
Big Data Analytics with Small Footprint:
Squaring the Cloud

John Canny Huasha Zhao
University of California

Berkeley, CA 94720
jfc@cs.berkeley.edu, hzhao@cs.berkeley.edu

ABSTRACT
This paper describes the BID Data Suite, a collection of
hardware, software and design patterns that enable fast,
large-scale data mining at very low cost. By co-designing
all of these elements we achieve single-machine performance
levels that equal or exceed reported cluster implementations
for common benchmark problems. A key design criterion is
rapid exploration of models, hence the system is interactive
and primarily single-user. The elements of the suite are: (i)
the data engine, a hardware design pattern that balances
storage, CPU and GPU acceleration for typical data mining
workloads, (ii) BIDMat, an interactive matrix library that
integrates CPU and GPU acceleration and novel computa-
tional kernels (iii), BIDMach, a machine learning system
that includes very efficient model optimizers, (iv) Butter-
fly mixing, a communication strategy that hides the latency
of frequent model updates needed by fast optimizers and
(v) Design patterns to improve performance of iterative up-
date algorithms. We present several benchmark problems
to show how the above elements combine to yield multiple
orders-of-magnitude improvements for each problem.

Categories and Subject Descriptors
G.4 [Mathematical Software]: Algorithm design and anal-
ysis

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Data Mining; Toolkit; Machine Learning; Cluster; GPU

1. INTRODUCTION
The motive for the BID Data Suite is exploratory data

analysis. Exploratory analysis involves sifting through data,
making hypotheses about structure and rapidly testing them.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD’13, August 11–14, 2013, Chicago, Illinois, USA.
Copyright 2013 ACM 978-1-4503-2174-7/13/08 ...$15.00.

The faster this exploration, the higher the performance of
the final model in a typically time-limited process. Further-
more, real-world data analysis problems are not “pure” and
the best solution is usually a mixture of many simpler mod-
els. For instance all of the highest-performing NetflixR© con-
test competitors were complex hybrids [2]. Finally, complex
models require substantial parameter tuning, which today is
an ad-hoc process. There is need for tools that support both
manual and automatic exploration of the solution space.

A secondary goal is to support rapid deployment and live
tuning of models in commercial settings. That is, there
should be a quick, clean path for migrating prototype sys-
tems into production. The prototype-production transition
often results in degradations in accuracy to meet perfor-
mance constraints. To better support this transition, the
performance of the prototype system must meet or exceed
that of other production systems, and so high performance
is a necessary component of the BID Data Suite.

The BID Data Suite is designed to work in single-user
mode, or in small clusters. We argue next that this usage
model supports most“Behavioral Data”problems, and many
other problems that fit under a petabyte.

1.1 The Scale of Behavioral Data
By behavioral data we mean data that is generated by

people. This includes the web itself, any kind of text, social
media (FacebookR©, TwitterR©, Livejournal), digital mega-
libraries, shopping (AmazonR©, EbayR©), tagging (FlickrR©,
DiggR©) repositories (Wikipedia, Stack Overflow), MOOC
data, server logs and recommenders (NetflixR©, AmazonR©

etc). These datasets have many uses in health care, gov-
ernment, education, commerce, and cover the larger part
of the commercial applications of data mining. We exclude
data in specialized formats like images and videos, and high-
density sensor data. The later require specialized processing
and can be orders of magnitude larger. However, meta-data
extracted from images and video (who is in them, what is be-
ing said etc.) are very much back in the realm of behavioral
data. Figure 1 gives a feel for the scale of these datasets:

Spinn3r is an aggregator of all the blogs, news, and news-
related social media posts around the world. FB is Face-
Book. We placed “portal logs” in the middle of the curve
acknowledging that many web server clusters generate much
larger log sets. However, these logs comprise an enormous
amount of un-normalized meta-data, and encode relatively
few behaviorally relevant events (e.g. the presence of a par-
ticular image on the page). Once simplified and featurized,
the logs are much smaller and in the terabyte range for most
portals. There are only 6 billion people on earth, and a

95

Figure 1: The scales of behavioral data

small fraction are active on computers generating data at
any given time. This places a fairly stable limit on the
amount of behavioral data that will be generated over time.
These dataset sizes are practical to process on suitably con-
figured single machines or small clusters. A key aspect of
behavioral data is that it involves a large number of (ideally)
interchangable samples - the data from particular people -
or individual documents. This enables a very fast family of
model optimization strategies to be integrated into the suite,
at the same time supporting a very broad (and extensible)
set of model designs.

1.2 Data Mining Workloads
Most large-scale data mining workloads are either I/O-

bound or compute-bound. In fact they are typically either
heavily I/O-bound or heavily compute-bound. By this we
mean that the fraction of time spent in one phase is much
larger than the other. Examples of I/O bound workloads are
regression and linear classification. Examples of compute-
bound workloads are clustering models, factor models (aka
matrix completion), random forests and ensemble models.
In the first case, we touch each input datum “lightly” (i.e.
once or twice). Since computation (Gflops-Teraflops) is much
faster than I/O (0.1-1GB/s), there is a big disparity between
data retrieval and use. For compute-bound workloads, we
touch each datum many times. Compute-bound models are
much more complex, and if they are valuable at all, their
value improves with complexity. Complexity is tuned as
high as possible - and is often set by machine performance
limits. Each datum is used many times - often thousands
- and the overall time spent processing a datum strongly
dominates the time to retrieve it.

1.3 Patterns for Model Optimization
In recent years, two of the simplest model inference al-

gorithms: Stochastic Gradient Descent (SGD) and Gibbs
Sampling (GS) have been refined to the point that they of-
ten provide the best speed and acceptable accuracy for many
inference problems. SGD and GS are now preferred tools for
a wide range of gradient-based model optimizations. By de-
veloping very fast local and distributed code for SGD and
GS, we can support the rapid development and optimization
of existing or new models. Convergence of these algorithms
has improved to the point where on large datasets, conver-
gence is reached in few passes over the data and sometimes
in less than one pass. For this reason, our preferred I/O
design pattern is to read the dataset directly from disk for
each pass over it (if more than one is needed), and process
it in blocks - both SGD and GS typically perform equally
well when gradients are updated on small blocks rather than
individual samples.

SGD and GS are naturally sequentially algorithms and
parallelization has been a challenge. Recently however, we
demonstrated a new technique called Butterfly mixing [19]
which achieves a typical order-of-magnitude reduction in
communication time with minimal impact on convergence.
By supporting Butterfly Mixing in the toolkit we free the
designer from having to distribute a complex algorithm, in-
stead requiring only callbacks that compute either gradient
of loss on a block of data (for SGD) or change in likelihood
for a given state change (for GS). Butterfly mixing is an
example of the “loop interleaving” pattern we will describe
shortly.

1.4 Impact of GPU acceleration
Graphics Processors contrast with CPUs in many ways,

but the most important for us are:

• Much higher levels of parallelism - the number of cores
is in the thousands.

• Significantly higher memory bandwidth.

• Low-level support for transcendental functions (exp,
log etc)

GPUs have seen much service in scientific computing, but
several factors have hampered their use as general comput-
ing accelerators, especially in machine learning. Primarily
these were slow transfers from CPU to GPU memory, and
limited GPU memory size. However, transfer speeds have
improved significantly thanks to PCI-bus improvements, and
memory capacity now is quite good (2-4 GBytes typical).
GPU development has also focused most on optimizing single-
precision floating point performance, and for typical data
mining tasks this is adequate. In fact GPUs now provide sig-
nificant (order-of-magnitude) improvements in almost every
step that bottlenecks common machine learning algorithms.
The table below lists some performance details from the
Nvidia GTX-690 cards used in our prototype data engine.

Task Java 1C 8C 1G 4G imp
CPU copy(gbs) 8 12 * * * *
GPU copy(gbs) * * * 150 * *
CPU-GPU(gbs) * 12 * 12 * *
8k SGEMM(gf) 2 44 270 1300 3500 103

SPMV(gf) 1 1 9 0.3 1.1 1
512 SPMM(gf) 1 1 6 30 100 100
exp,ln(ge) 0.02 0.3 4 10 35 103

rand(ge) 0.08 0.07 0.8 26 90 103

In the table above, we contrast the performance of stan-
dard Java builtins, accelerated CPU primitives (using IntelR©

MKL) and GPU primitives (using NvidiaR© CUDA). The
machine has a single 8-core CPU (Intel E5-2660) and 4
GPUs (two Nvidia GTX-690s). 1C denotes MKL-accelerated
performance with a single CPU thread. 8C gives acceler-
ated performance with multi-threading enabled (speedups
are sometimes > 8 since the CPU has 16 hyper-threads).
1G gives the performance on one GPU, while 4G is perfor-
mance with all 4 GPUs running. “imp”denotes improvement
of full GPU acceleration for this machine over Java builtins.

The test tasks include memory operations (scored in gbs
= GigaBytes/sec), matrix arithmetic (scored in gf = Gi-
gaflops/sec), and transcendental function and random num-
ber generation (scored in ge = billion elements per sec). All

96

operations are single-precision. 8k SGEMM is dense matrix-
matrix multiply of two 8k x 8k matrices. SPMV is sparse
matrix-vector product. 512 SPMM is sparse matrix / dense
matrix product where the dense matrix has 512 columns.
This can also be treated as 512 SPMV operations in paral-
lel (important for multi-model inference). These tasks were
chosen to represent common bottleneck operations in data
mining tasks.

Note the large speedups from GPU calculation (102-103)
for all tasks except SPMV. Note also that (multithreaded)
CPU acceleration by itself accounts for large speedups, and
does better than the GPU at SPMV. Both CPU and GPU
acceleration can be applied in cluster environments but care
must be taken if multiple tasks are run on the same ma-
chine - sharing main memory can easily destroy the coher-
ence that makes the CPU-accelerated primitives fast. Since
GPUs each have separate memories, it is actually simpler to
share them among cluster tasks.

SPMV is the bottleneck for regression, SVM and other
typical “light touch” models computed from sparse data.
However, when the data are being read from disk, I/O time
dominates calculation and so any performance gains from
good SPMV performance may be lost. On the other hand
this creates an opportunity: to do as much computation as
possible on the I/O stream without slowing it down. The
data in the table imply that one can do blocked SPMM (512
columns) in real-time on a single-disk data stream at 100
MB/s using 4 GPUs. In other words, on a 4-GPU system,
one can run 512 regression models in the same time it takes
to run a single model. One can make a training pass with
about 256 models in this time. One goal of the BID Data
project is to make ensemble and other multi-model learning
strategies as natural as regression, since with suitable tools
they cost no more time to run.

Even if the goal is to compute one regression model, we
can use the available cycles to speed up learning in a variety
of ways. The first is parameter exploration: it is known that
SGD algorithm convergence is quite sensitive to the gradient
scaling factor, and this factor changes with time. Running
many models in parallel with different gradient scaling al-
lows the best value to be chosen at each update. A second
approach is to use limited-memory second order methods
such as online L-BFGS which fit neatly in the computa-
tional space we have O(kd) with d feature dimensions and a
memory of the last k < 512 gradients. These methods have
demonstrated two- to three- orders of magnitude speedup
compared to simple first-order SGD [4].

2. THE SUITE

2.1 The Data Engine
As we saw above, typical data mining workloads are ei-

ther I/O bound or compute-bound. By contrast, both the
cost and power consumption of a typical cluster server are
concentrated in the CPU+memory combination. There has
been much exploration recently of memory-based cluster
frameworks [18], which inherit these performance levels. On
the other hand, disk storage is nearly two orders of magni-
tude lower in power and cost per GBbyte, and GPUs about
one order of magnitude lower in power/cost per Gflop. Its
therefore natural to explore architectures that shift the I/O
and compute loads to disk and GPU. A data engine is a

commodity workstation (PC) which is optimized for a mix
of I/O bound and compute-bound operations.

We have built a data engine prototype in a 4U rackmount
case. It was used for all the non-cluster benchmarks in this
article. This prototype includes a single 8-core CPU (In-
tel E5-2660) with 64 GB ram, 20 x 2TB Sata disks with
a JBOD controller, and two dual-GPUs (Nvidia GTX-690),
i.e. four independent GPUs. Total cost was under $8000.
This design is well balanced in terms of the cost ($2000 for
each of CPU/mem, GPUs and storage). Power is approx-
imately balanced as well. The GPUs can draw 2-3x more
power during (fairly rare) full use of all GPUs. This de-
sign achieves order-of-magnitude improvements in both cost
and power per Gbyte of storage and per Gflop of computa-
tion compared to conventional compute server instances. We
have not seen a similar configuration among cloud servers,
although Amazon now offers both high-storage and GPU-
assisted instances. These are suitable separately for I/O-
bound or compute-bound workloads, and can leverage the
software tools described below.

2.2 BIDMat: A Fast Matrix Toolkit
Our discussion suggests several desiderate for a machine

learning toolkit. One consequence of our goal of agility is
that algorithms should be expressed at high-level in terms of
familiar mathematical objects (e.g. matrices), and to the ex-
tent possible, implementation details of low-level operations
should be hidden. The very widespread use of MatlabR©, R,
SciPy etc. underscores the value of having a matrix layer in
a learning toolkit. Therefore we began by implementing the
matrix layer with these goals:

Interactivity: Interactivity allows a user to iteratively per-
form calculations, inspect models, debug, and build com-
plex analysis workflows one step at a time. It allows an
analyst to “touch, feel, and understand” data. It was a
rather easy choice to go with the Scala language which
includes an efficient REPL.

Natural Syntax: Code that looks like the mathematical
description it came from is much easier to develop, debug
and maintain. It is also typically much shorter. Scala
includes familiar mathematical operators and allows new
operators to be defined with most combinations of non-
alphanumeric characters and even unicode math charac-
ters: (e.g. +@, *!, *|, •, ◦, ⊗, ∨, ∧, ...)

CPU and GPU acceleration: As we saw earlier, GPU
performance now strongly dominates CPU performance
for most expensive operations in machine learning. BID-
Mat uses GPU acceleration in several ways, including GPU-
resident matrix types, and operators that use the GPU on
CPU-resident data. Generic matrices allow algorithms to
be written to run in either CPU or GPU.

Simple Multi-threading: BIDMat attempts to minimize
the need for explicit threading (matrix primitives instead
are multithreaded), but still it is important for non-builtin
CPU or GPU functions. Scala has an extremely elegant
and simple threading abstraction (actors) which support
multi-threaded coding by non-expert programmers.

Reuse: Since Scala targets the Java Virtual Machine and
can call Java classes, we are able to reuse an enormous
codebase for: (i) GPU access using the JCUDA library,

97

(ii) use of complementary toolkits for tasks such as natu-
ral language processing (iii) File I/O using HDF5 format
and the hdf5-java library or hdfs via hadoop, (iv) commu-
nication using the JMPI library and (v) clustering using
JVM-based tools like Hadoop, Spark, Hyracks etc.

A number of custom kernels (functions or operators) were
added to the library to remove bottlenecks when the toolkit
was applied to particular problems. These are described
next:

2.2.1 Custom Kernels
Custom kernels are non-standard matrix operations that

provide significant acceleration for one or more learning al-
gorithms. We discuss three here:

Sampled Dense-Dense matrix product
The sampled dense-dense matrix product (SDDMM) is writ-
ten

P = A ∗S B = (AB) ◦ (S > 0)

Where A and B are respectively m×p and p×n dense matri-
ces, S is an m× n sparse matrix, and ◦ is the element-wise
(Hadamard) product. S > 0 denotes a matrix which is 1
at non-zeros of S and zero elsewhere. P is also an m × n
sparse matrix with the same nonzeros as S. Its values are
the elements of the product AB evaluated at the nonzeros
of S, and zero elsewhere. SDDMM is a bottleneck operation
in all of the factor analysis algorithms (ALS, SFA, LDA and
GaP) described later. In each case, S is a input data matrix
(features x users, or features x docs etc.) and is extreme-
ley sparse. Direct evaluation of AB is impractical. Naive
(Java) implementation of SDDMM only achieves about 1
Gflop, while CPU- and GPU-assisted custom kernels achieve
around 9 Gflops (8C), 40 Gflops (1G) and 140 Gflops (4G)
respectively. Since SDDMM is the bottleneck for these al-
gorithms, the speedups from custom kernels lead to similar
speedups in overall factor model performance. These are
discussed in the benchmark section later.

Edge Operators
Most matrix toolkits support scalar arguments in element-
wise operators such as C = A ⊗ B where ⊗ can be +, −,
◦ (elementwise product) etc. However, a common opera-
tion on matrices is to scale all the rows or columns by a
constant, or to add row- or column-specific constants to a
matrix. The BIDMat library realizes these operations with
edge operators. If A is an m×n matrix, it is legal to perform
an element-wise operation on a B which is either:

An m× n matrix The standard element-wise operation.

An m× 1 column vector Applies the operation⊗ to each
of m rows of A and the corresponding element of B.

An 1× n row vector Applies the operation ⊗ to each col-
umn of A and the corresponding element of B.

A 1× 1 scalar This applies the operation ⊗ to B and all
elements of A.

Edge operators lead to modest performance improvements
(a factor of two is typical) over alternative realizations. They
also lead to more compact and more comprehensible code.

Multivector Operators
One of our goals is to support efficient multi-model and en-
semble learning. For these tasks its more efficient to perform

many same-sized vector operations with a matrix operation
rather than separate vector operations. An m× n multivec-
tor is a set of n m-vectors. Multivector operators perform
the same operation on each of the n vectors. In fact most
multivector operations are already realized through edge op-
erators.

For instance, suppose we wish to multiply a scalar a and
an m-vector b. We can perform this operation on n vectors
using an n× 1 matrix A representing the values of a in each
submodel, and an m × n multivector B representing the
values of b. In BIDMat this is written

C = A ∗@ B

since ∗@ is element-wise multiplication (this same operator
performs scalar multiplication if applied to a scalar a and
a vector b). The use of edge operators means that in most
cases, the single-model and multi-model Scala code is iden-
tical.

2.3 BIDMach: Local/Peer Machine Learning
BIDMach is a machine learning toolkit built on top of

BIDMat. BIDMach may evolve into a general-purpose ma-
chine learning toolkit but for now it is focused on large-
scale analytics with the most common inference algorithms
that have been used for behavioral data: regression, factor
models, clustering and some ensemble methods. The main
elements are:

Frequent-update inference Stochastic gradient optimiz-
ers and MCMC, especially Gibbs samplers, have emerged
as two of the most practical inference methods for big
data. BIDMach provides generic optimizers for SGD and
(in progress) Gibbs sampling. Both methods involve fre-
quent updates to global models (ideally every sample but
in practice on mini-batches). The high cost of communi-
cation to support minibatch updates on a cluster at the
optimal rate led us to develop a new method called Butter-
fly Mixing described later. We are also developing lower-
level kernels to support exploration of, and improvements
to these methods. In particular, GPU-based parametric
random number generators enable substantial speedups to
common Gibbs sampler patterns.

Multimodel and Ensemble Inference The BIDMat li-
brary provides low-level primitives to support many-model
inference in a single pass over the dataset. BIDMach lever-
ages this to support several higher-level tasks: (i) param-
eter exploration, where different instances of the same
model are run with different parameter choices, (ii) pa-
rameter tuning, where different initial parameter choices
are made, and the parameter set is periodically changed
dynamically (i.e. contracted to a small range around one
or more optima at some stage during the optimization)
based on the most recent loss estimates, (iii) k-fold cross-
validation where k models are trained in parallel, each
one skipping over an n/k-sized block of training data, (iv)
ensemble methods which are built on many independent
models which are trained in parallel. Advanced ensemble
methods such as super-learning [16] use several of these
techniques at once.

2.4 Algorithm Design Patterns
In our experience implementing machine learning algo-

rithms with the BID Data toolset, its clear that tools by

98

themselves are not enough. Its rather the application of ap-
propriate design patterns that leverage the individual tools.
One pattern that has recurred in many problems is loop
interleaving, illustrated schematically in figure 2. The pat-
tern begins with an overall iteration with an expensive block
step, show at left. The block step is fragmented into smaller
substeps (middle), which are then interleaved with the steps
in the main iteration (right). The net effect is that it is
possible to do many more iterations in a given amount of
time, while there is typically enough similarity between data
across iterations that the substeps still function correctly.

Figure 2: The loop interleaving pattern

The loop-interleaving pattern is deliberately presented at
high-level. It is not a formalizable construction. The two
applications we give of it require their own proofs of sound-
ness, which use completely different methods. Intuitively,
the method will often work because the model is changing
by small increments in the main loop, and iterative meth-
ods in the inner loop can use state from the previous (outer)
iteration that will be “close enough”. And further there is
little need to complete the inner loop iterations (middle part
of the figure) since the final model will change anyway in the
next outer iteration.

2.5 Butterfly Mixing
Most cluster frameworks used for data mining do not use

CPU or GPU acceleration. When CPU or GPU acceleration
is applied to one of these systems, there is often little or
no performance improvement for SGD or MCMC or other
frequent-update algorithms. The network primitives used
by these systems completely dominate the running time. To
realize the potential benefits of local acceleration in a cluster
we had to develop faster primitives. Butterfly mixing is
the first of these. It is also the first instantiation of the
loop interleaving pattern. In Figure ??, the left graphic
shows the time trajectory of a gradient update step, and a
distributed “allreduce” step. Allreduce is a parallel primitive
in which an aggregate (in this case the average) of all locally-
updated models is computed and distributed to all machines.
Allreduce is quite expensive in practice (one-two orders of
magnitude slower than the local updates), and its cost grows
with the size of the network. The idea in butterfly mixing
is to fragment the allreduce into a series of simpler (in this
case constant time) operations, namely the individual layers
of a butterfly communication network. See figure 3b.

A butterfly network calculates an allreduce in optimal
time O(log2(n)) steps for a network with n nodes. Then
the butterfly steps are interleaved with gradient steps. This
arrangement is show layered on the network in Figure 3b.

(a) AllReduce (b) Butterfly Mixing

Figure 3: Butterfly mixing interleaves communication with com-
putation

Its clear that this approach dramatically reduces commu-
nication overhead compared to allreduce every step in Fig-
ure 3a, and many more gradient updates are being done in a
given amount of time. Its less clear what impact this has on
convergence. In [19] we showed that this impact is minimal
and in fact the convergence (in number of update steps) of
butterfly mixing on typical datasets is almost as fast as an
allreduce at every step.

Butterfly mixing has many practical advantages. It re-
quires only synchronization between communicating pairs of
nodes. It is extremely simple to implement: we implemented
it in MPJ (a java implementation of MPI), which required
only blocking SendReceive calls on each pair of communi-
cating nodes. Unlike tree allreduce, there are no “hot” edges
that can lead to high latency through the entire network.
Each communication step is constant time (at least through
a single switch). Butterfly mixing does require 2n messages
be exchanged between n nodes, which is not an issue for
rack-level clusters, but can become prohibitive in larger clus-
ters. In future work, we expect to experiment with hybrid
topologies of full butterfly exchanges (within rack) backed
with “thinner” butterfly exchanges (using subsets of nodes
in each rack) across racks.

3. BENCHMARKS

3.1 Pagerank
Give the adjacency matrix G of a graph on n vertices with

normalized columns (to sum to 1), and P a vector of vertex
scores, the Pagerank iteration in matrix form is:

P ′ =
1

n
+
n− 1

n
GP (1)

A benchmark dataset used by several other groups for Pager-
ank is the TwitterR© Followers graph. This graph has 60M
nodes (40M non-isolated) and 1.4B edges. The graph in
binary form on disk is about 18 GB. We wrote a simple
Pagerank iteration which leverages the I/O performance of
the Data Engine RAID, and leverages IntelR© MKL accel-
eration for the sparse matrix-vector multiply. Single-node
performance for this problem is competitive with the best re-
ported cluster implementation on 64 nodes, and much faster
than a Hadoop cluster implementation as seen in the table
below.

99

System Graph VxE Time(s) Gflops Procs
Hadoop ?x1.1B 198 0.015 50x8
Spark 40Mx1.5B 97.4 0.03 50x2
Twister 50Mx1.4B 36 0.09 60x4
PowerGraph 40Mx1.4B 3.6 0.8 64x8
BIDMat 60Mx1.4B 6 0.5 1x8
BIDMat+disk 60Mx1.4B 24 0.16 1x8

The“Procs”column lists num nodes x num cores per node.
The first line for BIDMat is performance with the entire
graph in memory (18GB). The second line shows the perfor-
mance including the time to read the graph from disk (about
18 seconds), showing that the RAID achieved a throughput
of about 1 GB/sec. All the other systems except Hadoop
use memory-resident data, and so the number of processors
presumably must scale with the size of the graph. BIDMat
on the other hand can handle much larger graphs that are
disk resident on a single node in reasonable running time.

3.2 LDA and GaP
Latent Dirichlet Allocation [3] is a widely-used topic model.

LDA models documents with a generative process in which
topic distribution for each document is chosen from a Dirich-
let process, topics are chosen independently word-by-work
according to this distribution, and then words are finally
chosen from a multinomial distribution for each topic. GaP
(Gamma Poisson) is a derivative of LDA which instead mod-
els the topic mixture as contiguous bursts of text on each
topic [6]. Both the original LDA and GaP models are op-
timized with alternating updates to topic-word and topic-
document matrices. For LDA it is a variational EM itera-
tion, for GaP it is an alternating likelihood maximization.
Variational LDA was described with a simple recurrence for
the E-step (Figure 6 in [3]). Following the notation of [3],
we develop a matrix version of the update. First we add
subscripts j for the jth document, so γij is the variational
topic parameter for topic i in document j, and φnij is the
variational parameter for word in position n being generated
by topic i in document j. Then we define:

Fij = exp(Ψ(γij)) (2)

The update formula from figure 6 of [3] can now be written:

γij = αi +

M∑
w=1

βiwFjiCwj/

k∑
i=1

βiwFij (3)

where Cwj is the count of word w in document j. Most such
counts are zero, since C is typically very sparse. The above
sums have been written with w ranging over word values
instead of word positions as per the original paper. This
shows that LDA factorizations can be computed with bag-
of-words representation without explicit word labels in each
position. M is the vocabulary size, and k is the number of
topics. Writing the above in matrix form:

γ′ = α+ F ◦
(
β ∗ C

βT ∗C F

)
(4)

where the quotient of C by βT ∗C F is the element-wise quo-
tient. Only terms corresponding to nonzeros of C (words
that actually appear in each document) need to be com-
puted, hence the denominator is a SDDMM operation. The
quotient results in a sparse matrix with the same nonzeros as
C, which is then multiplied by β. The dominant operations
in this update are the SDDMM, and the multiplication of β

by the quotient. Both have complexity O(kc) where c is the
number of nonzeros of C. There is also an M-step update of
the topic-word parameters (equation 9 of [3]) which can be
expressed in matrix form and has the same complexity.

The GaP algorithm has a similar E-step. Using the no-
tation from [6], the matrix Λ in GaP plays the role of β in
LDA, while X in GaP plays the role of γ in LDA. With this
substitution, and assuming rows of β sum to 1, the GaP
E-step can be written:

γ′ =

(
a− 1 + γ ◦

(
β ∗ C

βT ∗C γ

))
/

(
1 +

1

b

)
(5)

where a and b are k × 1 vectors which are respectively the
shape and scale parameters of k gamma distributions repre-
senting the priors for each of the k dimensions of γ. This for-
mula is again dominated by an SDDMM and a dense-sparse
multiply and its complexity is O(kc). Not all the matrix op-
erations above have matching dimensions, but the rules for
edge operators will produce the correct results. LDA/GaP
are compute-intensive algorithms. Fortunately, GPU imple-
mentations of the dominant steps (SDDMM and SPMM) are
very efficient, achieving 30-40 gflops/sec on each GPU.

The table below compares the throughput of our vari-
ational LDA implementation with two previously-reported
cluster implementations of LDA. The document sets are dif-
ferent in each case: 300-word docs for Smola et al. [15] and
30-word docs for PowerGraph [8]. Both methods use Gibbs
samplers applied to each word and so document length is
the true document length. We are able to use bag-of-words
which cuts the document length typically by about 3x. The
latent dimension is 1000 in all cases. We tested on a dataset
of 1M wikipedia articles of average length 60. Since we used
the variational method instead of Gibbs sampling, we made
many passes over the dataset. 30 iterations gave good con-
vergence. The per-iteration time was 20 seconds for 1M
documents, or about 10 minutes total. Performance is given
as length-normalized (to length 100) docs/second.

System Docs/hr Gflops Procs
Smola[15] 1.6M 0.5 100x8
PowerGraph 1.1M 0.3 64x16
BIDMach 3.6M 30 1x8x1

The “Procs” field lists machines x cores, or for BIDMach
machines x cores x GPUs. The Gibbs samplers carry a
higher overhead in communication compared to the varia-
tional method, and their gflop counts are lower. We as-
sign a total of 10 flops to each sample to represent random
number generation and updates to the model counts. How-
ever, since these methods need multinomial samples there
are typically many additional comparisons involved. Still the
gflops counts indicate how much productive model-update
work happens in a unit of time. We are currently devel-
oping some blocked, scalable random number generators for
GPUs which we believe will substantially improve the Gibbs
sampler numbers above. In the mean time we see that in
terms of overall performance, the single-node GPU-assisted
(variational) LDA outperforms the two fastest cluster imple-
mentations we are aware of. We hope to improve this result
3-4x by using the additional GPUs in the data engine.

3.3 ALS and SFA
ALS or Alternating Least Squares [10] is a low-dimensional

matrix approximation to a sparse matrix C at the non-zeros

100

of C. Its a popular method for collaborative filtering, and
e.g. on the Netflix challenge achieves more than half the
lift (> 6%) of of the winning entry. Sparse Factor Analysis
(SFA) [5] is a closely-related method which uses a genera-
tive probabilistic model for the factorization. We will borrow
the notation from LDA, and write C ≈ βT ∗ γ as the ma-
trix approximation. Both methods minimize the regularized
squared error at non-zeros of C

l =
∑

(C − βT ∗C γ)2 +
∑

wβ ◦ β2 +
∑

wγ ◦ γ2 (6)

where squares are element-wise and sums are taken over all
elements. wβ and wγ are row-vectors used to weight the
regularizers. In ALS, the ith element of wβ is proportional
to the number of users who rated movie i, while the jth

element of wγ is proportional to the number of movies rated
by user j. In SFA, uniform weights are used for wγ . Weights
are applied as edge operators.

First of all, it is easy to see from the above that the gra-
dient of the error wrt γ is

dl

dγ
= 2β ∗ (C − βT ∗C γ) + 2wγ ◦ γ (7)

and there is a similar expression for dl/dβ. So we can easily
optimize the γ and β matrices using SGD. Similar to LDA
and GaP, the gradient calculation involves an SDDMM op-
eration and a sparse-dense matrix multiply. The complexity
is again O(kc). We can similarly compute the gradient wrt
β. An SGD implementation is straightforward if the data
arrays can be stored in memory. In practice usually nsam-
ples (users) >> nfeatures (movies) and the feature array β
can fit in memory, we process the data array C in blocks of
samples.

3.3.1 Closed Form Updates
Since ALS/SFA use a squared error loss, there is a closed

form for each latent factor γ and β given the other. The
alternating iteration using these expressions typically con-
verges much faster (in number of iterations) than an SGD
iteration. However, because of the irregularity of the matrix
C, the closed form solution requires inversion of a different
matrix for each user’s γi, given below:

γi =
(
λniI + β diag(Ci)β

T
)−1

βCi (8)

where Ci is the column of data for user i, and ni is the
number of items rated by user i. There is a similar update
for each column of the matrix β. Dense matrix inverses make
good use of hardware acceleration, and the MKL Lapack
routines on our test machine achieved over 50 gflops for the
inverse. But still the complexity of closed-form ALS is high,
O(k2c + (m + n)k3) per iteration where m and n are the
number of users and movies respectively. It is a full factor
of k slower than LDA or GaP for a given dataset. In practice,
best performance on collaborative filtering (and certainly on
the Netflix dataset) is obtained at values of k = 1000 and
above. And this is only for one iteration. While the update
to β and γ is closed-form given the other, the method still
requires iteration to alternately update each factor. So the
O(k2c+ (m+n)k3) complexity per iteration is problematic.

3.3.2 Accelerating ALS/SFA with Loop Interleaving
Closed form ALS/SFA is a good match for the loop inter-

leaving pattern. Each iteration involves an expensive step

(matrix inversion) which we can break into cheaper steps by
iteratively solving for γi, e.g. by using conjugate gradient.
i.e. we solve the equation:(

λniI + β diag(Ci)β
T
)
γi = Miγi = βCi (9)

where Mi is the matrix in parentheses. Solving Miγi = βCi
using an iterative method (conjugate gradient here) requires
only black-box evaluation of Miγ̂i for various query vectors
γ̂i. It turns out we can compute all of these products in a
block using SDDMM:

v = λwγ ◦ γ̂ + β ∗ (βT ∗C γ̂) (10)

where vi = Miγ̂i. The conjugate gradient updates are then
performed column-wise on γ̂ using v. There is a similar black
box step in conjugate gradient optimization of β:

w = λwβ ◦ β̂ + γ ∗T (β̂T ∗C γ) (11)

where ∗T is multiplication of the left operand by the trans-
pose of the right, an operator in BIDMat. This update is
not “local” to a block of user data γ, however the w for the
entire dataset is the sum of the above expression evaluated
on blocks of γ. Thus in one pass over the dataset, we can
perform b steps of conjugate gradient updates to γ and one
CG step of update to β.

Figure 4: Loss vs. num iterations vs. CG updates

The complexity of one pass of conjugate gradient is then
O(ck) matching the complexity of LDA and GaP. Whereas
normally conjugate gradient steps would be performed in
sequence on one of γ or β, in our ALS/SFA implementations,
we assume the data are stored only in user blocks and make
a single pass over the dataset to perform both steps. The
calculation in is local to each user’s data and so multiple
steps can be done on each block of data read from disk.
For equation 11 we note that the global update is a sum
of updates from blocks of C, and so we accumulate the w
update over the iteration. The upshot is that we can do k
updates to the user model, and 1 update to the movie model,
in a single pass over user-blocked data on disk. Figure 4
shows that multiple conjugate gradient updates to the user
model only converges almost as well as multiple updates to
both the movie and user models.

The table below shows the normalized performance of the
CG method and a prior method on a testset described in [8]
(11M docs, 30 terms/doc). The time given is for 20 itera-
tions of BIDMach which is adequate for convergence. We

101

note that there is both a machine-performance difference
and an asymptotic difference. ALS as implemented by [8]
and all other implementations we are aware of, has complex-
ity O(ck2+dk3) for one iteration where c is the total number
of terms, d is the number of documents (assumed larger than
number of features), and k is the number of dimensions. Our
CG implementation by contrast has complexity O(ck). As
can be seen in the table, running time does indeed grow lin-
early with k. Standard ALS running time grows cubically
with k, and so large-dimensional calculations often take days
to complete. Our CG implementation converges in almost
the same number of iterations as the closed-form method,
so we obtain full benefit of the O(k + (d/c)k2) speedup.

System \ Dimension 20 100 1000 Procs
Powergraph (closed) 1000s ** ** 64x8
BIDMach (CG) 150s 500s 4000s 1x8x1

3.4 PAM Clustering
As part of a collaborative project, we needed to solve a

PAM (Partitioning Around Mediods) clustering task which
was taking many hours. The PAM code was in MatlabR©

and called C mex files for compute-intensive tasks. Stan-
dard PAM has high complexity: with n samples and f
features, clustering into k clusters naively has complexity
O(n2f + n2k) per iteration. The O(n2f) term comes from
PAMs initial step of computing all pairwise distances be-
tween samples. Fortunately, for the case we were interested
in: dense data and euclidean distance, the pairwise distance
can be implemented on GPU with a dense matrix-matrix
multiply. Our multi-GPU SGEMM achieves 3.5 teraflops
on the 4-GPU data engine, and this improved the absolute
time of distance computation by almost four orders of mag-
nitude over the C mex code. The second step involves iter-
ation over all current mediods and all other points to find
a swap that best improves the current clustering. i.e. this
step is repeated kn times. In the standard PAM algorithm,
computing the new cost after the swap normally takes O(n)
time. We realized that this step could be greatly accelerated
by sorting the pairwise distance matrix. When this is done,
the average cost of the swap update dropped to O(n/k), and
the overall cost for our new PAM implementation is:

O(n2f + n2 logn)

i.e. it was dominated by the initial distance calculation and
sort. A further benefit of this approach is that it is no longer
necessary to store the entire n×n pairwise distance matrix,
since finding nearest mediods on average only requires look-
ing O(n/k) elements into each sorted column of distances.
So the storage required by PAM drops to O(n2/k). The con-
stant factors were still important however, and CPU-based
sort routines slowed down the calculation substantially. We
therefore added a GPU sort based on the thrust library
radixsort. With this addition the new method achieves more
than 1000-fold improvement overall compared to the previ-
ous Matlab/C or Fortran implementations.

3.5 Regression and SVM
We briefly summarize the results from the paper [19] here.

We tested the scaling improvements with butterfly mixing
with two algorithms and two datasets. The algorithms were
the Pegasos SVM algorithm [14], and a logistic regression

model. Both used SGD and the convergence of both al-
gorithms improved with update frequency, making paral-
lelization difficult. The two datasets where the RCV1 news
dataset and a custom dataset of Twitter data. The twitter
dataset was a mix of tweets containing positive emoticons,
and a sample of tweets without. The emoticons serve as
cues to positive sentiment and so this dataset can be used
to build sentiment models. This sensitivity of convergence
to batch size is shown below for RCV1.

Figure 5: Impact of Minibatch Size on Convergence

The optimal sequential mini-batch size was 16000 (1M to-
kens), and a batch of this size takes about 10msec to process
and 100msec or 10msec respectively to load from a single
disk, or the Data Engine RAID. Synchronizing the model
over a 64-node EC2 cluster using MPI allreduce took over
half a second, so communication would completely swamp
computation if done at this rate. A single butterfly step
by contrast takes about 25 msec. With butterfly mixing
updates we can increase the mini-batch size somewhat to
better balance communication and computation without a
large increase in convergence time. The overall speedups are
shown in figure 6.

Figure 6: Speedup Relative to Single Processor

In figure 6, speedup ratios are given for 4, 8, and 16 nodes
in a local cluster, and 64 nodes in EC2 (linked by dotted lines
to indicate the difference in platform). While the speedup is
less than the number of nodes, this is an encouraging result
given the strong dependence of SGD on update frequency.

4. SQUARING THE CLOUD
Parallelizing machine learning across a cluster is one ap-

proach to improve speed and extend problem scale. But

102

it does so at high cost. Fast-mixing algorithms (SGD and
MCMC) in particular suffer from communication overhead.
The speedup is typically a sublinear function f(n) of n, since
network capacity decreases at larger scales (typical approx-
imations are f(n) = nα for some α < 1). This means that
the cost of the computation in the cloud increases by a factor
of n/f(n) since the total work has increased by that factor.
Energy use similarly increases by the same factor. By con-
trast, a single-node speedup by a factor of k implies a simple
k-fold saving in both cost and power.

Interestingly, node speedups in tasks already running on
clusters can generate superlinear savings. Imagine a task
whose cluster speedup function is f(n) = n0.5 running on
1000 nodes, and completing in time t. If we can achieve a
10-fold speedup in single node performance, the same task
running on 10 accelerated nodes will achieve the same over-
all running time. The 10-fold single-node speedup has gen-
erated a 100-fold decrease in total work and power. More
generally, the savings for a k-fold single node speedup will
be f−1(k) or k2 for our example. This super-linear behavior
motivated the subtitle of the paper: “squaring the cloud”

5. RELATED WORK
Many other big data toolkits are under active develop-

ment [8], [12], [18], [7], [17], [9], [13], [11] [1]. Our system is
perhaps closest to GraphLab/PowerGraph [12, 8] which has
a generic model layer (in their case graphs, in ours matri-
ces) and a high-level collection of machine-learning libraries,
and in the use of custom communication vs. reliance on a
MapReduce or Dataflow layer. Our system also resembles
Jellyfish [13] in its deep integration of fast iterative solvers
(SGD and eventually MCMC). There are many unique as-
pects of our system however, as articulated in the intro-
duction. It’s the combination of these factors that lead to
substantial performance/cost and performance/energy ad-
vantages over other systems at this time.

6. CONCLUSIONS AND FUTURE WORK
We made a case for the importance of single-node en-

hancements for cost and power efficiency in large-scale be-
havioral data analysis. Single node performance of the BID
Data suite on several common benchmarks is faster than
generic cluster systems (Hadoop, Spark) with 50-100 nodes
and competitive with custom cluster implementations for
specific algorithms. We did not describe any MCMC algo-
rithms, but these also are an important part of the BID
Data roadmap in future. The toolkit will also include a sub-
stantial subset of tools for causal analysis, and disk-scale
GPU-assisted sorting for data indexing and search tasks.

7. REFERENCES
[1] Alexander Behm, Vinayak R Borkar, Michael J Carey,

Raman Grover, Chen Li, Nicola Onose, Rares Vernica,
Alin Deutsch, Yannis Papakonstantinou, and Vassilis J
Tsotras. Asterix: towards a scalable, semistructured
data platform for evolving-world models. Distributed
and Parallel Databases, 29(3):185–216, 2011.

[2] R. Bell and Y. Koren. Scalable collaborative filtering
with jointly derived neighborhood interpolation
weights.

[3] David Blei, Andrew Ng, and Michael Jordan. Latent
Dirichlet Allocation. In NIPS. 2002.

[4] Leon Bottou. Large-scale machine learning with
stochastic gradient descent. In Proc. COMPSTAT
2010, pages 177–187, 2010.

[5] John Canny. Collaborative filtering with privacy via
factor analysis. In ACM SIGIR 2002, 2002.

[6] John Canny. GAP: a factor model for discrete data. In
ACM SIGIR, pages 122–129, 2004.

[7] Jaliya Ekanayake, Hui Li, Bingjing Zhang, Thilina
Gunarathne, Seung-Hee Bae, Judy Qiu, and Geoffrey
Fox. Twister: a runtime for iterative mapreduce. In
Proc. 19th ACM HPDC, pages 810–818, 2010.

[8] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny
Bickson, and Carlos Guestrin. Powergraph:
Distributed graph-parallel computation on natural
graphs. In OSDI, 2012.

[9] Joseph M Hellerstein, Christoper Ré, Florian
Schoppmann, Daisy Zhe Wang, Eugene Fratkin,
Aleksander Gorajek, Kee Siong Ng, Caleb Welton,
Xixuan Feng, Kun Li, et al. The madlib analytics
library: or mad skills, the sql. Proceedings of the
VLDB Endowment, 5(12):1700–1711, 2012.

[10] Yehuda Koren, Robert Bell, and Chris Volinksy.
Matrix factorization techniques for recommender
systems. IEEE Computer, 42(8):30–37, 2009.

[11] Tim Kraska, Ameet Talwalkar, John Duchi, Rean
Griffith, Michael J Franklin, and Michael Jordan.
Mlbase: A distributed machine-learning system. In
Conf. on Innovative Data Systems Research, 2013.

[12] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny
Bickson, Carlos Guestrin, and Joseph M Hellerstein.
Graphlab: A new framework for parallel machine
learning. arXiv preprint arXiv:1006.4990, 2010.

[13] Benjamin Recht and Christopher Ré. Parallel
stochastic gradient algorithms for large-scale matrix
completion. Optimization Online, 2011.

[14] Shai Shalev-Shwartz, Yoram Singer, and Nathan
Srebro. Pegasos: Primal estimated sub-gradient solver
for SVM. In Proc. 24th ICML, pages 807–814, 2007.

[15] Alexander Smola and Shravan Narayanamurthy. An
architecture for parallel topic models. Proceedings of
the VLDB Endowment, 3(1-2):703–710, 2010.

[16] Mark van der Laan and Sherri Rose. Targeted
Learning: Causal Inference for Observational and
Experimental Data. Springer-Verlag, 2011.

[17] Markus Weimer, Tyson Condie, Raghu Ramakrishnan,
et al. Machine learning in scalops, a higher order cloud
computing language. In NIPS 2011 Workshop on
parallel and large-scale machine learning (BigLearn),
volume 9, pages 389–396, 2011.

[18] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauley, Michael
Franklin, Scott Shenker, and Ion Stoica. Resilient
distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing. In Proceedings of the
9th USENIX NSDI, 2011.

[19] Huasha Zhao and John Canny. Butterfly mixing:
Accelerating incremental-update algorithms on
clusters. In SIAM Conf. on Data Mining, 2013.

103

