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ABSTRACT
Matching entities from different information sources is a very
important problem in data analysis and data integration. It
is, however, challenging due to the number and diversity
of information sources involved, and the significant editorial
efforts required to collect sufficient training data. In this pa-
per, we present an approach that leverages user clicks during
Web search to automatically generate training data for en-
tity matching. The key insight of our approach is that Web
pages clicked for a given query are likely to be about the
same entity. We use random walk with restart to reduce
data sparseness, rely on co-clustering to group queries and
Web pages, and exploit page similarity to improve matching
precision. Experimental results show that: (i) With 360K
pages from 6 major travel websites, we obtain 84K match-
ings (of 179K pages) that refer to the same entities, with
an average precision of 0.826; (ii) The quality of matching
obtained from a classifier trained on the resulted seed data
is promising: the performance matches that of editorial data
at small size and improves with size.

Categories and Subject Descriptors
I.5.3 [Clustering]: Algorithms; H.2.8 [Database Appli-
cations]: Data mining

Keywords
Entity matching, user clicks, random walk, co-clustering

1. INTRODUCTION
Entity matching is an important problem in data anal-

ysis and data integration. We focus in this paper on the
entity matching problem that aims to determine whether
two (or more) references to an entity from different infor-
mation sources describe the same real-world object. This
problem is important since multiple organizations may de-
scribe the same entity using various descriptions. Matching
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such references gives information providers the opportuni-
ties to improve their services by (i) enriching the descrip-
tion of an entity with more comprehensive information; and
(ii) providing comparison of various descriptions of an en-
tity, especially when inconsistent descriptions exist. For in-
stance, travel websites like Yahoo! Travel1 and TripAdvisor2

only provide very brief descriptions of tourist attractions,
hotels, etc. Matching pages from such sites with Wikipedia
pages that refer to the same entities may help these sites to
automatically generate more comprehensive descriptions of
entities. Moreover, when users look for tourist attractions
in Paris, “Musee de l’Orangerie” receives very high rating
compared to most of the well-known attractions like “Eiffel
Tower” and “Musee du Louvre” in TripAdvisor. Matching
pages from Tripadvisor with pages from other travel web-
sites that refer to the same entities may help users to realize
that the high rating of “Musee de l’Orangerie” in TripAd-
visor is mainly provided by art lovers rather than ordinary
tourists. In fact, matching entities from different sources
is also important for on-line comparison shopping sites like
PriceGrabber3, NextTag4, etc. to gather and compare the
prices, descriptions and reviews of the same products from
different on-line shopping sites like Amazon, Walmart, etc.,
which helps users to determine where to purchase a product.

However, the lack of unique entity identifiers across dif-
ferent information sources, the large amount of information
sources (e.g., travel, shopping websites, etc.), and the larger
amount of entities (e.g., tourist attractions, products, etc.)
make it very challenging to efficiently match the multiple
references to the same entity. Existing entity matching ap-
proaches mainly rely on machine learned classifiers (e.g.,
SVM [3], decision tree [21], etc.) to determine whether a
pair of entities match not. The performance of these su-
pervised learning approaches highly depends on the quality
and size of the available training data. Since labeling train-
ing data usually requires editorial efforts, it is very expensive
and inefficient to produce large-scale training data to ensure
accurate entity matching.

In this paper, we propose an unsupervised approach for
matching entities. More precisely, we propose an unsuper-
vised approach for generating seed matches which can serve
as training data for supervised approaches. There are al-
ready unsupervised approaches for matching entities [20, 13],
which usually determine whether two references are likely

1
http://travel.yahoo.com/

2
http://www.tripadvisor.com/

3
http://www.pricegrabber.com/

4
http://www.nextag.com/
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to refer to the same entity according to their similarity on
a set of attributes. However, as information sources are
usually maintained by different organizations, it is not al-
ways obvious to access the entities and identify the corre-
sponding attributes beforehand. Differently, we leverage the
click behavior of Web search users to generate matching en-
tities across websites. The basic intuition of the approach is
the observation that users looking for an entity like “Eiffel
Tower” usually click on pages of the same entity from differ-
ent websites in response to search queries. Therefore, it is
possible to link pages of the same entity across sites based
on user click behaviors. This approach allows matching en-
tities from different sources without knowing any specific
attribute associated to them, and is thus more flexible.

However, there are a few challenges with this approach.
First, users may use different keywords for searching the
same entity. Consequently, for robustness, we need to
both correlate search queries and match pages using search
queries. Second, clicks of search users are generally sparse
as users often click on a very limited number of pages in re-
sponse to their queries. This sparseness is both due to users
only clicking on pages appearing relevant to their queries and
to users not clicking on any page if the titles and snippets
of the search results already provide sufficient information.

Contributions: Our main contribution in this work is an
unsupervised approach for identifying matching of entities
based on user click behaviors in search. More concretely:
• We leverage the connectivity of pages and queries to

generate matchings of pages that refer to same entities.
• We take advantage of the duality of queries and pages,

i.e., queries can be clustered on the basis of pages that
they co-click while pages can be clustered on the basis
of queries that lead to co-click on them, to increase the
number of matchings obtained through co-clustering.
• We rely on random walk with restart to discover plau-

sible missing clicks. This reduces the sparseness of user
behavior and is key for the matching effectiveness.
• We exploit the similarity among pages to refine am-

biguous matchings, increasing the number of match-
ings obtained with high precision.
• We evaluate our approach with a large-scale real-world

dataset. Half of the targeted pages involved in user
clicks are matched among each other with an overall
precision of 0.826 in a few minutes, confirming the ef-
fectiveness, accuracy and efficiency of our approach.
• We use pages that are automatically matched by our

approach as seed data for training a simple classifier for
the entity matching task. We show that large automat-
ically generated seed data results in better classifier
than small editorially generated seed data, revealing
the potential of our approach on generating large-scale
seed data for supervised entity matching approaches.

The paper is organized as follows. Section 2 defines the
problem. Section 3 presents our approach and analyzes its
complexity. Section 4 reports its experimental performance.
Section 5 surveys the related work and Section 6 concludes
the work.

2. PROBLEM DEFINITION
In this work, we focus on matching Web pages from dif-

ferent websites that refer to the same entity by mining the
Web query click logs. We use click data alone, without con-
sidering page content or query content, to ensure scalability.
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Figure 1: Generation of bipartite click graph.

Data model. We model Web query click logs as a query-
page bipartite click graph G = 〈Q,P, E〉. The queries in
the logs constitute the partition Q = {q1, q2, ..., qn} and the
clicked pages constitute the partition P = {p1, p2, ..., pm}.
There is an edge ei,j ∈ E between qi ∈ Q and pj ∈ P if
query qi leads to at least one click on page pj . Each edge is
associated with a weight wi,j , indicating the frequency that
qi leads to a click on pj . Figure 1 illustrates how the click
graph is built based on a query click log through an example.
Since page p1 is clicked in response to query q2 by user u2

at time t1 and by user u4 at time t4 respectively, the weight
of edge e2,1 is set to 2. We use the term “co-click” in the
paper to refer to the fact that query qi and qk both lead to
clicks on page pj , i.e., there exist both edges ei,j and ek,j in
E . We say that query qi and qk co-click page pj .

Problem statement Given a bipartite click graph G =
〈Q,P, E〉, our objective is to determine, among all the pages
in P, the subsets of pages Pmatching = {P1, P2, ..., Pz, ...},
where Pz ⊂ P and each page pj ∈ Pz refers to the same
entity oz. We call Pz a matching of pages. Note that
∪∀Pz∈PmatchingPz ⊆ P as there may be pages in P that can-
not form matching with any page. To identify the matching
of pages, the algorithm that mines the click graph should be

• effective, so that many matchings can be extracted;

• accurate, so that many matchings indeed refer to the
same entity.

We achieve these goals through a practical approach that
exploits the click behavior of Web search users.

3. MATCHING ON CLICK GRAPH

3.1 Overview
The underlying intuition of our approach is the observa-

tion that users looking for entities such as “Eiffel Tower”
usually click on pages from different websites in response
to search queries of this entity. Although whether a clicked
page refers to the searched entity depends on the query and
its context, high level agreement among users (i.e., multiple
users click on the same page to respond to the same query)
can be a good indicator of the true page-entity association.
Moreover, if two pages are frequently clicked to respond to
the same queries, they are likely to refer to the same entity.
Similarly, if two queries frequently lead to clicks on the same
page, they are also likely to refer to the same entity.

Based on these observations, we rely on a spectral co-
clustering approach [10] to cluster the queries and pages in
the bipartite click graph. Basically, this approach recur-
sively determines the queries that lead to clicks on the same
pages, which in turn determine the pages that are clicked
to respond to the same queries. The key challenges to ap-
ply this approach in our context are (i) the sparseness of

981



the click graph5 as pages and queries referring to the same
entity may not be sufficiently associated to each other due
the the plausibly missing clicks; (ii) the necessity of deter-
mining the expected number of clusters given a click graph
as required by the co-clustering approach; and (iii) the am-
biguity of the resulted clusters as some pages with similar
titles (or snippets) but different content may be co-clicked
when users were looking for their desired responses.

To reduce sparseness, before co-clustering the click graph,
we smooth it using random walk with restart [19, 22, 23]
to associate pages with more queries. A crucial aspect of
smoothing is to adjust the weights of original edges with
respect to additional edges. We explain this in Section 3.2.

To determine the expected number of clusters and refine
the resulted clusters to form matchings of pages, we rely on
an observation which we call “one page per entity per site” .
That is “for an entity-centric website, there is at most one
page referring to a given entity”.

We use “entity-centric” to refer to websites like travel and
shopping sites that provide information in forms of descrip-
tion and reviews on individual entities to facilitate content
sharing and serving. Typically, there is only one page in
such sites to describe an entity6. For example, for the at-
traction “Eiffel Tower”, there is only one (English) page in
Wikipedia7 that gathers information about its different as-
pects, and one (English) page in TripAdvisor8 that presents
both travel information and user-generated reviews about
it. In fact, as our objective is to match pages from differ-
ent websites, even if some website occasionally has multiple
pages for the same entity, it does impact the correctness of
the matching we obtain.

We explain in Section 3.3 how we rely on the“one page per
entity per site” observation to determine the number of clus-
ters and identify matching of pages from the resulted clus-
ters. We refer to such matchings asClusteredMatching.

It is still possible to have clusters that contain multiple
pages from the same website, since ambiguous titles (or snip-
pets) of some pages in the search results may lead users to
co-click pages that do not refer to the same entity. We call
such a cluster ambiguous and use AmbiguousCluster to
denote it. We will see in Section 4.2, one third of clusters ob-
tained through co-clustering are ambiguous. To improve the
effectiveness of our approach, i.e., identifying more match-
ings in a click graph, we further refine AmbiguousCluster
by exploiting similarity among pages. We refer to the match-
ings of pages obtained in this way as AdvancedMatching
and detail in Section 3.4 how they are identified.

Since co-clustering only applies for connected graphs, we
first use depth-first search (DFS) [8] to identify all the con-
nected components in the click graph. If any pages in a
connected component are not from the same website, they
naturally form a matching that refers to the same entity. We
refer to this kind of matching as SimpleMatching. Queries
in each connected component naturally provide an explana-
tion of the entity referred to by the SimpleMatching. We

5We will see in Section 4.1, in a graph of 190K queries and 360K
pages, on average, each query is linked to 3.13 pages. The density
of this graph is only 3.26× 10−5 [7].
6We ignore different versions of a page appearing in different lan-
guages and focus on English pages.
7
http://en.wikipedia.org/wiki/Eiffel_Tower.

8
http://www.tripadvisor.com/Attraction_Review-g187147-

d188151-Reviews-Eiffel_Tower-Paris_Ile_de_France.html.
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Figure 3: Smoothing the click graph.

then smooth, co-cluster, and refine each of the click graphs
corresponding to the remaining connected components to
identify ClusteredMatching and AdvancedMatching,
which we explain in the following sections. Figure 2 sum-
marizes our entity matching approach.

3.2 Smoothing the graph: random walk with
restart

We smooth each connected click graph by performing ran-
dom walk with restart on it to discover plausible missing
clicks. Intuitively, there exists close semantic relation among
neighbor vertices (i.e., queries and pages) in the click graph.
For example, in Figure 3(a), q1 and q2 both lead to clicks on
page p1, indicating that they are likely to look for the same
entity. In the meantime, q2 leads to clicks on page p1 and
p2, indicating that p1 and p2 are likely to refer to the same
entity. Thus, it is likely that q1 would also lead to a click
on page p2. In other words, following the edges in the click
graph, a random walk starting from q1 has a probability of
arriving at p2 through path q1 → p1 → q2 → p2. If this
probability is high enough, we smooth the click graph by
adding the edge e1,2 (dash line in Figure 3(b)).

Formally, given a connected click graph Gc = 〈Qc,Pc, Ec〉
(Qc ⊆ Q, Pc ⊆ P, Ec ⊆ E), we have a n×m query-by-page
matrix A where Aij is the weight wi,j of edge ei,j in E . The
(n+m)× (n+m) adjacency matrix of Gc can be written as

B =

[
0 A
AT 0

]
,

where the elements are ordered: the first n elements in each
row (column) index the queries in Qc and the last m ele-
ments in each row (column) index the pages in Pc. vi de-
notes a vertex in Gc that is either query qi or page pi.

We define the transition probability p(vj |vi) from vertex
vi to vertex vj by normalizing the clicks from vi to vj over
all the clicks originated from vi. We obtain the transition
matrix M of one step random walk on Gc such that

Mij = p(vj |vi) =
Bij∑

1≤j≤n+mBij
.

To perform a random walk with restart on Gc, at each
step, instead of always following an edge in Gc to walk to vj
with probability defined by Mij , the random walk starting at
vi has probability c (0 ≤ c ≤ 1) to go back to (restart from)
vi. Intuitively, higher probability for a random walk starting
at vi to arrive at vj implies higher probability for them to
refer to the same entity. We define the similarities between
vertex vi and any other vertices in Gc as the (n + m) × 1
steady-state probability vector ~si that satisfies

~si = (1− c)M~si + c~ri,
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where ~ri is the (n+m)× 1 restart vector that corresponds
to the position for the random walk starting at vi to restart.
Thus, the value at the ith position of ~ri is 1 and all the other
values are 0. Therefore, we have

~si = c(In+m − (1− c)M)−1~ri,

where In+m is a (n + m) × (n + m) identity matrix. The
value of the jth element in ~si corresponds to the steady-state
probability of the random walk starting at vi to arrive at vj
and thus defines the similarity between these two vertices.

More generally, the similarities between any pair of ver-
tices in Gc, denoted as matrix S, can be obtained with

S = c(In+m − (1− c)M)−1.

The value of Sij corresponds the steady-state probability of
the random walk starting at vi to arrive at vj and defines the
similarity between vi and vj . In fact S = {~s1, ~s2, ..., ~sn+m}.

Given graph Gc and its steady-state probability matrix S,
the sub-matrix with values Sij , 1 ≤ i ≤ n and n + 1 ≤ j ≤
n + m, corresponds to the probability of the random walk
starting at query qi to arrive at page pj in Gc. To discover
plausible missing edges originating from query qi, we iterate
over all the pages pj in Gc (pj ∈ Pc), i.e., the values from
the (n + 1)th position to the (n + m)th position of ~si. For
a pre-defined threshold α (0 ≤ α ≤ 1), if Sij > α and
there is no such an edge in Gc, we add an edge between pi
and qj in the corresponding smoothed graph Gs. Note that
Gs = (Qc,Pc, Es) where Qc and Pc are the same as in Gc.

Once an edge is added in Gs, we need to assign a weight
to it. To motivate our design, we plot the distribution of
weights in the original graph G in Figure 4 (Graph character-
istics in Section 4.1). We observe that the weights of edges
follow a power-law distribution. 59% edges have weight 1
and 99% edges have weight smaller than 10. Since high
weight indicates high probability of referring to same entity,
the additional edges should not have high weights compar-
ing to the actual edges. Therefore, for each additional edge,
we set its weight to 1. We also increment the weights of all
the edges in Gc that start from qi by 1 if at least one edge
that starts from qi is added in Gs. This ensures that an
actual edge always has higher weight (and higher transition
probability Mij) than any additional edge that starts from
the same query. Figure 3(b) depicts the smoothed graph af-
ter adding edge e1,2, where e1,2 has weight 1 and the actual
edges starting from q1, i.e., e1,1 and e1,4, have weight 2.

3.3 Matching the entities: co-clustering pages
and queries

Once the click graph is properly smoothed, we perform
co-clustering on the smoothed graph to generate clusters
of pages and queries that refer to the same entities. The
matchings of pages are extracted from these clusters.
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Co-clustering pages and queries aims to partition the
smoothed click graph into k partitions such that the crossing
edges among partitions have minimum weights. We perform
singular value decomposition (SVD) on normalized matrix
An of A to obtain its n left singular vectors U = {~u1, ~u2, ...,
~un} and m right singular vectors V = {~v1, ~v2, ..., ~vm}. If k
clusters are expected, we use l = dlog2 ke singular vectors
~u2, ~u3, ..., ~ul+1 to form Uk and ~v2, ~v3, ..., ~vl+1 to form Vk.
We finally compute the l-dimensional data set Zk as

Zk =

[
D
− 1

2
1 Uk

D
− 1

2
2 Vk

]
,

and apply k-means algorithm to obtain the desired k clus-
ters. We discuss the choice of k in the following as it is key
to the quality of obtained clusters and matchings.

Ideally, the pages in a cluster should directly form a
matching of pages that refer to the same entity. As the
number of matchings that can be obtained in a click graph
highly depends on the pages it contains, the value of k should
be determined according to those pages. Clearly, if a graph
only contains pages from one website, these pages do not
form any matching of pages. Similarly, if a graph contains
one page from Wikipedia and two pages from TripAdvisor,
it makes no sense to obtain more than two clusters (k ≥ 3)
as a matching requires at least two pages. According to the
“one page per entity per site” observation, it is also unde-
sirable to have one cluster (k = 1) as once the three pages
are clustered together, it requires additional refinement to
keep only one page from TripAdvisor to form the matching
with the Wikipedia page. Based on these observations, we
use the following heuristic to determine the value of k.

Suppose the smoothed click graph Gs contain pages from
X different websites, where each website sitex contributes
cx pages to this graph (i.e., |Ps| =

∑
1≤x≤X cx). Since each

website has at most one page referring to a given entity, the
cx pages from sitex belong to cx different clusters. In order
to have a matching contain pages from as many different
websites as possible, we set the value of k to the maximum
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Algorithm 1 Co-clustering on smoothed click graph

Input: smoothed click graph Gs
Output: a set C of clusters of pages and queries

build adjacency matrix A from Gs
compute D1, D2 and An

SV D(An) to obtain U and V
for each pi ∈ P do

if pi ∈ sitex then
increment cx by 1

k ← max{cx, 1 ≤ x ≤ X}
build Uk and Vk and compute Zk

run k-means on Zk to obtain k clusters C = {C1, ..., Ck}
return C

number of pages from the same website, i.e.,

k = max{cx, 1 ≤ x ≤ X}.

Algorithm 1 shows the pseudo-code of the co-clustering
process on a smoothed graph. For each resulted cluster Cz

in the set C of k clusters, if all the pages in Cz are from dif-
ferent websites, they form a ClusteredMatching of pages
Pz that refer to the same entity. The queries in Cz natu-
rally form an explanation of the entity that are referred to
by this ClusteredMatching. There are also Ambiguous-
Cluster that contain multiple pages from the same website.
Additional refinement is necessary for them to build match-
ings that only consist of pages from different websites.

3.4 Refining the matchings: exploring page
similarities

Given an AmbiguousCluster, we selectively choose one
page for each website that contributes multiple pages to
the cluster to form a meaningful matching, i.e., Advanced-
Matching. We rely on the similarity among pages to select
the pages to form AdvancedMatching. Without knowing
the content of pages, an effective way to quantify their sim-
ilarity is to exploit their semantic relations exposed by the
edges in the click graph. Therefore, we use the steady-state
probability matrix S that is computed to smooth the click
graph (Section 3.2). This does not require additional com-
putation. The sub-matrix with values Sij , n+1 ≤ i ≤ n+m
and n + 1 ≤ j ≤ n + m, corresponds to the probability of
random walk starting at page pi to arrive at page pj and
thus the similarity between pi and pj .

Algorithm 2 depicts the pseudo-code for refining an Am-
biguousCluster. If AmbiguousCluster Ca contains
pages from Y websites and each sitey contributes cy pages
to Ca, the pages from different sitey with cy = 1 directly
form part of a refined cluster Cr,l. For sitey with cy > 1, the
page pi having the maximum similarity with the pages that
are already in Cr,l is added to Cr,l, if this similarity is larger
than a pre-defined threshold β (0 ≤ β ≤ 1). The similarity
Similarity(pi, Cr,l) between page pi and the refined cluster
Cr,l is computed as

Similarity(pi, Cr,l) =
1

|Cr,l|
∑

pj∈Cr,l

Sij + Sji

2
,

where |Cr,l| is the size of the refined cluster Cr,l.
If there are multiple sitey in Ca having cy > 1, besides

this refined cluster, other pages from these websites can also
form refined clusters. For instance, an AmbiguousCluster
with pages of “Disneyland” may contain several matchings

Algorithm 2 Refining an ambiguous cluster

Input: ambiguous cluster Ca

Output: a set Cr of refined clusters

group pages in Ca by website and rank sites by ascending cy
for each sitey do

if cy ≥ 1 then
get ph from sitey and Cr,l ← {ph}
sitey ← sitey \ {ph}

for each sitez ranked behind sitey do
select pi ∈ sitez with maximum Similarity(pi, Cr,1)
if Similarity(pi, Cr,1) > β then
Cr,l ← Cr,l ∪ {pi}
sitez ← sitez \ {pi}
for each qj in Ca do

if ejh ∈ Gs and eji ∈ Gs then
Cr,l ← Cr,l ∪ {qj}
Ca ← Ca \ {qj}

Cr ← Cr ∪ {Cr,l}
return Cr

of pages that refer to Disneyland in different locations of the
world. Hence, we iterate over all the websites having multi-
ple pages in Ca, in ascending order of the number of pages
they have (i.e., cy), to obtain more refined clusters. If page
pi from sitey has the maximum Similarity(pi, Cr,l) with all
the pages in the refined cluster Cr,l and Similarity(pi, Cr,l)
is larger than β, pi is added to Cr,l.

The pages in each refined cluster containing multiple pages
form an AdvancedMatching. We finally map queries to
these clusters by selecting the queries in Ca that associate
at least one pair of pages in the refined clusters. Again, the
queries in a refined cluster provide an explanation of the en-
tity referred to by the corresponding AdvancedMatching.

3.5 Complexity analysis
As we have explained, the entire entity matching process

consists of identifying the connected components in the orig-
inal click graph G = 〈Q,P, E〉 and smoothing, co-clustering,
refining each connected click graph Gc with n queries and m
pages. The DFS algorithm identifies connected components
in linear time, i.e., O(|Q|+ |P|+ |E|). This can be reduced
to logarithmic time with parallel algorithms [14].

The time for smoothing a graph is dominated by the in-
version of transition matrix, which is in O((n + m)3). If G
consists of N connected components, the time for smoothing
them does not surpass O(N(n+m)3). Yet, as we will see in
Section 4.6, if we double the size of the original click graph
G, the number of connected components it contains (i.e., N)
also doubles, while the size of the largest connected compo-
nent (i.e., n+m) is almost the same and is very small. This
suggests that the computational cost of smoothing increases
linearly with the size of G as N increases linearly with it.

Regarding to co-clustering, the choice of the desired num-
ber of clusters k can be achieved in O(m), SVD can be achie-
ved in O(min{n2m,nm2}) and k-means can be achieved
in O((n + m)kI) with the bounded number of iterations I.
Again, for each smoothed graph, the values of n and m are
very small compared to the size of G. Thus, the overcall cost
of co-clustering increases linearly with the size of G.

The time for refining an ambiguous cluster depends on
the number of websites Y in the cluster and the number of
pages cy from each website. In the worst case where all the
Y sites have the same number of pages, i.e., cy = m/Y , this

process requires
cy×(cy+1)

2
× (Y − 1) computations of Simi-
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Website Number of pages Number of edges
tripadvisor.com 64,459 123,320

travel.yahoo.com 50,897 91,134
travelpod.com 3,598 4391

virtualtourist.com 153 234
wikipedia.org 166,350 258,801

yelp.com 74,625 121,863

Table 1: Statistics of the click graph.

larity(pi, Cr,l), i.e., O(m2/Y ). Hence, the overall cost of
refining the ambiguous clusters is bounded by O(Nm2/Y ).

As we will see in Section 4.2, only a small subset of con-
nected components requires smoothing, co-clustering and
refining to obtain ClusteredMatching and Advanced-
Matching. More importantly, despite the cubic complexity
to process each connected component, the overall cost only
increases linearly with the size of the entire click graph, since
the maximum size of the connect components remains small
and stable in click graphs of different sizes. This is key to
the scalability of our entity matching approach.

4. EXPERIMENTAL RESULTS

4.1 Experimental settings
Dataset: In the experiments, we use a sample of recent

30-day query click logs of Yahoo! Web search engine. We
build the click graph with pages from 6 websites, includ-
ing “tripadvisor.com”, “travel.yahoo.com”, “travelpod.com”,
“virtualtourist.com”, “wikipedia.org” and “yelp.com”. The
first four sites are famous travel websites that assist users
in gathering travel information and posting reviews, while
“yelp.com” provides a complete list of businesses through-
out US and Canada with user-generated reviews. This
graph contains 23, 112, 812 queries, 3, 527, 069 pages and
24, 935, 578 edges. Our approach takes advantage of shared
clicks to perform clustering. If a page is not co-clicked with
pages from other websites for any query, it cannot form any
matching. Therefore, we filter out the queries that only lead
to clicks on pages from the same websites, as well as the asso-
ciated edges. We obtain a click graph with 191, 645 queries,
360, 082 pages and 599, 743 edges. The numbers of pages
and edges that related to each website are shown in Table1.

Methodology: We first rely on DFS to identify all the
connected components in the click graph. We identify Sim-
pleMatching from the connected components that only
consist of pages from different websites. We then apply
each step presented in Section 3 to identify matchings in
the connected components in which there are at least two
pages from the same website. We compare the performance
of our approach against an alternative that does not smooth
the graph to highlight the benefits of smoothing. We also
train a simple SVM model using the matchings generated
with our approach to show their potential as seed data for
supervised entity matching approaches.

4.2 Structural results
We first present the statistics of the original, smoothed,

clustered graphs, and the different types of matchings ob-
tained. By performing DFS on the click graph, we obtain
85, 282 connected components. Since 68, 600 of them only
consist of pages from different websites, the pages in each
connected component form a SimpleMatching. We obtain
68, 600 SimpleMatching.

α Number of edges Fraction of added edges
0.05 497,888 1.4166
0.1 320,767 0.5569
0.2 220,873 0.0720
0.3 207,118 0.0053

(a) Edges in smoothed graph (c = 0.15).

α Number of edges Fraction of added edges
0.001 252,868 0.2273
0.0015 215,188 0.0444
0.002 207,361 0.0065
0.0025 206,162 0.0006

(b) Edges in smoothed graph (c = 0.85).

α # ClusteredMatching # AmbiguousCluster
0.05 11,199 9507
0.1 12,619 8679
0.2 12,618 8057
0.3 12,458 7939

(c) Output of co-clustering (c = 0.15).

α # ClusteredMatching # AmbiguousCluster
0.001 12,572 8347
0.0015 12,517 7992
0.002 12,485 7964
0.0025 12,462 7956

(d) Output of co-clustering (c = 0.85).

Table 2: Structural results

For the remaining 16, 682 connected components that con-
sist of at least two pages from the same website, we first
smooth their corresponding click graphs and then identify
the matchings on the smoothed graphs.

We set c to 0.15 and 0.85. 0.15 is typically used in Web
graphs to compute PageRank [17] and we use 0.85 as an op-
posite case. For each c value, we set the smoothing threshold
α to four different values. Table 2(a) and Table 2(b) de-
pict the number of edges in the 16, 682 smoothed graphs for
c = 0.15 and c = 0.85. There are 206, 031 edges in the origi-
nal graph. Clearly, higher value of the smoothing threshold
α leads to fewer added edges in the smoothed graphs.

We co-cluster the graphs to obtain ClusteredMatch-
ing. Table 2(c) and Table 2(d) summarize the number of
ClusteredMatching and AmbiguousCluster obtained
on the smoothed graphs through co-clustering. If the graphs
are not smoothed, we obtain 12, 444 ClusteredMatch-
ing and 7947 AmbiguousCluster. Smoothing the graphs
slightly increases the number of ClusteredMatching and
adding more edges results in more matchings. Smoothing
also increases the number of AmbiguousCluster.

We refine obtained AmbiguousCluster as described in
Section 3.4 to exact AdvancedMatching. Figure 5 com-
pares the number of AdvancedMatching identified in the
original graph and different smoothed graphs with respect to
different values of the page-page similarity threshold β. We
observe that larger β leads to fewer AdvancedMatching.

We have measured the number of matchings (i.e., Cover-
age) that can be obtained using our approach, i.e., 68, 600
SimpleMatching, more than 12, 000 ClusteredMatch-
ing and up to 6600 AdvancedMatching. We further eval-
uate the quality of these matchings with respect to different
smoothing and refining parameters.

4.3 Matching quality: precision and coverage
We evaluate the accuracy of our approach using

Precision, which is the number of correct matchings in
which the pages refer to the same entities divided by the
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Figure 5: Number of AdvancedMatching.

total number of obtained matchings. Higher value of preci-
sion indicates higher accuracy of the matching approach.

To assess the quality of each obtained matching, we con-
duct a user study to examine if all the pages it contains refer
to the same entity. Different from the top-k results of a key-
word search, whether two pages refer to the same entity is
independent of the assessor’s own preference, the user study
rarely introduces disagreement. Thus a matching is either
correct or wrong as an entity can be uniquely identified by
a combination of features. For example, for a matching of
a hotel, we can compare the name, the address, the home-
page of the hotel and the external booking websites (e.g.,
“booking.com”) from each website to verify if they refer to
the same hotel. If the available features are not enough to
make a judgment, the matching is considered as wrong.

Table 3 gives some examples of correct and wrong match-
ings. We see that the queries of correct matchings usually
indicate the name of the corresponding entity, such as “hy-
att regency phoenix” for the hotel entity, and “latin quarter
montreal” for the tourist attraction entity. Wrong matchings
are often due to the ambiguity in the entity names. In the
example of wrong matching, the Wikipedia page presents
the chain restaurant “the hat” in general while the other
two pages refer to its branches in different locations.

We manually inspect the quality of SimpleMatching,
ClusteredMatching and AdvancedMatching, obtained
either on original or smoothed graphs. In each experiment,
we randomly sample 1% to 10% from each kind to ensure
that at least 100 matchings are examined for that kind.

The precision of SimpleMatching is 0.843, indicating
pages that are co-clicked by the same set of queries have high
probability to refer to the same entities. This also confirms
our motivation of mining page matchings in click graphs.

The precision of ClusteredMatching is 0.590 if the
graphs are not smoothed. Figure 6 shows the precision and
coverage of ClusteredMatching on smoothed graphs with
different restart probability c and smoothing threshold α.
We observe that with appropriate values of α, e.g., α ≥ 0.1
for c = 0.15 and α ≥ 0.001 for c = 0.85, the precision
of ClusteredMatching on smoothed graph is consistently
better than on the original graph. Smoothing too much,
i.e., adding too many edges with small α, the precision may
become worse than if the graph is not smoothed, such as
α = 0.05 for c = 0.15. In contrast, if the graph is not
smoothed enough with sufficient number of additional edges,
the benefits of smoothing may not be significant as in the
graph obtained with c = 0.85 and α = 0.0025.

Figure 7 compares the precision and coverage of Ad-
vancedMatching for different parameters. We observe
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Figure 7: Performance of AdvancedMatching.

that refining AmbiguousCluster results in high quality
AdvancedMatching and the precision can reach at 0.818.
Yet, there is a trade-off between the number of Advanced-
Matching and the corresponding precision. A larger value
of β ensures high precision but fewer matchings are obtained.
With α = 0.1 for c = 0.15 and α = 0.002 for c = 0.85, which
provide the best precision of ClusteredMatching, the cor-
responding precisions of AdvancedMatching are consis-
tently better than the precisions obtained on original graph.

4.4 Matching as seed data
To demonstrate the effectiveness of the matchings as a

seed set, we train a linear SVM model with bag-of-words
features. For the baseline, we train the classifier with an
editorially labeled set of 100 pages. From the matchings
generated in by our approach (with the setting c = 0.15, α =
0.1 and β = 0.1), we choose seed sets of varying sizes: 100,
1000, 10000, and 50000 pages. The classifiers are tested on
another set of 96 editorially labeled non-overlapping pages.
Both editorially labeled sets are sampled from the correct
matchings generated by our approach.

Table 4 summarizes the Precision (fraction of correct
matchings in the classifier output). We observe that when
the size of seed set is small, the performance of the classi-
fier trained with automatically generated seed set performs
the same as that trained with editorially labeled seed set.
Moreover, by increasing the size of the seed set, even if the
automatically generated seed matchings are not completely
accurate, the performance of the classifier improves. Al-
though we do not perform this experiment for large edito-
rially labeled seed set given the associated difficulties (the
main motivation of our approach), and we rely on simple ma-
chine learning model, this result reveals that our approach
is promising to generate high quality seed data in a scalable
way for supervised entity matching approaches.
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Status Pages Queries
Correct travel.yahoo.com/p-hotel-357759-hyatt_regency_phoenix-i;_ylc=X3oDMTBtMGZ1MWNiBF9TAzI3NjY2NzkEX3MDOTY hyatt regency phoenix

www.tripadvisor.com/Hotel_Review-g31310-d73855-Reviews-Hyatt_Regency_Phoenix-Phoenix_Arizona.html

Correct en.wikipedia.org/wiki/Quartier_Latin,_Montreal latin quarter montreal canada

travel.yahoo.com/p-travelguide-2803822-latin_quarter_montreal-i latin quarter montreal

www.travelpod.com/ad/Latin_Quarter_Quartier_Latin-Montreal montreal latin quarter

www.tripadvisor.com/Attraction_Review-g155032-d240017-Reviews-Latin_Quarter_Quartier_Latin-Montreal_

Wrong en.wikipedia.org/wiki/The_Hat the hat

www.yelp.com/biz/the-hat-pasadena the hat restaurant

www.tripadvisor.com/Restaurant_Review-g33206-d468695-Reviews-The_Hat-Upland_California.html the hat restaurant pasadena

Table 3: Example of matchings.

Seed (Editorial) Seed (Our Approch)
# pages 100 100 1000 10,000 50,000
Precision 0.09 0.09 0.4 0.51 0.62

Table 4: Matching precision wrt. different seed data

Matching type Processing Avg. StdDev.
SimpleMatching DFS 389 44

Matching 180 26
Smoothing 144 2

ClusteredMatching Co-clustering 164 10
Matching 16 1

AdvancedMatching Matching 8 2

Table 5: Running time of our approach (in seconds).

4.5 Matching efficiency: running time
We measure the efficiency of our approach using its run-

ning time for matching pages. All the experiments are con-
ducted on a machine with Intel 2GHz CPU and 4G RAM,
except the raw data is cleaned on a Hadoop cluster. We run
each experiment for 3 times and report the average running
time in Table 5. Basically, our approach takes 15 minutes
to identify the potential matchings in the click graph. It
is worth noticing that the value of smoothing parameter α
has almost no impact on running time as the similarity be-
tween every pair of query and page needs to be examined
in the smoothing process regardless of the value of α, and
although the time for identifying AdvancedMatching in-
creases when the page-page similarity threshold β decreases,
the actual running time does not surpass 15 seconds in our
settings. Compared to matching the pages in the original
graph without any smoothing, our approach only takes 154
seconds (16%) longer as no smoothing is performed and less
information is examined in the following processes.

4.6 Scalability
To convey the scalability of our approach, we conduct the

same experiment with a smaller graph of 67,898 queries,
167,116 pages and 226,675 edges, derived from 10-day query
logs of the same period. Interestingly, among the 41,443
connected components requiring co-clustering to identify
matching of pages, the largest connected component only
contains 203 queries and pages, i.e., max{n + m} = 203.
This value is almost the same as the maximum value in
the larger graph derived from 30-day query logs, for which
max{n + m} = 212. This reveals that performing our ap-
proach in larger click graph does not increase the compu-
tational cost cubicly even if the most expensive smoothing
is in O((n + m)3). Instead, the cost only increases linearly
as there are twice more connected components to process in
the larger graph with twice more vertices and edges.

Matching type
Our approach Original graph
Cov. Pre. Cov. Pre.

SimpleMatching 68,600 0.843 68,600 0.843
ClusteredMatching 12,619 0.755 12444 0.590
AdvancedMatching 3632 0.741 4196 0.686

Table 6: Best-case performance (coverage and pre-
cision) of the proposed matching technique (for c =
0.15, α = 0.1, β = 0.1) and comparison with baseline.

4.7 Summary
Our evaluation demonstrates that user clicks on Web

search is a valuable source of information that can be lever-
aged for effective entity matching. With appropriate param-
eters, e.g., c = 0.15, α = 0.1 and β = 0.1, we obtain up to
84, 851 matchings on a click graph of 360, 082 pages. Table
6 summarizes the three kinds of matchings with respect to
their coverage (Cov.) and precision (Pre.). These match-
ings consist of 179,563 pages, accounting for 49.9% pages in
the click graph. This conveys the effectiveness of our entity
matching approach. Importantly, using the proposed meth-
ods (i.e., co-clustering and refining) increases the coverage of
SimpleMatching by 23.7% at the cost of modest decrease
(11%) in precision. Even if about 0.4% fewer matchings are
obtained on the smoothed graph, the precisions of Clus-
teredMatching and AdvancedMatching are 28% and
8% better than those on the original graph. The overall
precision of matching on smoothed graph can reach 0.826,
outperforming the precision on the original graph by 4%.
This confirms the accuracy of our approach. In fact, our ap-
proach is also efficient: 15 minutes are enough to obtain the
potential matchings implied in the click graph and the time
only increases linearly as the original graph grows. And,
finally, we demonstrate the effectiveness of the seed set gen-
erated as training data for entity matching.

5. RELATED WORK
The work presented in this paper straddles two areas of

research: entity matching and user click analysis. Entity
matching, also known as record linkage [2], object identifica-
tion [21], de-duplication [3], etc., has been extensively stud-
ied in the literature [12, 16]. Numerous approaches, both
supervised [3, 21] and unsupervised [13, 20], have been pro-
posed for entity matching. The effectiveness of supervised
approaches depends on size and quality of training data [16].
Providing training data typically involves editorial efforts to
create and choose entity pairs to match, label matched en-
tities, etc. Given the large amount of entities and their va-
rieties in nature, it is usually difficult and time-consuming
to determine a good set of training data. Unsupervised ap-
proaches alleviate the necessity of training data, while the
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similarity functions they use rely on attributes to determine
whether a pair of entities is a matching. Yet, information
sources are usually maintained by different organizations. It
is not always obvious to access the underlying databases of
entities (e.g., XML or relational records), while extracting
attributes from textual description [11] is not practical given
the large amount of entities to match.

Therefore, we propose in this work to a novel approach
that leverages user clicks on Web search to automatically
generate large-scale training data for entity matching. User
interactions with search engines has been used for several
tasks such as query expansion and clustering [1, 5, 24], Web
page clustering [6, 9], entity ranking [4, 15], etc. Specifically,
it is revealed in [1] that search click graph captures semantic
relations between queries while bicliques and session infor-
mation in the click graph is used in [5] and [24] to cluster
and suggest similar queries. In [6], search logs are used to
find paths in the DOM trees that mark out important con-
tent of pages to perform more accurate clustering of pages.
In [9], pages relevant to a query are ranked based on user
clicks through forward and backward random walks on the
click graph. In [4], random walk is performed on both click
graph and session graph to rank pages relevant to an en-
tity. Differently, we use random walk with restarts to both
smooth the graph and rank the pages.

In the area of entity matching, search logs are used to
train a machine learned ranking model to predict the rel-
evance of query-page pairs in [15]. An entity-aware click
graph derived from search logs is used to match websites
that fulfill similar user needs in [18]. It is worth noticing
that these approaches using user clicks to cluster Web pages
or rank entities are not very strict in the sense that related,
but not necessarily the same, entities belong to a cluster.
For example, while a cluster consisting of queries (or pages
corresponding to) “Eiffel Tower” and “Notre Dame” will be
considered acceptable in all the above approaches, it is in-
correct for entity matching. Hence entity matching is a very
demanding clustering task. To the best of our knowledge,
we are the first to leverage user click behaviors in search for
entity matching.

6. CONCLUSION
We propose in this paper a practical approach that ex-

ploits, for the first time, user clicks on Web search to gener-
ate seed data that can be used to train models for large-scale
entity matching. Experiments on real datasets show that
shared clicks among queries and pages are good indicators
for disambiguating and matching the pages referring to the
same entities. Reducing the sparseness of Web search data
through smoothing further improves the effectiveness and
accuracy of matching. Use of the matched data as train-
ing data in supervised approach to entity matching appears
promising: the performance matches that of editorial data
at small size and improves with size.

There is still room to improve the performance. For in-
stance, parallel algorithms [14] might be used to identify
connected components in click graphs. Once having the con-
nected components, the process of identifying matchings in
each component can be easily parallelized. Content-based
features, such as keywords in queries and URLs, might be
considered in addition to content-independent clicks as some
incorrect matchings are due to ambiguity implied in the en-
tities and could be clarified with more context information.
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