorithms such as regression and support vectors machines.
Bismark is now a part of the MADLib library. MADlib
works on PostgreSQL (which currently supports a single
node) and on a distributed database based on PostgreSQL
working on horizontally partitioned data sets (Greenplum
community edition). However both of these are row stores,
i.e., the query processor pipeline works on a record at a
time. Our algorithm relies on a columnar store database
so the data can be physically partitioned both horizontally
and vertically across a very large number of nodes. The
query processor works on a vector of rows at a time, pro-
viding drastic improvements in performance. Motivated by
this we developed a distributed in-database implementation

of k-means for segment expansion.
In this paper we present a look-alike model to learn the

clustering model of segments and then use this model to
make class predictions on the additional users that would
belong to this segment. Our algorithm is one of the pio-
neers in distributed in-database look-alike modeling using
k-means. As opposed to existing approaches, which extract
the dataset and perform the mining process, or undergo mul-
tiple passes over the dataset, we perform our analysis within
the database. As seen in the following sections, such an ap-
proach both minimizes latency and provides a high accuracy.

3. DISTRIBUTED IN-DATABASE CLUSTER-
ING

Let U denote the population of users (U = {u1, u2, · · ·un})
typically identified by cookies or similar identifiers, S denote
the set of segments (S = {s1, s2, · · · sm}) such as sports en-
thusiast or gender, and f : S → U denote an n:m map-
ping between the segments and the users where f(si) =
(ui1, ui2, · · ·uij) represents those users that belong to the
segment si. For implementation, we assume that this map-
ping works both ways i.e., data structures for both the users
(f(si)) belonging to a specified segment (si) as well as the
segments (f−1(ui)) that a specified user (ui) belongs to can
be constructed.

Algorithm 1 Clustering based Look-Alike Modeling

Input: segment of interest, si, user-segment mapping,
f(si), number of clusters, k, cross-validation folds, c

Output: expanded segment s
′
i, score αj : ∀uj ∈ (U \ Ui)

accuracy of model acc

1: s
′
i ← ∅

2: Ui ← f(si)
3: Split Ui into c groups (U1

i , U
2
i , · · ·Uc

i ) for X validation:
4: for p = (1, 2, · · · c) do
5: U train

i ← uj : uj ∈ Ui;uj /∈ Up
i

6: U test
i ← uj : uj ∈ Up

i

7: In-database k-means:
Ci ← KMeansTraining(U train

i , k)

8: U i ← x ∈ U : x /∈ f(si), |U
′

i| = |U train
i |

9: Ci ← KMeansTraining(U
′

i, k)
10: count← 0
11: for uj ∈ U test

i do

12: if min(cos(uj , Ci)) > min(cos(uj , C
′
i )) then

13: count← count+ 1
14: end if
15: accp ← count

|Utest
i | is accuracy of this run

16: end for
17: end for
18: acc←

∑p
i=1 accp

c
19: Perform scoring using the model:
20: for uj ∈ (U \ Ui) do

21: if cos(uj , Ci) > cos(uj , C
′
i ) then

22: s
′
i ← s

′
i ∪ u

23: end if
24: αj ← cos(uj , Ci)
25: end for

Given a segment of interest si consisting of users f(si) =
(ui1, ui2, · · ·uij) to expand, the goal of look-alike modeling



is to compute:

• for every user u′i /∈ f(si), a score α→ [0, 1] quantify-
ing the likelihood of this user u′i to belong to si.

• for every segment s′i ∈ (S \ si), the lift l → R+, in-
dicative of the extent to which the group of users in
segment s′i, resemble the segment si relative to all the
segments in S.

3.1 Clustering based Look-Alike Modeling for
Segment Expansion

Our model leverages the inherent overlapping nature of
segment definitions as illustrated in Figure 2. Algorithm
1 illustrates the steps involved in expanding a segment us-
ing such a clustering model. Given a segment of interest
si consisting of users f(si) = (ui1, ui2, · · ·uij), our algo-
rithm begins with splitting these users into c folds for cross-
validation. We use c − 1 folds for training and 1 fold for
testing. We then identify all the segments that these users
belong to and train the user-segment profile to obtain a set
of k centroids. Next, we sample a sub-set of users that do
not belong to the segment (unlabeled users) of the same size
as the previous training set and compute the centroid for
this set. We term this set as “unlabeled” as opposed to a
“negative” as this set consists of both users that do not be-
long to the segment of interest as well as users who resemble
the segment of interest (that would be assigned a high score
by algorithm 1). Our goal is to build models for both the
users within the segment and users that do not belong to the
segment. All candidate users (users that we are expanding
to) are then compared to these two models and assigned to
the segment, if the user is closer to the segment model than
the other model. Using the test set, we compute the simi-
larity of each user in the test set with both the positive and
unlabeled centroids. If a user is found to be closer to the
positive centroid than the unlabeled centroid, we consider it
to be correctly classified.

Users in our scenario are identified by the segments they
belong to, indicating the need for a distance metric that
will compute distance based on the membership properties
of elements such as cosine and Jaccard similarity. We used
these to optimize on computation time and accuracy. First,
the cosine similarity is used in training and validation as
it provides finer granularity of the hypothetical means get-
ting generated while computing the candidate centroids at
each iteration. Once the centroids are computed, it is suf-
ficient to just check the set overlap between iterations to
indicate if iterations have converged using a simpler binary
distance metric such as Jaccard. This helps save a few mi-
croseconds for each query which can add up very quickly for
large datasets and commercial systems such as ours, when
we have to expand hundreds if not thousands of segments
daily.

The procedure KMeansTrain invokes a novel distributed
implementation of the well known basic k-means algorithm [7]
in which the initial centroid is used to train d different par-
titions of the data. This results in d different centroids.
Before proceeding to describe the query that has been de-
veloped and the k-means algorithm, we first describe the
model obtained by our clustering algorithm. Figure 2 aids
in illustrating this concept. We use the overlapping nature
of segments to define a segment in terms of several other
segments. Thus our model takes the form of a set of clusters

Algorithm 2 K-Means Training

Input: training set, U train
i , user-segment mapping, f , num-

ber of clusters, k
Output: centroids, Ci, a set of size k where each element

is composed of a set of segment-similarity pairs (sj , dj)
where dj is the cosine similarity of the segment sj with
the segment si

1: U initial
i ← (u1, u2, · · ·uk) : uj ∈ U train

i

2: Ci ← (c1, c2, · · · ck) :
cj = (sj1, 0), (sj2, 0), · · · (sjg, 0);
f−1(U train

i ) = (sj1, sj2, · · · sjg)
3: for uj ∈ U train

i do
4: cb ← cb ∪ f−1(uj):

cos(f−1(uj), ca) = max
1≤a≤k

cos(f−1(uj), ca)

5: end for

drinks carbonated  

beverages 

auto-intender 

plays video games 

age between  

18 and 30 

users within segment 

of interest 

unlabeled users  un

segment of interest 

best candidate for  
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Figure 2: Clustering model of the segment “sports
enthusiast” illustrating the different related seg-
ments that users in this segment also belong to.
Section The metric “lift” identifies the best candi-
date for expansion - the segment which has the most
number of potential users.

(such as “auto-intender”, “plays video games”) each consist-
ing of a set of segments and their individual similarities to
the segment of interest. Our algorithm thus learns a set of k
sub-clusters where each cluster consists of segment similarity
pairs.

3.2 In-Database Distributed Query Syntax
Recall that our algorithm executes as an in-database query.

Next, we describe the query syntax for training the k-means
model. The query takes as input the user segment profile
data and a set of S segments (typically selected as S distinct
users and the segments they belong to) from the training set.

select segments as iteration_i_segments, similarity

from kmeansiteration (select

‘<iteration_(i-1)_segments>’, segments from

<user_segment_profile>);

The query returns a list of segments and the similarity of
each segment with the segment of interest. The list of seg-
ments is organized into k clusters and the similarity is com-
puted as in algorithm 2. We compare the centroids ob-
tained at iteration i with the centroids obtained by itera-



tion i − 1 and check if the Jaccard similarity (as explained
previously) between these centroids is greater than a certain
threshold (typically 0.9). Convergence parameters are: all
centroids unchanged (standard metric) or reaching the max-
imum number of iterations. We report these results in the
subsequent experiments section.

The lack of negative training examples (examples on users
who do not belong to a segment) poses a large challenge
while measuring the performance of the look-alike model.
Conventional metrics such as the precision and recall are no
longer applicable due to the lack of any negative training
examples (cannot identify the true negatives) to compare
against. Hence, instead, we adopt alternative performance
measures - the accuracy and confidence.

The accuracy of the test set is computed as:

accuracy =
number of correctly classified users

total number of users
(1)

This measure is useful since most advertisers are interested
primarily in classifiers that predict which users belong to
a segment (rather than which users do not). Additionally,
we also use the confidence to assess the performance of our
methods. The confidence is measured after expanding the
base segment (to sizes 2X, 3X and so on). The confidence at
2X is defined as the minimum confidence of the classifier for
any user within the expanded segment twice as large as the
original segment of interest i.e., if a segment was expanded
to a size twice as large as the base size, confidence reflects
the minimum similarity of a user (within this expanded set)
to the base set. Typically, competing approaches often show
average confidence since the average is higher than the mini-
mum. In our case we use a conservative approach and report
the minimum confidence. Further, the confidence was also
computed at 3X expansion to demonstrate the power for
look alike expansion.

3.3 Insights
One of the key contributions of our approach for look-alike

modeling is the interpretation component which provides
actionable insights for advertisers and marketeers. Next, we
describe the approach to determine related segments for a
base segment, and identify two efficiently computed metrics
which permit ranking of the related segments: (a) overall
similarity of a segment to the base segment and (b) lift. Our
customers have indicated these two as very useful features
of our application. Algorithm 3 shows the steps involved in
computing the overall segment similarity and lift.

Since the centroids are a list of clusters each containing
segment-similarity pairs, we first iterate through each seg-
ment within all pairs and compute for the segment the over-
all weighted average of similarities, weighted by the size of
each cluster that the segment would be a part of. This pro-
cess is also distributed and allows for normalization of the
similarity score based on the cluster sizes giving equal im-
portance to both segments within large clusters and those
within smaller clusters. Thus we compute the overall seg-
ment similarity for each segment.

To compute the lift, we first score a random set of users
that belong to the segment and determine how many belong
to the segment of interest. We then scale this proportion
by the average proportion of users in the related segment
who belong to the segment of interest to obtain the lift.
This metric allows advertisers to determine how good their

Algorithm 3 Insights and Lift Computation

Input: segment of interest, sk,
user-segment mapping, f ,
centroids, Ci, a set of size k where each element is com-
posed of a set of segment-similarity pairs < sj , dj >

Output: overall similarity, ri, ∀si ∈ (c1 ∪ c2 · · · ∪ ck),
lift, li, ∀si ∈ (c1 ∪ c2 · · · ∪ ck)

1: for (sj , dj) ∈ (c1 ∪ c2 · · · ∪ ck) do
2: rj ← 0
3: for ca ∈ (c1, c2 · · · ck) do
4: if (sj , dj) ∈ ca then
5: rj ← rj + (dj × |ca|)
6: end if
7: end for
8: rj ←

∑
ca∈(c1,c2···ck):(sj ,dj)∈ca

|ca|
9: end for

10: for (sj , dj) ∈ (c1 ∪ c2 · · · ∪ ck) do

11: tj ←
∑

uj∈U:uj∈f(sj),cos((uj)Ci)>0.5 1∑
uj∈U:uj∈f(sj)

1

12: end for
13: for (sj , dj) ∈ (c1 ∪ c2 · · · ∪ ck) do

14: lj ← lj∑
j:(sj,dj)∈(c1∪c2···∪ck) tj∑
j:(sj,dj)∈(c1∪c2···∪ck) 1

15: end for

return-on-investment would be if they were to target the
related segment.

4. EXPERIMENTS AND RESULTS
In the following subsections we describe the application of

our algorithms to online retail data, experiments conducted
and the performance results obtained through our experi-
ments.

4.1 Dataset Description
We used online retail data from a digital marketing com-

pany for the experiments in this paper. On a daily basis, the
data consists of ˜600 million impressions, ˜1.2 billion events,
˜513 million third-party cookies, ˜2700 segments and ˜200
gigabytes of new data. On average, a user was associated
with ˜25 segments. Figure 3 shows the distribution of users
across the segments. Our experiments were also tested on
a second dataset, consisting of 125 million unique users and
˜2000 segments and found to yield similar results. In all our
experiments we used the accuracy obtained through 5 fold
cross validation in order to select the best parameter. Our
experiments were conducted on a three node cluster with a
16-core AMD Opteron Processor 6128 and each node con-
sisting of 8 x 2 GB data disks and 128 GB RAM.

4.2 Characterizing Parameters for K-Means
We conducted several experiments to attempt to reduce

the time taken for segment expansion, by varying different
parameters. In the following sub-sections we describe the
relationships that the Jaccard convergence threshold, num-
ber of clusters (k) and the amount of training data used had
on the performance of the algorithm.

4.2.1 Jaccard Similarity
The Jaccard similarity metric is used to determine whether

the K-Means algorithm has converged after every iteration.
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Figure 3: Histogram of the user segment distribu-
tion. This shows a long-tailed distribution with a
steep descent. This plot illustrates the need for seg-
ment expansion.

Consequently, we anticipate that the lower the Jaccard sim-
ilarity, the faster the convergence and possibly, the lower
the accuracy, since we are relaxing the criteria for how con-
sistent the results of subsequent iterations should be. We
varied the Jaccard similarity between 0.25 and 1 and the
results are shown in the box plot in Figure 4. Surprisingly,
we noticed that lower Jaccard convergence thresholds did
not necessarily imply a lower accuracy. This is attributed
to the inability of the training to converge within the spec-
ified number of maximum iterations yielding a poor model
for validation. The best accuracy was achieved at a Jac-
card convergence threshold of 0.9 and this was used for all
subsequent experiments. Further our experiments were con-
ducted on segments of varying sizes and the average results
are reported.

4.2.2 Number of Clusters (k)
The next parameter we studied was the number of clus-

ters. For our data, we varied k between 3 and 40 and found
that k = 10 provides the best average performance and with
k > 10, the performance tended to fall. This was an inter-
esting find as this indicates that even with large numbers
of users, most users tend to fall under similar profiles with
similar behaviors. Our results are shown in Figure 5.

4.2.3 Training Data
Motivated by the small number of clusters (relative to

the segment sizes), our motivation was to determine if ac-
curate models could be obtained from smaller sample sets
of the data. This would then significantly reduce memory
requirements and improve performance. We conducted ex-
periments on samples of varying sizes representing 12.5%,
25 %, 27.5 % and 50 % of the data (totally consisting of
120 million users). Surprisingly, we found that even with a
4-fold increase in training size, the accuracy remained with
a 0.01 margin. This finding is significant as it shows that
random sampling has tremendous potential in building pre-
dictive models from big data.

4.2.4 Performance Analysis and Comparisons
As discussed earlier, frequent pattern mining through as-
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Figure 4: Average accuracy of the K-Means look-
alike model across 5-fold cross-validation while vary-
ing the Jaccard convergence threshold. The box plot
shows both the variance across the 5 folds and dif-
ferent segment sizes as well as the average accuracy.
The highest accuracy is obtained with a similarity
of 0.9.

sociation rule mining is a popular mechanism used for seg-
ment expansion. In this section, we compare our k-means
algorithm with association rule mining [3]. Further, we com-
pare two variants of the algorithm, a distributed one and
non-distributed one. Our results are shown in tables 1 and
2. Our system runs on thousands of segments in production,
but we constrained the experiment to 10 segments of varying
sizes, with 5 fold cross validation to elucidate the spectrum
of results. Further, we used a subset of the data (12.5%
of the original data) for the experiments in this section for
two reasons - a. we identified (refer figure 6) that training
samples as small as 12.5% of the data are adequate to build
accurate models and b. we compare against association rule
mining which is time-consuming for large segments.

In table 1, we show the variation in size of the segments
and the overall accuracy. We use multiple measures to assess
the performance of our algorithms, including the accuracy
obtained on the test set and confidence at 2X and 3X. Table
2 shows the performance in terms of the time taken by the
three algorithms. For association rule mining, we provide
the total time taken (both training and scoring). For the
k-means modeling, we provide more granular timings cap-
turing both training and scoring time as well as the number
of iterations for building the two models. We implemented
and tested two variations of the in-database strategy as out-
lined earlier. In the first strategy we implemented the algo-
rithm as in-database but without distribution. In the second
case we extended the algorithm to not only be in-database
but also distributed across nodes available to the distributed
query processor. Table 2 provides the number of iterations
to converge and the time per iteration for both the positive
and unlabeled case.

Our results were interesting on multiple levels. First, we
noticed that k-means consistently outperformed in-database
association rule mining in both accuracy and time taken to
generate a model. Secondly, we also noticed that, although
the confidence obtained at 2X and 3X expansions did de-
crease as the original segment size increases, overall k-means
based expansion results in lesser decline in confidence com-
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Figure 5: Average accuracy of the K-Means look-
alike model across 5-fold cross-validation while vary-
ing the number of clusters (k). The box plot illus-
trates both the average accuracy obtained as well as
the variance across the 5-fold cross validation runs
for segments of varying sizes. The plot illustrates
two metrics that could be used to pick the best num-
ber of clusters (k) - the accuracy and the variance
of accuracy across predictions. While k = 10 shows
the highest overall accuracy, k = 6 shows the most
robust model.

pared to the association rule mining model. The results in-
dicate that the in-database implementation combined with
distribution is a sound strategy when base segment sizes are
large. The savings in terms of time compared to the over-
head of distribution is not significant for very small segment
sizes (less than thousand users) which are fairly rare for tar-
geting purposes. In the future we intend to automate these
cut-off points empirically for a given dataset to determine if
we should employ a distributed or non-distributed strategy
for a given segment.

4.2.5 Insights
Using the trained models obtained for each segment, we

analyzed the insights obtained from each segment. These
are listed in table 3. Insights, as described before (also
illustrated in figure 2), are segments related to the segment
of interest. The lift value denotes how much the related
segment resembles the segment of interest relative to other
segments in the data set. It is interesting to see that iPhone
owners with a mortgage tend to travel internationally, be
upscale and like to gamble. Similarly those who gamble or
are in good financial health tend to be top tier spenders on
computer & software, home & garden, and movies and also
use rewards cards. This provides advertisers a good idea of
which related segments to target for a specific campaign.

5. CONCLUSION
Our paper makes a novel contribution to the field of scal-

able consumer intelligence and data science by providing a
fast, scalable algorithm to model user segments. There is
tremendous utility in developing in-database audience intel-
ligence mining models, due to the ability of this architec-
ture to scale while maintaining the flexibility of performing
database queries. In this paper, we describe a real-world,
deployed system that successfully helps advertisers and mar-
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Figure 6: Box plot showing the effects of the training
data size on accuracy. The plot illustrates both aver-
age accuracy as well as the variance in the accuracy
across 5-fold cross-validation applied to segments of
varying sizes. An interesting find from this figure
is that a training sample as small as 12.5% of the
total data would be adequate to build an accurate
predictive model.

keters create segments and then expand them in a matter
of seconds, using a novel in-database implementation of k-
means on the nPario massively parallel distributed colum-
nar database. We describe the details of our algorithm and
demonstrate the parameters that need to be tuned in order
to achieve the most accurate segment expansions. We find
that the in-database implementation combined with distri-
bution is sound when base segment sizes are large. We also
provide conclusive evidence to support the claim that with a
random sample of as little as 12.5 % of the original big data
set, one can still build accurate predictive models. Thus, the
decision to use either the distributed or non-distributed al-
gorithm for look-alike modeling is influenced by several fac-
tors including the capacity of the distributed environment
and the segment size.
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Table 3: Insights Obtained Using Clustering Model.

Segment Insights (Related Segments) Lift

iPhone Owners
With Mortgage
(52558 users)

Intent : Retail : Propensity - Retail - Upscale 1.48
Intent : Personal Tech : Propensity - Personal Tech - Mobile - BlackBerry 1.43
Intent : Personal Tech : Propensity - Personal Tech - Mobile - Smartphone 1.41
Intent : Retail : Propensity - Travel - Likely Gamblers 1.29
Intent : Retail : Propensity - Travel - International 1.26

Male Truck/
SUV/ Minivan
Buyer (91447
users)

Interest : Purchase Behavior : Purchase Behaviors - Shopping - Home and Garden - Appliances 1.35
Interest : Purchase Behavior : Purchase Behaviors - Shopping - Books 1.34
Interest : Purchase Behavior : Purchase Behaviors - Shopping - Personal Tech 1.3
Interest : Purchase Behavior : Purchase Behaviors - Shopping - Home and Garden - Decor 1.28
Branded : Hobbies - Reading 1.22

Gamblers or
Good Financial
Health (1016882
users)

Interest : Purchase Behavior : Purchase Behaviors - Shopping - Home and Garden 1.33
Branded : USE THIS: MasterCard - Top Tier Spender - Retail - Computer & Software Sales 1.22
Branded : USE THIS: MasterCard - Top Tier Spender - Entertainment - Movies 1.2
Branded : USE THIS: MasterCard - Top Tier Spender - Premium Cards 1.17
Branded : USE THIS: MasterCard - Top Tier Spender Rewards Cards 1.17



Figure 7: Snapshot of the application interface
showing expansion of the segment “Between 18 - 24
with a wireless plan”. The circle on the right shows
how many users are in the segment in relation to
the entire population. The slider allows users to in-
teractively explore how much confidence they would
need to compromise to reach a certain expansion.
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