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ABSTRACT
This paper investigates two types of graph queries: single source
distance (SSD) queries and single source shortest path (SSSP)
queries. Given a node v in a graphG, an SSD query from v asks for
the distance from v to any other node inG, while an SSSP query re-
trieves the shortest path from v to any other node. These two types
of queries find important applications in graph analysis, especially
in the computation of graph measures. Most of the existing solu-
tions for SSD and SSSP queries, however, require that the input
graph fits in the main memory, which renders them inapplicable for
the massive disk-resident graphs commonly used in web and social
applications. There are several techniques that are designed to be
I/O efficient, but they all focus on undirected and/or unweighted
graphs, and they only offer sub-optimal query efficiency.
To address the deficiency of existing work, this paper presents

Highways-on-Disk (HoD), a disk-based index that supports both
SSD and SSSP queries on directed and weighted graphs. The key
idea of HoD is to augment the input graph with a set of auxiliary
edges, and exploit them during query processing to reduce I/O and
computation costs. We experimentally evaluate HoD on both di-
rected and undirected real-world graphs with up to billions of nodes
and edges, and we demonstrate that HoD significantly outperforms
alternative solutions in terms of query efficiency.

Categories and Subject Descriptors
D.2.2 [Graph theory]: Graph algorithms
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1. INTRODUCTION
Given a graph G, a single source distance (SSD) query from a

node v ∈ G asks for the distance from v to any other node in G.
Meanwhile, a single source shortest path (SSSP) query retrieves
the shortest path from v to any other node. These two types of
queries find important applications in graph analysis [8], especially
in the computation of graph measures [5, 7, 11, 24]. For example,

the estimation of closeness measures [11] on a graph G requires
performing SSD queries from a large number of nodes in G, while
the approximation of betweenness measures [7] requires executing
numerous SSSP queries.
The classic solution for SSD and SSSP queries is Dijkstra’s al-

gorithm [10]. Given a SSD or SSSP query from a node s, Dijkstra’s
algorithm traverses the graph starting from s, such that the nodes
in G are visited in ascending order of their distances from s. Once
a node v is visited, the algorithm returns the distance from s to v
based on the information maintained during the traversal; the short-
est path from s to v can also be efficiently derived if required.
A plethora of techniques have been proposed to improve over

Dijkstra’s algorithm for higher query efficiency (see [9,23] for sur-
veys). Although those techniques all require pre-processing the
given graph (which incurs extra overhead compared with Dijk-
stra’s algorithm), the pre-computation pays off when the number
of queries to be processed is large, as is often the case in graph
analysis. Nevertheless, most of the existing techniques assume
that the given graph fits in the main memory (for pre-computation
and/or query processing), which renders them inapplicable for the
massive disk-resident graphs commonly used in web and social ap-
plications. There are a few methods [15, 17–20] that address this
issue by incorporating Dijkstra’s algorithm with I/O-efficient data
structures, but the performance of those methods are shown to be
insufficient for practical applications [8]. The main reason is that,
when Dijkstra’s algorithm traverses the graph, the order in which it
visits nodes can be drastically different from the order in which the
nodes are arranged on the disk. This leads to a significant number
of random disk accesses, which results in poor query performance.
In contrast to the aforementioned techniques, Cheng et al. [8]

propose the first practically efficient index (named VC-Index) for
SSD and SSSP queries on disk-resident graphs. The basic idea of
VC-Index is to pre-compute a number of reduced versions of the
input graph G. Each reduced graph contains some relatively im-
portant nodes in G, as well as the distances between some pairs of
those nodes. During query processing, VC-Index scans a selected
subset of reduced graphs, and then derives query results based on
the pre-computed distances. Compared with those methods based
on Dijkstra’s algorithm [15, 17–20], VC-Index is more efficient as
it only performs sequential reads on disk-resident data.

Motivation and Contribution. All existing disk-based solutions
for SSD and SSSP queries [15, 17–20] require that the input graph
is undirected, which renders them inapplicable for any application
built upon directed graphs. This is rather restrictive as numerous
important types of graphs (e.g., road networks, web graphs, social
graphs) are directed in nature. Furthermore, even when the input
graph is undirected, the query efficiency of the existing solutions is
less than satisfactory. In particular, our experiments (in Section 7)
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show that VC-Index, albeit being the state of the art, requires tens
of seconds to answer a single SSD query on a graph with less than
100 million edges, and needs more than two days to estimate the
closeness measures on the same graph.
To address the deficiency of existing work, this paper proposes

Highways-on-Disk (HoD), a disk-based index that supports both
SSD and SSSP queries on directed and weighted graphs. The key
idea of HoD is to augment the input graph with a set of auxil-
iary edges (referred to as shortcuts [22]), and exploit them during
query processing to reduce I/O and computation costs. For exam-
ple, Figure 1a illustrates a graph G, and Figure 1e shows an aug-
mented graphG∗ constructed fromG. G∗ contains three shortcuts:
〈v8, v9〉, 〈v9, v7〉, and 〈v9, v10〉. Each shortcut has the same length
with the shortest path connecting the endpoints of the shortcut. For
example, the length of 〈v8, v9〉 equals 2, which is identical to the
length of the shortest path from v8 to v9. Intuitively, the shortcuts
in G∗ enable HoD to efficiently traverse from one node to another
(in a manner similar to how highways facilitate traversal between
distant locations). For instance, if we are to traverse from v1 to
v10 in G∗, we may follow the path 〈v1, v9, v10〉, which consists of
only three nodes; in contrast, a traversal from v1 to v10 inG would
require visiting five nodes: v1, v9, v6, v7, and v10.
In general, when HoD answers an SSD or SSSP query, it often

traverses the augmented graph via shortcuts (instead of the original
edges in G). We show that, with proper shortcut construction and
index organization, the query algorithm of HoD always traverses
nodes in the same order as they are arranged in the index file. Con-
sequently, HoD can answer any SSD or SSSP query with a linear
scan of the index file, and its CPU cost is linear to the number of
edges in the augmented graph. We experimentally evaluate HoD
on a variety of real-world graphs with up to 100 million nodes and
3 billion edges, and we demonstrate that HoD significantly out-
performs VC-Index in terms of query efficiency. In particular, the
query time of HoD is smaller than that of VC-Index by up to two
orders of magnitude. Furthermore, HoD requires a smaller space
and pre-computation time than VC-Index in most cases.

2. PROBLEM DEFINITION
Let G be a weighted and directed graph with a set V of nodes

and a setE of edges. Each edge e inE is associated with a positive
weight l(e), which is referred to as the length of e. A path P in G
is a sequence of nodes 〈v1, v2, . . . , vk〉, such that 〈vi, vi+1〉 (i ∈
[1, k − 1]) is a directed edge in G. The length of P is defined as
the sum of the length of each edge on P . We use l(e) and l(P ) to
denote the length of an edge e and a path P , respectively.
For any two nodes s and t inG, we define the distance from s to

t, denoted as dist(s, t), as the length of the shortest path from s to
t. Given a source node s inG, a single-source distance (SSD) query
asks for the distance from s to any other node in G. Meanwhile, a
single-source shortest path (SSSP) query from s retrieves not only
the distance from s to any other node v, but also the predecessor
of v, i.e., the node that immediately precedes v in the shortest path
from s to v. Note that, given the predecessor of each node, we can
easily reconstruct the shortest path from s to any node v by back-
tracking from v following the predecessors. One may also consider
an alternative formulation of SSD (resp. SSSP) query that, given
only a destination node t, asks for the distance (resp. shortest path)
from any other node to t. For simplicity, we will focus on SSD and
SSSP queries from a source node s, but our solution can be easily
extended to handle queries under the alternative formulation.
LetM be the size of the main memory available, and B be the

size of a disk block, both measured in the number of words. We
assume that B ≤ |V | ≤ M ≤ |E|, i.e., the main memory can

accommodate all nodes but not all edges inG. This is a realistic as-
sumption since modern machines (even the commodity ones) have
gigabytes of main memory, which is sufficient to store the node set
of a graph with up to a few billion nodes. On the other hand, the
number of edges in a real graph is often over an order of magnitude
larger than the number of nodes, due to which E can be enormous
in size and does not fit in the main memory.
Our objective is to devise an index structure on G that answers

any SSD or SSSP query with small I/O and CPU costs, such that
the index requires at most M main memory in pre-computation
and query processing. In what follows, we will first focus on SSD
queries in Sections 3-5, and will extend our solution for SSSP
queries in Section 6.

3. SOLUTION OVERVIEW
As mentioned in Section 1, the main structure of HoD is a graph

G∗ that augments the input graph G with shortcuts. In this section,
we present the overall idea of how the shortcuts in G∗ are con-
structed and how they can be utilized for query processing, so as to
form a basis for the detailed discussions in subsequent sections.

3.1 Shortcut Construction
In a nut shell, HoD constructs shortcuts with an iterative proce-

dure, which takes as input a copy of the graph G (denoted as G0).
In the i-th (i ≥ 1) iteration of the procedure, HoD first reduces
Gi−1 by removing a selected set of less important nodes in Gi−1,
and then, it constructs shortcuts in the reduced graph to ensure that
the distance between any two remaining nodes is not affected by
the node removal. The resulting graph (with shortcuts added) is
denoted as Gi, and it is fed as the input of the (i+1)-th iteration of
procedure. This procedure terminates only when the reduced graph
Gi is sufficiently small. All shortcuts created during the procedure
are inserted into the original graph G, leading to an augmented
graph G∗ that would be used by HoD for query processing. We
illustrate the iterative procedure with an example as follows.

EXAMPLE 1. Assume that the input to the iterative procedure is
the graphG0 in Figure 1a. Further assume that the reduced graph is
sufficiently small if it contains at most two nodes and two edges. In
the first iteration of the procedure, HoD inspects G0 and identifies
v1, v2, and v3 as less important nodes. To explain, observe that the
node v1 in G0 does not have any incoming edge, while v2 and v3
have no outgoing edges. As a consequence, v1, v2, and v3 do not
lie on the shortest path between any two other nodes. That is, even
if we remove v1, v2, and v3 fromG0, the distance between any two
remaining nodes is not affected. Intuitively, this indicates that v1,
v2, v3 are of little importance for SSD queries. Therefore, HoD
eliminates v1, v2, and v3 from G0, which results in the reduced
graph G1 in Figure 1b.
In the second iteration, HoD selects v4, v5, and v6 as the less

important nodes in G1, and removes them from G1. The removal
of v4 changes the distance from v8 to v9 to +∞, since 〈v8, v4, v9〉
is the only path (in G1) that starts at v8 and ends at v9. To mitigate
this change, HoD inserts into G1 a shortcut 〈v8, v9〉 that has the
same length with 〈v8, v4, v9〉, as illustrated in Figure 1c. As such,
the distance between any two nodes inG1 remains unchanged after
v4 is removed. Similarly, when HoD eliminates v6, it constructs a
shortcut 〈v9, v7〉 with a length 2 to reconnect the two neighbors of
v6. Meanwhile, v5 is removed without creating any shortcut, since
deleting v5 does not change the distance between its two neighbors.
Figure 1c illustrates the resulting reduced graph G2.
To explain why HoD chooses to remove v4, v5, and v6 fromG1,

observe that each of those nodes has only two neighbors. For any
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(equivalently, G0) (i.e., the core graph Gc).

Figure 1: Graph reduction and shortcut construction.

of such nodes, even if the removal of the node changes the distance
between its neighbors, HoD only needs to construct one shortcut
to reconnect its neighbors. In other words, the number of shortcuts
required is minimum, which helps reduce the space consumption
of HoD. In contrast, if HoD chooses to remove v9 from G1 (which
has a larger number of neighbors than v4, v5, and v6), then much
more shortcuts would need to be constructed.
Finally, in the third iteration, HoD removes v7 and v8 from G2

as they are considered unimportant. The removal of v7 leads to
a new shortcut 〈v9, v10〉 with a length 3, since 〈v9, v7, v10〉 is the
only path connecting v9 to v10, and the length of the path equals
3. On the other hand, v8 is directly eliminated as it is not on the
shortest path between its only two neighbors v9 and v10. Figure 1d
shows the reduced graph G3 after the removal of v7 and v8.
Assume that the reduced graph G3 is considered sufficiently

small by HoD. Then, the iterative procedure of HoD would ter-
minate. The three shortcuts created during the procedure (i.e.,
〈v8, v9〉, 〈v9, v7〉, and 〈v9, v10〉) are added into the original graph
G, which leads to the augmented graph G∗ in Figure 1d. �

The above discussion leaves several issues open, i.e., (i) the spe-
cific criterion for identifying less important nodes in the reduced
graph, (ii) the detailed algorithm for generating shortcuts after node
removal, and (iii) the exact termination condition of the reduction
procedure. We will clarify these issues in Section 4 by presenting
the detailed preprocessing algorithm of HoD. For the discussions
in the rest of this section, it suffices to know that when HoD ter-
minates the reduction procedure, the reduced graph must fit in the
main memory. We use Gc to denote this memory-resident reduced
graph, and we refer to it as the core graph. (Note that Gc is a sub-
graph of the augmented graph G∗.) In addition, we define the rank
r(v) of each node v inG as follows:

1. If v is removed in the i-th iteration of the iterative procedure,
then r(v) = i;

2. If v is not removed in any iteration (i.e., v is retained in the
core graph Gc), then r(v) = 1 + maxv/∈Gc r(v), i.e., r(v)
is larger than the maximum rank of any node not in Gc.

For instance, in Example 1, the ranks of v1, v2, and v3 equal 1,
since they are removed fromG in the first iteration of the reduction
procedure. Similarly, r(v4) = r(v5) = r(v6) = 2, and r(v7) =
r(v8) = 3. The ranks of v9 and v10 equal 4, since they are in the
core graph Gc. The ranks of the nodes are utilized in the query
processing algorithms of HoD, as will be illustrated shortly. Unless
otherwise specified, we use the term edge to refer to both a shortcut
and an original edge in G∗.

3.2 Query Processing
Given an SSD query from a node s, HoD answers the query

with two traversals of the augmented graph G∗. The first traver-
sal starts from s, and it follows only the outgoing edges of each

node, ignoring any edge whose starting point ranks higher than
the ending point. For instance, if HoD traverses from the node
v9 in Figure 1e, it would ignore the outgoing edge 〈v9, v7〉, since
r(v9) = 4 > r(v7) = 3. As such, the first traversal of HoD never
moves from a high-rank node to a low-rank node, and it terminates
only when no higher-rank nodes can be reached. For each node v
visited, HoD maintains the distance from s to v along the paths that
have been seen during the traversal, denoted as dist(s, v).
Let V ′ be the set of nodes that are not in the core graph of G∗.

The second traversal of HoD is performed as a linear scan of the
nodes in V ′, in descending order of their ranks. For each node
v′ ∈ V ′ scanned, HoD inspects each incoming edge e of v′, and
then checks the starting point u of the edge. For any such u, HoD
calculates dist(s, u) + l(e) as an upperbound of the distance from
s to v′. (Our solution guarantees that u should have been visited by
HoD before v′.) Once all incoming edges of v′ are inspected, HoD
derives the distance from s to v′ based on the upperbounds, and
then it moves on to the next node in V ′. This process terminates
when all nodes in V ′ are examined.
We illustrate the above query algorithm of HoDwith an example.

EXAMPLE 2. Consider an SSD query from node v1 in Fig-
ure 1a. Given the augmented graph G∗ in Figure 1e, HoD first
traverses G∗ starting from v1, following the outgoing edges whose
ending points rank higher than the starting points. Since v1 has
only one outgoing edge 〈v1, v9〉, and since v9 ranks higher than v1,
HoD moves from v1 to v9. v9 has three outgoing edges: 〈v9, v6〉,
〈v9, v7〉, and 〈v9, v10〉. Among them, only 〈v9, v10〉 has an end-
ing point that ranks higher than the starting point. Therefore, HoD
moves from v9 to v10. v10 has outgoing edges to three unvisited
nodes, i.e., v3, v5, and v8. Nevertheless, all of those nodes rank
lower than v10, and hence, they are ignored. As none of the re-
maining nodes can be reached without violating the constraints on
node ranks, the first traversal of HoD ends. Based on the edges
visited, HoD calculates dist(v1, v9) = 1 and dist(v1, v10) = 4.
The second traversal of HoD examines the nodes not in the

core graph in descending order of their ranks, i.e., it first exam-
ines v7 and v8 (whose ranks equal 3), followed by v4, v5, and
v6 (whose ranks equal 2), and finally v2 and v3 (whose ranks
equal 1), ignoring v1 (as it is the source node of the query). v7
has two incoming edges, 〈v6, v7〉 and 〈v9, v7〉. Among v6 and
v9, only v9 has been visited by HoD. Therefore, HoD calculates
dist(v1, v7) = dist(v1, v9) + l(〈v9, v7〉) = 3. Similarly, af-
ter inspecting v8’s only incoming edge 〈v10, v8〉, HoD computes
dist(v1, v8) = dist(v1, v10) + l(〈v10, v8〉) = 5. The remaining
nodes are processed in the same manner, resulting in

dist(v1, v4) = dist(v1, v8) + l(〈v8, v4〉) = 6

dist(v1, v5) = dist(v1, v10) + l(〈v10, v5〉) = 5

dist(v1, v6) = dist(v1, v9) + l(〈v9, v6〉) = 2

dist(v1, v2) = dist(v1, v4) + l(〈v4, v1〉) = 7.
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Observe that all the above distances computed fromG∗ are identi-
cal with those from the original graph in Figure 1a. �

The query algorithm of HoD has an interesting property: the first
traversal of the algorithm always visits nodes in ascending order
of their ranks (as it never follows an edge that connects a high-
rank node to low-rank node), while the second phase always visits
nodes in descending rank order. Intuitively, if we maintain two
copies of the augmented graph, such that the first (resp. second)
copy stores nodes in ascending (resp. descending) order of their
ranks, then HoD can answer any SSD query with a linear scan of
the two copies. This leads to high query efficiency as it avoids
random disk accesses. In Section 4, we will elaborate how such
two copies of the augmented graph can be constructed.

4. INDEX CONSTRUCTION
As discussed in Section 3.1, the preprocessing algorithm of HoD

takes as input a copy G0 of the graph G, and it iteratively reduces
G0 into smaller graphs G1, G2, . . ., during which it creates short-
cuts to augmentG. More specifically, the (i+1)-th (i ≥ 0) iteration
of the algorithm has four steps:

1. Select a set Ri of nodes to be removed from Gi.

2. For each node v ∈ Ri, construct shortcuts in Gi to ensure
that the removal of v does not change the distance between
any two remaining nodes.

3. Remove the nodes in Ri fromGi to obtain a further reduced
graph Gi+1. Store information about the removed nodes in
the index file of HoD.

4. Pass the Gi+1 to the (i+2)-th iteration as input.

In the following, we first elaborate Steps 2 and 3, and then clarify
Step 1. After that, we will discuss the termination condition of the
preprocessing algorithm, as well as its space and time complexities.
For ease of exposition, we represent each edge e = 〈u, v〉 as a

triplet 〈u, v, l(e)〉 or 〈v, u,−l(e)〉, where l(e) is the length of e.
For example, the edge 〈v9, v7〉 in Figure 1a can be represented as
either 〈v9, v7, 2〉 or 〈v7, v9,−2〉. That is, a negative length in the
triplet indicates that the second node in the triplet is the starting
point of the edge. In addition, we assume that the input graph G is
stored on the disk as adjacency lists, such that (i) for any two nodes
vi and vj , the adjacency list of vi precedes that of vj if i < j,
and (ii) each edge 〈vi, vj〉 with length l is stored twice: once in
the adjacency list of vi (as a triplet 〈vi, vj , l〉), and another in the
adjacency list of vj (as a triplet 〈vj , vi,−l〉).

4.1 Node Removal and Shortcut Generation
Let v∗ be a node to be removed fromGi. We define an outgoing

neighbor of v∗ as a node u to which v∗ has an outgoing edge.
Similarly, an incoming neighbor of v∗ is a node w from which v∗

has an incoming edge. We have the following observation:

OBSERVATION 1. For any two nodes vj and vk in Gi, the dis-
tance from vj to vk changes after v∗ is removed, if and only if the
shortest path from vj to vk contains a sub-path 〈u, v∗, w〉, such that
u (resp. w) is an incoming (resp. outgoing) neighbor of v∗. �

By Observation 1, we can preserve the distance between any two
nodes in Gi after removing v∗, as long as we ensure that the dis-
tance between any incoming neighbor and any outgoing neighbor
of v∗ remains unchanged. This can be achieved by connecting the
incoming and outgoing neighbors of v∗ with shortcuts, as demon-
strated in Section 3.1. Towards this end, a straightforward approach

is to generate a shortcut 〈u,w〉 for any incoming neighbor u and
any outgoing neighbor w. The shortcuts thus generated, however,
are often redundant. For example, consider the graph Gi in Fig-
ure 2a. Suppose that we are to remove v2, which has an incoming
neighbor v1 and an outgoing neighbor v3. If we construct a short-
cut from v1 to v3, it is useless since (i) v1 already has an outgoing
edge to v3, and (ii) the edge 〈v1, v3〉 is even shorter than the path
from v1 to v3 via v2. As another example, assume that v4 in Fig-
ure 2a is also to be removed. v4 has an incoming neighbor v1 and
an outgoing neighbor v5, but the path 〈v1, v4, v5〉 is no shorter than
another path from v1 to v5, i.e., 〈v1, v3, v5〉, which does not go
through v4. As a consequence, even if we remove v4 from Gi, the
distance from v1 to v5 is still retained, and hence, it is unnecessary
to insert a shortcut from v1 to v5.
In general, for any incoming neighbor u and outgoing neighbor

w of v∗, a shortcut from u to w is unnecessary if there is a path
P from u to v, such that (i) P does not go through v∗, and (ii)
P is no longer than 〈u, v∗, w〉. To check whether such a path P
exists, one may apply Dijkstra’s algorithm to traverse Gi from u
(or w), ignoring v∗ during the traversal. However, when Gi does
not fit in main memory (as is often the case in the pre-computation
process of HoD), this approach incurs significant overhead, due to
the inefficiency of Dijkstra’s algorithm for disk-resident graphs (as
discussed in Section 1). To address this issue, we adopt a heuristic
approach that is not as effective (in avoiding redundant shortcuts)
but much more efficient. Specifically, for each v∗ in the node setRi

to be removed fromGi, we generate a candidate edge ec = 〈u,w〉
from each incoming neighbor u of v∗ to each outgoing neighbor w
of v∗, setting the length of the shortcut to l(〈u, v∗, w〉). For any
such candidate edge ec, we insert it into a temporary file T as two
triplets: 〈u,w, l(ec)〉 and 〈w, u,−l(ec)〉.
In addition to the candidate edges, we also insert two additional

groups of edges (referred to as baseline edges) into the temporary
file T as triplets. The first group consists of any edge e in Gi con-
necting two nodes not in Ri, i.e., the two endpoints of e are not to
be removed. The second group is generated as follows: for each
node v not in Ri, we select v’s certain incoming neighbor u′ and
outgoing neighbor w′, and we construct a baseline edge 〈u′, w′〉,
setting its length to l(〈u′, v, w′〉).
The purpose of inserting a baseline edge e into the temporary file

T is to help eliminate any redundant candidate edge that (i) shares
the same endpoints with e but (ii) is not shorter than e. Towards this
end, once all baseline edges are added into T , we sort the triplets
in T using a standard algorithm for external sort, such that a triplet
t1 = 〈va, vb, l1〉 precedes another triplet t2 = 〈vα, vβ , l2〉, if any
of the following conditions hold:

1. a < α, or a = α but b < β.

2. a = α, b = β, and l1 > 0 > l2. That is, any outgoing edge
of a node precedes its incoming edges.

3. a = α, b = β, l1 · l2 > 0 (i.e., t1 and t2 are both incoming
edges or both outgoing edges), and |l1| < |l2|. That is, t1
and t2 share the same starting and ending points, but t1 is
shorter than t2.

4. a = α, b = β, l1 · l2 > 0, |l1| = |l2|, and t1 is a baseline
edge while t2 is a candidate edge.

Once T is sorted, the outgoing (resp. incoming) edges with the
same endpoints are grouped together, and the first edge in each
group should have the smallest length within the group. If the first
edge e in a group is a candidate edge, then we retain e as it is shorter
than any other baseline or candidate edges that we have generated.
On the other hand, if e is a baseline edge, then the distance between
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(b) v2, v4 removed. (c) Before sorting. (d) After sorting.

Figure 2: Node removal and shortcut generation.

the endpoints of emust not be affected by the removal of any nodes
in Ri. In that case, all candidate edges in the group can be omitted.
With one linear scan of the sorted T and the adjacency lists of Gi,
we can remove the information of any node in Ri, and merge the
retained candidate edges into the adjacency lists of the remaining
nodes. We illustrate the above algorithm with an example.

EXAMPLE 3. Suppose that, given the graph Gi in Figure 2a,
we are to remove a node set Ri = {v2, v4} from Gi. v2 has
only one incoming neighbor v1 and one outgoing neighbor v3,
and l(〈v1, v2, v3〉) = 2. Accordingly, HoD generates a candidate
edge 〈v1, v3〉 by inserting into the temporary file T two triplets,
〈v1, v3, 2〉 and 〈v3, v1,−2〉. Similarly, for v4, HoD creates a can-
didate edge 〈v1, v5〉, which is represented as two triplets in T :
〈v1, v5, 2〉 and 〈v5, v1,−2〉.
Meanwhile, the edge 〈v1, v3〉 inGi is selected as a baseline edge

and is inserted into T , since neither v1 nor v3 is in Ri. In addition,
HoD also generates a baseline edge 〈v1, v5〉 from the neighbors
of v3. This is because that (i) v1, v3, v5 are not in Ri, (ii) v1 is
an incoming neighbor of v3, and (iii) v5 is an outgoing neighbor
of v3. Figure 2c illustrates the temporary file T after all candi-
date and baseline edges are inserted, with some triplets omitted for
simplicity. Figure 2d shows the file T after it is sorted. The base-
line edge 〈v1, v3, 1〉 precedes the candidate edge 〈v1, v3, 2〉, which
indicates that we do not need to add a shortcut from v1 to v3. Sim-
ilarly, the baseline edge 〈v3, v1,−1〉 precedes the candidate edge
〈v3, v1,−2〉, in which case the latter is omitted. Overall, each of
the candidate edges in T is preceded by a baseline edge, and hence,
no shortcut will be created. Consequently, HoD removes from Gi

the adjacency lists of v2 and v4, as well as all edges to and from
v2 and v4 in any other adjacency lists. This results in the reduced
graph illustrated in Figure 2b. �

In summary, HoD decides whether a candidate edge e should
be retained, by comparing it with all edges in Gi as well as some
two-hop paths in Gi. This heuristic approach may retain unnec-
essary candidate edges, but it does not affect the correctness of
SSD queries. To understand this, recall that each candidate edge
e = 〈u,w〉 has the same length with a certain path 〈u, v∗, w〉 that
exists in Gi, where v∗ is the node whose removal leads to the cre-
ation of e. In other words, the length of e is at least larger than or
equal to the distance from u to w. Adding such an edge into Gi

would not decrease the distance between any two nodes in Gi, and
hence, retaining e does not change the results of any SSD queries.
The above discussions assume that HoD has selected a set Ri

of nodes to be removed from Gi, and has decided which baseline
edges are to be generated from the neighbors of the nodes not in
Ri. We will clarify these two issues in Section 4.2 and 4.3.

4.2 Selecting Nodes for Removal
Consider any node v in Gi. Intuitively, if the removal of v re-

quires us to insert a large number of shortcuts into Gi, then v may
lie on the shortest paths between many pair of nodes, in which case
v should be considered important. Let Bin and Bout be the set of
incoming and outgoing neighbors of v, respectively. The maximum
number of shortcuts induced by v’s removal is:

s(v) =
∣
∣Bin

∣
∣ · ∣∣Bout \Bin

∣
∣+

∣
∣Bout

∣
∣ · ∣∣Bin \Bout

∣
∣. (1)

We refer to s(v) as the score of v in Gi, and we consider v unim-
portant if s(v) is no more than the median score in Gi. (For prac-
tical efficiency, we use an approximated value of the median score
computed from a sample set of the nodes.)
Ideally, we would like to remove all unimportant nodes fromGi,

but this is not always feasible. To explain, consider that we are
given the reduced graph G1 in Figure 1b, and we aim to elimi-
nate both v6 and v7. v6 has only one incoming neighbor v9 and
one outgoing neighbor v7, and hence, HoD creates one candidate
edge 〈v9, v7〉, setting its length to 2 (i.e., the length of the path
〈v9, v6, v7〉). Similarly, for v7, HoD generates a candidate edge
〈v6, v10〉. These two candidate edges are intended to preserve the
distance between any two nodes inGi after v6 and v7 are removed.
However, none of the two candidate edges is valid if both v6 and
v7 are eliminated. In particular, 〈v9, v7〉 points from v9 to v7, i.e.,
it connects v9 to a node that no longer exists. To avoid the above
error, whenever HoD chooses to delete a node v from Gi, it will
retain all neighbors of v in Gi, even if some neighbor might be
unimportant. For example, in Figure 1b, if HoD decides to remove
v6, then it will prevent v7 from being removed at the same time,
and vice versa.

4.3 Generation of Baseline Edges
As mentioned in Section 4.1, a baseline edge generated by the

preprocessing algorithm of HoD is either (i) an edge in Gi whose
endpoints are not to be removed, or (ii) an artificial edge 〈u,w〉 that
corresponds to certain two-hop path 〈u, v, w〉 inGi, such that none
of u, v, w is to be removed. The construction of baseline edges
from two-hop paths is worth discussing. First, given that there ex-
ists an enormous number of two-hop paths inGi, it is prohibitive to
convert each two-hop path into a baseline edge. Therefore, we only
select a subset of the two-hop paths inGi for baseline edge genera-
tion. In particular, the total number of two-hop paths selected is set
to c ·∑v∈Ri

s(v), where c is a small constant, s(v) is as defined in
Equation 1, and

∑
v∈Ri

s(v) is the total number of candidate edges
induced by the removal of nodes in Ri. In other words, we require
that the number of baseline edges generated from two-hop paths is
at most c times the number of candidate edges. In our implementa-
tion of HoD, we set c = 5.
Those c · ∑v∈Ri

s(v) baseline edges are generated as follows.
First, we randomly choose an edge in Gi, and arbitrarily select an
endpoint v of the edge that is not in Ri. (Note that such an end-
point always exists.) After that, from the incoming (resp. outgoing)
neighbors of v, we randomly select a node u (resp. w), and we gen-
erate a baseline edge 〈u,w〉, setting its length to l(〈u, v, w〉). As
such, if a node v is adjacent to a large number of edges, then it has a
high chance of being selected to produce baseline edges. This is in-
tuitive since such a node v tends to lie on the shortest paths between
many pairs of nodes, and hence, the baseline edges generated from
v may be more effective in eliminating redundant shortcuts.

4.4 Termination Condition
As mentioned in Section 3, HoD requires that the core graph Gc

fits in the main memory, whereGc is the reduced graph obtained in
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the last iteration of HoD’s preprocessing algorithm. Accordingly,
we do not allow the pre-computation procedure of HoD to termi-
nate before the reduced graph Gi has a size no more than M . In
addition, even after Gi fits in the main memory, we will still con-
tinue the preprocessing procedure, until the size of Gi is reduced
by less than 5% in an iteration of the processing algorithm. This is
intended to reduce the size of the core graph Gc to improve query
efficiency, as will be explained in Section 5.

4.5 Index File Organization
Once the preprocessing procedure completes, the core graph Gc

is written to the disk in the form of adjacency lists. Meanwhile, the
adjacency list of each node not in Gc is separated into two parts
that are stored in two different files, Ff and Fb. These two files
are created at the beginning of HoD’s preprocessing algorithm, and
they are initially empty. Whenever a node v is removed from the
reduced graph Gi, we inspect the adjacency list of v in Gi, and
we append all of v’s outgoing (resp. incoming) edges to Ff (resp.
Fb). Upon termination of the preprocessing procedure, we reverse
the order of nodes in Fb, but retain the order of nodes in Ff . We
refer to the graph represented by Ff as the forward graph, denoted
as Gf . Meanwhile, we refer to the graph represented by Fb as
the backward graph, denoted as Gb. When combined, Gc, Gf ,
and Gb form the augmented graph that is used by HoD for query
processing. For example, for the augmented graph in Figure 1a,
its core graph is as illustrated in Figure 1e, while its forward and
backward graphs are as shown in Figure 3. For ease of exposition,
we will abuse notation and use Gf (resp. Gb) to refer to both Gf

(resp. Gb) and its underlying file structure Ff (resp. Fb).
Gf and Gb have two interesting properties. First, all nodes in

Gf (resp. Gb) are stored in ascending (resp. descending) order of
their ranks. To explain this, recall that any node v removed in the
i-th iteration of the preprocessing algorithm has a rank r(v) = i.
Consequently, if a node u is stored in Gf before another node w,
then r(u) ≤ r(w). As for Gb, since we reverse the order of all
edges in Gb upon termination of the preprocessing produce, we
have r(u) ≥ r(w) for any node u that precedes another node w in
Gb. Second, for any node v, its edges in Gf and Gb only connect
it to the nodes whose ranks are strictly higher than v. This is be-
cause, by the time v is removed from the reduced graph, all nodes
that rank lower than v must have been eliminated from the reduced
graph, and hence, any edge in v’s adjacency list only links v to the
nodes whose rank is at least r(v). Meanwhile, any neighbor u of v
in the reduced graph should have a rank higher than r(v). Other-
wise, we have r(u) = r(v), which, by the definition of node ranks,
indicates that u and v are removed in the same iteration of the pre-
processing algorithm. This is impossible as the pre-computation
procedure of HoD never eliminates two adjacent nodes in the same
iteration, as explained in Section 4.1. In Section 5, we will show
how HoD exploits the above two properties of Gf and Gb to effi-
ciently process SSD queries.

4.6 Cost Analysis
The preprocessing algorithm of HoD requires O(n) main mem-

ory, where n is the number of nodes inG. This is because (i) when
removing a node v from the reduced graph, HoD needs to record the
neighbors of v and exclude them from the node removal process,
and (ii) v may have O(n) neighbors. Other parts of the preprocess-
ing algorithm do not have a significant memory requirement.
The major I/O and CPU costs of the preprocessing algorithm are

incurred by sorting the edge triplets in each iteration. In the worst
case when the input graph G is a complete graph, there are O(n2)
triplets generated in each iteration, leading to a prohibitive I/O and
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Figure 3: Forward graph Gf and backward graph Gb.

CPU overhead. Fortunately, real-world graphs are seldom com-
plete graphs, and they tend to contain a large number of nodes with
small degrees. In that case, each iteration of HoD’s preprocess-
ing procedure would only generates a moderate number of edge
triplets, leading to a relatively small overhead.
Lastly, the space consumption of HoD’s index is O(n2) since,

in the worst case, HoD may construct a shortcut from each node
v to every node that ranks higher than v. This space complex-
ity is unfavorable, but it is comparable to the space complexity
of VC-Index [8]. In addition, as shown in our experiments, the
space requirement of HoD in practice is significantly smaller than
the worst-case bound.

5. ALGORITHM FOR SSD QUERIES
Given an SSD query from a node s that is not in the core graph

Gc, HoD processes the query in three steps:

1. Forward Search: HoD traverses the forward graphGf start-
ing from s, and for each node v visited, computes the dis-
tance from s to v in Gf .

2. Core Search: HoD reads the core graph Gc into the main
memory, and continues the forward search by following the
outgoing edges of each node inGc.

3. Backward Search: HoD linearly scans the backward graph
Gb to derive the exact distance from s to any node not inGc.

On the other hand, if s is in Gc, then HoD would answer the query
with a core search followed by a backward search, skipping the
forward search. In what follows, we will present the details of three
searches performed by HoD. For convenience, we define an index
value θ(v) for each node not in the core graphGc, such that θ(v) =
i only if the i-th adjacency list in Gf belongs to v. By the way Gf

is constructed (see Section 4.5), for any two nodes u and v with
θ(u) < θ(v), the rank of u is no larger than the rank of v.

5.1 Forward Search
The forward search of HoD maintains a hash table Hf and a

min-heap Qf . In particular, Hf maps each node v to a key κf (v),
which equals the length of the shortest path from s to v that is
seen so far. Initially, κf (s) = 0, and κf (v) = +∞ for any node
v �= s. On the other hand, each entry in Qf corresponds to a node
v, and the key of the entry equals θ(v), i.e., the index of v. As will
become evident shortly, Qf ensures that the forward search visits
nodes in ascending order of their indices, and hence, it scans the
file structure ofGf only once, without the need to backtrack to any
disk block that it has visited before.
HoD starts the forward search by inspecting each edge e = 〈s, v〉

adjacent to s inGf , and then inserting v intoHf with a key κ(v) =
l(e). (Note that Gf contains only outgoing edges.) In addition,
HoD also inserts v into Qf . After that, HoD iteratively removes
the top entry u in Qf , and processes u as follows: for each edge
e = 〈u, v〉 adjacent to u, if κf (v) = +∞ in the hash table Hf ,
HoD sets κf (v) = κf (u) + l(e) and inserts v into Qf ; otherwise,
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Table 1: Datasets.

Name |V| |E| Weighted? Directed? Size
USRN 24.9M 28.9M yes no 0.86GB
FB 58.8M 92.2M no no 2.42GB
u-BTC 16.3M 95.7M no no 1.79GB
u-UKWeb 6.9M 56.5M yes no 1.02GB
BTC 16.3M 99.4M no yes 1.98GB
Meme 53.6M 117.9M no yes 3.17GB
UKWeb 104M 3708M no yes 61.8GB

HoD sets κf (v) = min{κf (v), κf (u)+ l(e)}. WhenQf becomes
empty, HoD terminates the forward search, and retains the hash
tableHf for the second step of the algorithm, i.e., the core search.

5.2 Core Search
The core search of HoD is a continuation of the forward search,

and it inherits the hash tableHf created during the forward search.
In addition toHf , HoD creates a min-heap Qc, such thatQc stores
entries of the form 〈v, κf (v)〉, where v is a node and κf (v) is the
key of v in Hf . For any node u with κf (u) �= +∞ (i.e., u is
visited by the forward search), HoD inserts u into Qc.
Given Hf and Qc, HoD performs the core search in iterations.

In each iteration, HoD extracts the top entry v from Qc, and exam-
ines each outgoing edge e of v. For every such edge, HoD inspects
its ending point w, and sets κf (w) = min{κf (w), κf (v) + l(e)}.
Then, HoD adds w into Qc if w is currently not in Qc. This itera-
tive procedure is repeated until Qc becomes empty. After that, the
hash tableHf is sent to the last step (i.e., the backward search) for
further processing.

5.3 Backward Search
Given the hash table Hf obtained from the core search, the re-

versed search of HoD is performed as a sequential scan of the back-
ward graph Gb, which stores nodes in descending order of their in-
dex values. For each node v visited during the sequential scan, HoD
checks each edge e = 〈u, v〉 adjacent to v. (Note that Gb contains
only incoming edges). If κf (u) �= +∞ and κf (u)+l(e) < κf (v),
then HoD sets κf (v) = κf (u) + l(e). Once all nodes in Gb are
scanned, HoD terminates the backward search and, for each node
v, returns κf (v) as the distance from s to v.
One interesting fact about the backward search is that it does not

require a heap to decide the order in which the nodes are visited.
This leads to a much smaller CPU cost compared with Dijkstra’s
algorithm, as it avoids all expensive heap operations.

5.4 Correctness and Complexities
Compared with Dijkstra’s algorithm, the main difference of

HoD’s query algorithm is that it visits nodes in a pre-defined order
based on their ranks. The correctness of this approach is ensured by
the shortcuts constructed by the preprocessing algorithm of HoD.
In particular, for any two nodes s and t in G, it can be proved that
the augmented graphG∗ always contains a path P from s to t, such
that (i) P ’s length equals the distance from s to t in G, and (ii) P
can be identified by HoD with a forward search from s, followed
by a core search and a backward search. More formally, we have
the following theorem.

THEOREM 1. Given a source node s, the SSD query algorithm
of HoD returns dist(s, v) for each node v ∈ G.

Interested readers are referred to our technical report [27] for the
proof of Theorem 1.
The query algorithm of HoD requiresO(n+mc)main memory,

where mc is the size of the core graph. This is due to the fact

that (i) the forward, core, and back searches of HoD all maintain a
hash table that takes O(n) space, and (ii) the core search requires
reading the core graph Gc into the memory. The time complexity
of the algorithm is O(n log n+m′), wherem′ is the total number
of edges in Gc, Gf , and Gb. The reason is that, when processing
an SSD query, HoD may need to scan Gf , Gc, and Gb once, and it
may need to putO(n) nodes into a min-heap. Finally, the I/O costs
of the algorithm is O((n + m′)/B), since it requires at most one
scan of Gf , Gc, and Gb.

6. EXTENSION FOR SSSP QUERIES
Given a source node s, an SSSP query differs from an SSD query

only in that it asks for not only (i) the distance from s to any other
node v, but also (ii) the predecessor of v, i.e., the node that immedi-
ately precedes v on the shortest path from s to v. To extend HoD for
SSSP queries, we associate each edge 〈u,w〉 in the augment graph
G∗ with a node v, such that v immediately precedes w on the short-
est path from u tow inG. For example, given the augmented graph
in Figure 1e, we would associate the edge 〈v9, v7〉 with v6, since
(i) the shortest path from v9 to v7 in G is 〈v9, v6, v7〉, and (ii) v6
immediately precedes v7 in the path.
With the above extension, HoD processes any SSSP query from

a node s using the algorithm for SSD query with one modification:
Whenever HoD traverses an edge 〈u,w〉 and finds that dist(s, u)+
l(〈u,w〉) < dist(s, w), HoD would not only update dist(s, w)
but also record the node associated with 〈u,w〉. That is, for each
node w visited, HoD keeps track of the predecessor of w in the
shortest path from s to w that have been seen so far. As such, when
the SSD query algorithm terminates, HoD can immediately return
dist(s,w) as well as the predecessor of w.
Finally, we clarify how the preprocessing algorithm of HoD can

be extended to derive the node associated with each edge. First,
for each edge e in the original graph, HoD associates e with the
starting point of e. After that, whenever HoD generates a candidate
edge 〈u,w〉 during the removal of a node v, HoD would associate
〈u,w〉 with the node that is associated with the edge 〈v, w〉. For
example, in Figure 1c, when HoD removes v7 and creates a can-
didate edge 〈v9, v10〉, it associates the edge with v7, which is the
node associated with 〈v7, v10〉.

7. EXPERIMENTS
This section experimentally compares HoD with three meth-

ods: (i) VC-Index [8], the state-of-the-art approach for SSD and
SSSP queries on disk-resident graphs; (ii) EM-BFS [6], an I/O ef-
ficient method for breadth first search; and (iii) EM-Dijk [18], an
I/O efficient version of Dijkstra’s algorithm. We include EM-BFS
since, on unweighted graphs, any SSD query can be answered us-
ing breadth first search, which is generally more efficient than Dijk-
stra’s algorithm. We obtain the C++ implementations of VC-Index,
EM-BFS, and EM-Dijk from their inventors, and we implement
HoD with C++. As the implementation of VC-Index only sup-
ports SSD queries, we will focus on SSD queries instead of SSSP
queries. All of our experiments are conducted on a machine with a
2.4GHz CPU and 32GB memory.

7.1 Datasets
We use five real graph datasets as follows: (i) USRN [1], which

represents the road network in the US; (ii) FB [14], a subgraph of
the Facebook friendship graph; (iii) BTC [2], a semantic graph; (iv)
Meme [16] and UKWeb [3], which are two web graphs. Among
them, only USRN and FB are undirected. Since VC-Index, EM-
BFS, and EM-Dijk are all designed for undirected graphs only, we
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Table 2: Preprocessing time (in minutes).

Method USRN FB u-BTC u-UKWeb
HoD 4.0 22.4 34.4 105.5

VC-Index 20.3 281.8 78.1 768.2

Table 3: Space Consumption (in GB).

Method USRN FB u-BTC u-UKWeb
HoD 2.5 5.1 3.8 3.3

VC-Index 4.3 8.3 1.2 14.0

Table 4: Average running time for SSD queries (in seconds).

Method USRN FB u-BTC u-UKWeb
HoD 1.8 3.2 1.6 1.4

VC-Index 27.2 94.9 10.1 70.0
EM-BFS − 465.3 395.4 −
EM-Dijk 430.7 1597.4 844.1 553.8

are indeed of more undirected datasets for experiments. For this
purpose, we transform BTC and UKWeb into undirected graphs,
using the same approach as in previous work (see [8] for details).
After that, for each undirected (resp. directed) graph G, we com-
pute its largest connected component (resp. weakly connected com-
ponent) C, and we use C for experiments. Table 1 illustrates the
details of the largest component obtained from each graph. In par-
ticular, u-BTC and u-UKWeb are obtained from the undirected ver-
sions of BTC and UKWeb, respectively.

Remark. The previous experimental study on VC-Index [8] uses
USRN, u-BTC, and u-UKWeb instead of their largest connected
components (CC) for experiments. We do not follow this approach
as it leads to less meaningful results. To explain, consider a massive
undirected graph G where each CC is small enough to fit in the
main-memory. On such a graph, even if a disk-based method can
efficiently answer SSD queries, it does not necessarily mean that
it is more scalable than a main-memory algorithm. In particular,
one can easily answer an SSD query from any node s in G, by
first reading into memory the CC that contains s, and then running
a main-memory SSD algorithm on the CC. In general, given any
graphG, one can use an I/O efficient algorithm [21] to pre-compute
the (weakly) connected components in G, and then handle SSD
queries on each component separately.

7.2 Results on Undirected Graphs
In the first sets of experiments, we evaluate the performance of

each method on four undirected graphs: USRN, FB, u-BTC, and u-
UKWeb. For HoD, EM-BFS, and EM-Dijk, we limit the amount of
memory available to them to 1GB, which is smaller than the sizes
of all datasets. For VC-Index, we test it with 2GB memory as it
cannot handle any of our datasets under a smaller memory size.
Table 2 shows the preprocessing time of HoD and VC-Index on

the four graphs. (EM-BFS and EM-Dijk are omitted as they do
not require any pre-computation.) In all cases, HoD incurs a sig-
nificantly smaller overhead than VC-Index does. In particular, on
FB, the preprocessing time of HoD is more than ten times smaller
than that of VC-Index. Table 3 compares the space consumptions
of HoD and VC-Index. Except for the case of u-BTC, the space
required by VC-Index is consistently larger than that by HoD.
To evaluate the query efficiency of each method, we generate

100 SSD queries for each dataset, such that the source node of
each query is randomly selected. Table 4 shows the average run-
ning time of each approach in answering an SSD query. The query
time of HoD is at least an order of magnitude smaller than that of

Table 5: Estimated time for closeness computation (in hours).

Method USRN FB u-BTC u-UKWeb
HoD 0.9 2.0 1.3 2.4

VC-Index 13.2 51.8 6.1 43.1
EM-BFS − 231.1 182.2 −
EM-Dijk 203.2 793.3 389.0 240.0

Table 6: Performance of HoD on directed graphs.

Dataset Preprocessing Index Size SSD Query Time
BTC 11.4 minutes 2.1 GB 2.6 sec
Meme 1.2 minutes 2.3 GB 1.8 sec
UKWeb 9.2 hours 72.6 GB 53.7 sec

VC-Index. Meanwhile, VC-Index always outperforms EM-BFS,
which is consistent with the experimental results reported in previ-
ous work [8]. We omit EM-BFS on USRN and u-UKWeb, since
those two graphs are weighted, for which EM-BFS cannot be used
to answer SSD queries. Finally, EM-Dijk incurs a larger query
overhead than all other methods.
In the next experiment, we demonstrate an application of HoD

for efficient graph analysis. In particular, we consider the task of
approximating the closeness for all nodes in a graph G, using the
algorithm by Eppstein and Wang [11]. The algorithm requires ex-
ecuting k = lnn/ε2 SSD queries from randomly selected source
nodes, where n is the number of nodes in G and ε is a parameter
that controls the approximation error. Following previous work [8],
we set ε = 0.1.
Table 5 shows an estimation of the time required by each method

to complete the approximation task. Specifically, we estimate the
total processing time of each method as (i) its query time in Table 4
multiplied by k, plus (ii) its preprocessing time (if any). Observe
that both EM-BFS and EM-Dijk incur prohibitive overheads – they
require more than a week to finish the approximation task. In con-
trast, HoD takes at most 2.4 hours to complete the task, despite that
it pays an initial cost for pre-computation. Meanwhile, VC-Index is
significantly outperformed by HoD, and it needs around two days
to accomplish the task on FB and u-UKWeb.

7.3 Results on Directed Graphs
Our last experiments focus on the three directed graphs: BTC,

Meme, and UKWeb. We run HoD on BTC and Meme with 1GB
memory, and on UKWeb with 16GB memory, as the enormous size
of UKWeb leads to a higher memory requirement. Table 6 shows
the preprocessing and space overheads of HoD, as well as its aver-
age query time in answering 100 randomly generated SSD queries
on each dataset. (We omit VC-Index, EM-BFS, and EM-Dijk as
they do not support directed graphs.) On BTC and Meme, HoD
only incurs small pre-computation costs and moderate space con-
sumptions. On UKWeb, the preprocessing, space, and query over-
heads of HoD are considerably higher, but are still reasonable given
that UKWeb contains 30 times more edges than BTC and Meme
do. To our knowledge, this is the first result in the literature that
demonstrates practical support for SSD queries on a billion-edge
graph.

8. RELATED WORK
As mentioned in Section 1, the existing techniques for I/O-

efficient SSD and SSSP queries include VC-Index [8] and a few
methods that adopt Dijkstra’s algorithm [15, 17–20]. All of those
techniques are exclusively designed for undirected graphs, and they
incur significant query overheads, as is shown in our experiments.
In contrast, HoD supports both directed and undirected graphs,
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and it offers high query efficiency along with small costs of pre-
computation and space.
Other than the aforementioned work, there exists large body of

literature on in-memory algorithms for shortest path and distance
queries (see [9, 23, 25, 26] for surveys). The majority of those al-
gorithms focus on two types of queries: (i) point-to-point shortest
path (PPSP) queries, which ask for the shortest path from one node
to another, and (ii) point-to-point distance (PPD) queries, which
ask for the length of the shortest path between two given nodes.
These two types of queries are closely related to SSD and SSSP
queries, in the sense that any SSD (resp. SSSP) query can be an-
swered using the results of n PPD (resp. PPSP) queries, where n
is the number of nodes in the graph. Therefore, it is possible to
adopt a solution for PPD (resp. PPSP) queries to handle SSD (resp.
SSSP) queries. Such an adoption, however, incurs significant over-
heads, especially when n is large. For example, the state-of-the-
art solution [4] for PPD queries requires 266ns to answer a PPD
query on the USRN dataset in Section 7. (Note: the solution is
not I/O efficient and it requires 25.4GB memory to handle USRN.)
If we use this solution to answer an SSD query on USRN, then
we need to execute 24.5 million PPD queries, which takes roughly
266ns × 24.5 × 106 = 6.52s. In contrast, HoD requires only 1.8s
to process an SSD query on USRN, using only 1GB memory.
Furthermore, almost all existing solutions for PPD and PPSP

queries require that the dataset fits in the main memory during pre-
computation and/or query processing. This renders them inappli-
cable for the massive disk-resident graphs considered in this paper.
The only exception that we are aware of is a concurrent work by Fu
et al. [12], who propose an I/O-efficient method called IS-Label.
HoD and IS-Label’s preprocessing algorithms are similar in spirit,
but their index structures and query algorithms are drastically dif-
ferent, as they are designed for different types of queries. In par-
ticular, IS-Label focuses on PPD and PPSP queries, and does not
efficiently support SSD or SSSP queries.
Finally, we note that previous work [9, 13, 22] has exploited the

idea of augmenting graphs with shortcuts to accelerate PPD and
PPSP queries. Our adoption of shortcuts is inspired by previous
work [9, 13, 22], but it is rather non-trivial due to the facts that
(i) we address I/O efficiency under memory-constrained environ-
ments, while previous work [9, 13, 22] focuses on main memory
algorithms; (ii) we tackle SSD and SSSP queries instead of PPD
and PPSP queries; (iii) we focus on general graphs, while pervious
work [9, 13, 22] considers only road networks (where each node is
degree-bounded).

9. CONCLUSIONS
This paper presents HoD, a practically efficient index structure

for distance queries on massive disk-resident graphs. In particu-
lar, HoD supports both directed and undirected graphs, and it ef-
ficiently handles single-source shortest path (SSSP) queries and
single-source distance (SSD) queries under memory-constrained
environments. This contrasts the existing methods, which either
(i) require that the dataset fits in the main memory during pre-
computation and/or query processing, or (ii) support only undi-
rected graphs. With extensive experiments on a variety of real-
world graphs, we demonstrate that HoD significantly outperforms
the state of the art in terms of query efficiency, space consumption,
and pre-computation costs. For future work, we plan to investigate
how HoD can be extended to (i) support point-to-point shortest path
and distance queries and (ii) handle dynamic graphs that change
with time.
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