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ABSTRACT
Modeling the dynamics of online social networks over time
not only helps us understand the evolution of network struc-
tures and user behaviors, but also improves the performance
of other analysis tasks, such as link prediction and commu-
nity detection. Nowadays, users engage in multiple networks
and form a “composite social network” by considering com-
mon users as the bridge. State-of-the-art network-dynamics
analysis is performed in isolation for individual networks,
but users’ interactions in one network can influence their
behaviors in other networks, and in an individual network,
different types of user interactions also affect each other.
Without considering the influences across networks, one may
not be able to model the dynamics in a given network cor-
rectly due to the lack of information. In this paper, we
study the problem of modeling the dynamics of composite
networks, where the evolution processes of different network-
s are jointly considered. However, due to the difference in
network properties, simply merging multiple networks into a
single one is not ideal because individual evolution pattern-
s may be ignored and network differences may bring neg-
ative impacts. The proposed solution is a nonparametric
Bayesian model, which models each user’s common laten-
t features to extract the cross-network influences, and use
network-specific factors to describe different networks’ evo-
lution patterns. Empirical studies on large-scale dynamic
composite social networks demonstrate that the proposed
approach improves the performance of link prediction over
several state-of-the-art baselines and unfolds the network
evolution accurately.
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1. INTRODUCTION
With the growth of online social media, social network

analysis has attracted much research interest with a broad
range of applications. As an important research topic, mod-
eling the dynamics of social networks can help people un-
derstand the evolution of network structures, e.g., the com-
munity evolution, the change of network statistics, e.g., di-
ameter and clustering coefficient, and the shifting of users’
preferences, etc. In addition, considering the dynamic prop-
erties helps improve the performance of other tasks, such
as link prediction [16] and community detection [14]. One
important observation is that nowadays people join multi-
ple networks for different applications. For example, users
may use Facebook to connect with their friends but follow
celebrities on Twitter. In addition, even in an individual
network, users may have different interactions, such as “For-
ward (RT)” and “Mention (@)” on Twitter to share instan-
t information. Consequently, by considering shared users,
who can be identified by their unified IDs, as the bridges,
different relationships or networks of interactions are nested
together as composite networks [19].

Most existing research works only study the dynamics of
individual networks and do not consider their intra-network
correlations, but in practice, different networks can be high-
ly correlated. As shown in Figure 1(g), the ratio of common
links between Tencent’s Instant Messaging and Microblog
networks (QQ vs. Tencent Weibo) is much higher than the
one between two random graphs (0.143 vs. 0.007 respec-
tively). In reality, individual networks reflect only partial
aspects of users’ social activities, thus the information cap-
tured by individual networks may be incomplete. For ex-
ample, one user builds more links on Linkedin and interact
less with her friends on Facebook when she just graduates.
If we model the dynamics in each network independently,
we cannot infer the graduation activity correctly, as people
have different reasons to be inactive on Facebook and use
Linkedin when they just want to change jobs. Consequently,
we may fail to model this user’s social dynamics, e.g., her so-
cial interactions on Facebook in the future, without knowing
the fact of graduation. In addition, the reasons that cause
the network to change can come from other networks. Two
users without any common neighbors may follow each other
on Twitter as they are familiar on Facebook, and one user
may mention someone as she has forwarded many tweets of
the user. Without considering the cross-network knowledge,
one cannot correctly model these network dynamics. Fur-
thermore, the data in an individual network may be very
sparse, as users may have limited interactions when a net-
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(a) Weibo(2011/05) (b) Weibo(2011/08) (c) QQ(2011/05) (d) QQ(2011/08) (e) Community(2011/05)
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Figure 1: Network Illustration. (a)∼(b) and (c)∼(d) indicate the different numbers of communities and community member-

ships over time, where color indicates community and size presets community membership. (a)∼(c) and (b)∼(d) indicate the

differences of community structures across networks. (e) and (f) indicate the different community relation strength over time.

(g) presents the ratio of common links across networks, where the ratio is much higher than that between two random graphs,

implying individual networks influence each other. (h) illustrates the correlation between the number of node degrees and the

number of new links generated by the users. (i) illustrates the shortage of simply combining networks.

work is just beginning to form. Data sparsity makes models
overfit the rare observations and thus have poor generality.
Modeling the dynamics of composite networks collectively
can lead to more accurate and comprehensive results, and
help understand the interactions across different networks.

However, simply considering these nested networks as a
single one does not work either, as different networks have
different properties. Firstly, different networks reflect users’
different social interests. Users in different networks may
have overlapped but different social circles, as shown in Fig-
ure 1(i), where one user belongs to different communities in
different networks. Secondly, different networks have differ-
ent levels of density. For example, Network-A is denser than
Network-B. Simply merging may bring unnecessary and even
harmful knowledge to each individual network. For exam-
ple, if we combine networks A and B, the network structure
in Network-B is hidden and we cannot discover users’ social
interests in Network-B anymore. In addition, different types
of networks have their own growth patterns, e.g., different
shrinkage ratios of diameters, degree distributions, etc. For
example, the average number of users’ neighbors in Wei-
bo network is much higher than instant messaging network
(QQ). As shown in Figure 1(a)∼(d), communities in Weibo
are larger than those in QQ and the evolution process in QQ
is more stable.

To solve the aforementioned problems, we propose a non-
parametric Bayesian model which integrates network evolu-
tion over composite social networks directly. On one hand, it
utilizes an adaptive and time-dependent prior for each user
to denote different users’ latent interests that decide users’
community memberships globally. Since this prior is related
to all nested networks and thus it can be considered as a
bridge to capture the cross-network dynamics. On the oth-
er hand, it introduces temporal network-specific factors to
encode growth patterns in each individual network, which
adjusts users’ concrete time-evolving community member-
ships. These two priors are combined together to generate a
hybrid prior and build dynamic mixed membership models
in each individual network, where users’ community mem-
berships as well as the community relations are exploited to
generate links between them.

Table 1: Definition of notations

Group Notation Notation Description

Data
G = {Gt}T

t=1 Sequence of Composite Networks

U = {ui}N
i=1 User set of G

Et = ∪{Et
i}�

i=1 Link set of Gt

Model

Dir(·), Mult(·) Dirichlet and Multinomial distributions
Bern(·), Beta(·) Bernoulli and Beta distributions
Gam(·), N(·) Gamma and Gaussian distributions
π, v, x and ω Latent variables
γ, λu, λd and λ Hyperparameters
Kt

d Number of communities at time t

To allow community structures vary over time and across
networks, we use a nonparametric generative process for
mixed memberships with the hybrid prior. A state-space
model is applied on the top to model the cross-network dy-
namics. Specifically, users’ latent interests, network-specific
factors and community relations are changing over time. As
time evolves, the observations of one network at a given time
stamp can be encoded in users’ latent interests and affect the
structures of other networks in the next time stamp, while
the network-specific factors and community relations allow
every individual networks to have own growth patterns.

Problem Formulation The notations are summarized
in Table 1. We consider a sequence of composite networks,
denoted by {Gt}Tt=1, where G

t = {Gt
i = (Ui, E

t
i )}�i=1 is the

composite network observed at time t. In each G
t, Gt

i is
the i-th individual network, Ui is the user set of Gt

i, E
t
i is

the user relationship of Ui at time t and � is the number of
single networks. We define the complete user set as U and
the link set at time t as Et, where U = ∪{Ui}�i=1 = {uj}Nj=1

and Et = ∪{Et
i = {etij}M

t
i

j=1}�i=1. We assume the set of nodes
U is constant. Although new nodes can join networks and
existing nodes can leave networks, we can still include these
nodes in U but consider them to be inactive. The goal is
to construct the composite network at time T + 1 given the
network sequence {Gt}Tt=1.

2. INFINITE TIME-EVOLVING COMPOS-
ITE NETWORK MODELING

We propose a novel nonparametric Bayesian model, Infinite
Time-evolvingComposite Network Models (ITCom), to cap-
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ture the dynamics of composite social networks. In the fol-
lowing, we firstly describe the foundation of ITCom, Mixed
Membership Stochastic Blockmodels (MMSB) [1], and then
present the details of three extensions: infinite, dynamic and
knowledge transfer. Finally, we propose an efficient Sequen-
tial Monte Carlo (SMC) method to infer the latent variables
and construct ITCom. To help understand the motivation
of the proposed model, we visualize two sub networks from
Tencent. These networks contain users who are 2-hops away
from the first author of the paper, as well as their relation-
ships in Tencent’s instant messaging network QQ and Weibo
network, as shown in Figure 1.

2.1 Background of MMSB
As a foundation of ITCom, MMSB assumes that each user

ui ∈ U possesses a latent mixture of K roles, which deter-
mine the membership of K communities in the network G.
We denote this role mixture as a normalized K × 1 vector
πi. In MMSB, these vectors are drawn from some priors
p(π), such as Dirichlet distribution [1] and Logistic-Normal
distribution [6]. MMSB generates a K × K community re-
lation matrix B, which represents the probability of having
a connection from a user in a community to another user in
another community. Given the vector πi of each user ui, the
network edge eij is generated stochastically as follows:

• For each pair of users (ui, uj) ∈ E in the network G:
– Draw indicator for ui, zij ∼ Mult(πi)

– Draw indicator for uj , zji ∼ Mult(πj)

– Sample the link, eij ∼ Bern(zTijBzji)

where zij and zji are two K×1 unit indicator vectors for the
sender ui and the receiver uj respectively. As MMSB on-
ly models static and individual networks with fixed number
of communities, as follows, we evolve MMSB step-by-step
to model the dynamics of composite networks based on evi-
dences and observations from real-world social networks.

2.2 Infinite Modeling
In reality, with the evolution of networks, communities can

come and go. For example, in social networks, e.g., Face-
book, a set of users can form a community when they join
the same school and get familiar with each other; in social
media, e.g., Twitter, a discussion group may dismiss when
a hot topic is out-of-date. An example can be found in Fig-
ure 1(a) and (b), where the number of communities as well
as the community sizes are different over time in Tencent
Weibo. Different from previous research works [6, 4], which
keep the community structure unchanged in different time
stamps, ITCom allows communities to vary over time and
determines the number of communities automatically. In-
spired by Chinese Restaurant Process [2] and its successful
applications on topic models [3] and MMSB [18], we intro-
duce a stick-breaking prior on each πi to let

∑∞
k=1 πik = 1.

The construction process is as follows:

πik = vikΠ
k−1
j=1 (1 − vij) (1)

where vij is the latent factor that needs to be estimated.
This process can be understood as follows. Let πi1 = vi1 and
1 − πi1 be the remainder of the stick after chopping off the
length vi1. To calculate the length πi2, draw vi2 randomly
and chop off this fraction of the remainder of the stick, giving
πi2 = vi2(1 − vi2). This process is repeated and thus vik is
the fraction to chop off from the stick’s remainder, and πik

is the length of the stick that was chopped off. Thus, the
probability to generate a community K+1 can be calculated
as 1−∑K

k=1 πik. In addition, vik evolves over time, and thus
a community k can die if vik becomes too small for each user
ui. To avoid overfitting and incorporate domain knowledge,
we apply a logistic-normal prior on vi. Formally, we have

εi ∼ N(μ, λ−1I) vi =
1

1 + exp(−εi)
(2)

where μ is the mean of all εi and λ is used to control the pre-
cision. As stated below, the logistic-normal prior allows us
to incorporate global, network-specific and time-dependent
knowledge naturally by adjusting μ over time and networks.

2.3 Knowledge Transfer Across Networks
Common knowledge can be transferred by overlapping

users across individual networks while each individual net-
work contains specific factors. For example, Facebook re-
flects users’ friendship in daily life, while Twitter is more
about users’ interests on daily news. But at the same time,
the same users in different individual networks can also have
similar neighbors as they have similar interests over differen-
t dimensions like friendship, movies, etc. This phenomenon
can be formulated as: different individual networks in a com-
posite network may have different community structures,
and each user follows community memberships over differ-
ent networks while keeps some intrinsic features unchanged.
One example can be found in Figure 1(a), (c) and (g), where
QQ and Weibo networks have different community struc-
tures and users’ community memberships but share many
common links. To model these observations, we decom-
pose vi into two parts, one representing each user’s laten-
t features and the other reflecting network-specific factors.
Let xi ∈ R1×D denote the latent features of user ui and
ωd ∈ RD×Kd denote the network-specific factors of the d-
th individual network, where Kd is the corresponding num-
ber of communities. xi encodes each user’s latent interests
while ωd maps users’ latent interests to network-dependent
communities. For each user ui in Gd, we set μdi = xiωd.
Thus, cross-network influence can be captured by xi while
network-dependent properties can be described by ωd. To
avoid overfitting, we assign Gaussian priors to xi and ωd,
the generation process of πd

i is as follows:

ωd ∼ N(0, λ−1
d I) xi ∼ N(0, λ−1

u I)

εdi ∼ N(xiωd, λ
−1I) vdi =

1
1+exp(−εdi)

πdik = vdikΠ
k−1
�=1 (1 − vdi�) k = 1 . . . Kd

The number of communities is network-dependent and the
communities with the same index in different networks are
not necessary identical. This is consistent with the real-
world data in Figure 1, where the number of communities
and community sizes of QQ and Weibo are different.

2.4 Dynamic Modeling
One important property of social networks is its dynamics,

where communities can come into being and phase out, user-
s’ community membership can change, and users can form
and deform links. Examples can be found in Figure 1: (e)
and (f) show the different community structures and their
relation strengths over time; (a) and (b) present the differ-
ent community memberships over time; (h) shows that the
levels of users’ activities to generate links are closely related
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Figure 2: The Graphical Representation of ITCom. Blue

nodes indicate observed variables, greens present hyper pri-

ors, reds mean variables in last time stamp and grays indicate

latent variables need to be inferred.

to their degrees, which evolve over time as well. In mixed
membership models, these can be manipulated by chang-
ing the community compatibility B and users’ community
memberships π, and varying the number of users’ links in
different time stamps respectively. Firstly, with the shifting
of users’ interests, the connection between different commu-
nities changes over time. Considering that older interactions
have relatively smaller impacts, we use exponential decay to
modify the priors of B. Let nt

ij1 denote the times that users
build links between the i-th and the j-th communities at
time t and nt

ij0 denote the number of user pairs that do not
interact with each other but select the i-th and j-th com-
munities at time t. With a kernel parameter κ, we have

γ̃t
ij0 =

t−1∑
h=1

exp
(
h− t

κ

)
nh
ij0 γ̃t

ij1 =

t−1∑
h=1

exp
(
h− t

κ

)
nh
ij1 (3)

Then the generation of the community compatibility matrix
at time t is Bt ∼ Beta(γ0 + γ̃t

ij0, γ1 + γ̃t
ij1). Note that γ0

and γ1 here enforce that the connection between new and
existing communities can appear as time goes by. Second-
ly, users’ community memberships shift over time as well.
This can be understood from two aspects: (1). users’ latent
interests xi change over time and (2). the mapping from
latent interests to communities changes with the evolution
of community structures. Motivated by state-space models
for series data, we let

ωt
d ∼ N(ωt−1

d , λ−1
d I) xt

i ∼ N(xt−1
i , λ−1

u I) (4)

That means, users’ latent interests as well as the interest-
community mapping at time t are shifted from those in the
last time stamp. Finally, users’ activity levels can be very
different in different time stamps. According to the study
in [10], the probability that one user generates one link with
time gap δ is δ−αd exp(−βdn

d
i δ), where nd

i is the number of
degrees of user ui in the network Gd, and αd and βd are
two network-dependent parameters. In other words, in u-
nit time, the expected number of interactions for user ui is
exp(βdn

d
i ). Instead of setting the number of interactions ex-

plicitly, we introduce a sparsity parameter ρdi =
exp(βdn

d
i )

Nd
to

characterize the source of interaction, where Nd is the num-
ber of users in Gd. Then, we down-weight the probability of
successful interaction as

edij ∼ Bern(ρdi ρ
d
j z

T
ijBdzji) (5)

Note that the number of node degree varies over time, thus
ρdi changes with time as well.

2.5 Model Summary
We now put all the pieces together and give the full gen-

erative process of ITCom as follows. The graphical model
in one time stamp can be found in Figure 2.

• For each user ui ∈ U: Sample x0
i ∼ N(0, λ−1

u I)
• For each network G0

d ∈ G: Sample ω0
d ∼ N(0, λ−1

d I)

• Set each n0
ij0 = 0 and n0

ij1 = 0
• From t = 1 to T

– For each network Gt
d:

∗ Draw aD×Kt
d feature matrix ωt

d ∼ N(ωt−1
d , λ−1

d I)

∗ Draw Bt
d ∼ Beta(γ0 + γ̃t

d0, γ1 + γ̃t
d1)

– For each user ui ∈ U:

∗ Draw aD latent feature vector xt
i ∼ N(xt−1

i , σ2
uI)

∗ Set sparsity parameter ρdi =
exp(βdn

d
i )

Nd

∗ For each network Gt
d:

· vtdi =
1

1+exp(−εt
di

)
, εtdi ∼ N(xt

iω
t
d, λ

−1I)

· Draw πt
di: π

t
dik = vtdikΠ

k−1
�=1 (1− vtdi�)

– For each pair (ui, uj) ∈ Et
d in Gt

d:

∗ Draw indicator for ui, z
t
dij ∼ Mult(πt

id)

∗ Draw indicator for uj , z
t
dji ∼ Mult(πt

jd)

∗ Sample the link, etdij ∼ Bern(ρdi ρ
d
jz

t
dijB

t
dz

t
dji)

2.6 Model Building
Given observed links for some or all node pairs, we employ

a Sequential Monte Carlo (SMC) method to draw samples
from the latent variables’ posterior distribution and a Max-
imum a posteriori (MAP) method to estimate the hyperpa-
rameters. SMC incrementally runs a fast batch sampling
method over the data at epoch t given the state at earli-
er epochs. As the priors and posteriors are not conjugate,
we divide the inference process into three phrases to reduce
the computational cost. It firstly samples the communi-
ty assignments of every links by assuming the community
membership π is given, then infers users’ membership over
communities, and finally estimates the hierarchical priors.

Sampling Community Assignments Due to the chal-
lenge of infinite number of communities, we employ retro-
spective sampling [15] to approximate the true infinite mod-
el. Let γt

d0 = γ0 + γ̃t
d0 and γt

d1 = γd1 + γ̃t
d1, and then the

pairwise community assignments in the d-th network at time
t can be written as

p(ztd|πt
d, γ

t
d0, γ

t
d1, E

t
d) ∝ p(Et

d|ztd, γt
d0, γ

t
d1)p(z

t
d|πt

d)

=

∫
p(Et

d|ztd,Bt
d)dp(B

t
d|γt

d0, γ
t
d1)p(z

t
d|πt

d)

∝
∏
k,k′

B(γt
d0 + γt

d1 + nt
d,k,k′)

B(γt
d0 + γt

d1)

∏
ui

πt
dik

∏
uj

πt
djk′

where B(ω) =
∏

k Γ(ωk)

Γ(
∑

k ωk)
and nt

d,k,k′ denotes the total num-

ber of pairwise community assignments between community
k and k′ at time t in the d-th network. As the conjugate
property between Beta and Multinomial distributions, Bt

d

can be marginalized. The posterior of community assign-
ments can be defined as

p(ztdij = k, ztdji = k′|πt
d, γ

t
d0, γ

t
d1, z

t
d,¬(i,j), Ed) (6)

∝ π̃t
dikπ̃

t
djk′

(n
t,¬(i,j)
d,k,k′,0 + γt

d0)
1−yt

dij (n
t,¬(i,j)
d,k,k′,1 + γt

d1)
yt
dij

n
t,¬(i,j)
d,k,k′,0 + γt

d0 + n
t,¬(i,j)
d,k,k′,1 + γt

d1
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where ztd,¬(i,j) denotes the set of community assignments
without two assignments over the link between ui and uj ,
and nt

d,k,k′,y represents the total number of links in type

y with (k, k′) as the participating communities in the d-
th network at time t. In addition, yt

dij denotes the sign

of the link etdij , where yt
dij = 1 represents that ui and uj

are linked at time t and yt
dij = 0 represents that ui and

uj will not build a link between each other. Importantly,
assuming the number of current communities is K, if 1 ≤
k ≤ K then π̃t

dik = πt
dik; otherwise π̃

t
dik = 1−∑K

k=1 π
t
dik and

n
t,d,¬(i,j)

k,k′,0 = n
t,d,¬(i,j)

k,k′,1 = 0. Eq.(6) represents the posterior
probability of selecting community k if k ≤ K but represents
the aggregate posterior probability of the infinite “tail” of
communities with indexes greater than K if k > K.

Sampling the Parameter v Given the community as-
signments, we employ the Metropolis-Hastings algorithm to
sample v for community memberships independently. Given
users’ latent features x and network factors ω, to sample a
new community activation v∗di for each user ui in the d-th
network, we define the accept ratio of v∗di, A(v∗di, vdi), as

A(v∗di, vdi) =
∏
uj

p(ztdij |v∗di)p(ztdji|v∗di)
p(ztdij |vdi)p(ztdji|vdi)

=
K∏

k=1

(π∗
dik

πdik

)Ddik

(7)

where Ddik denotes the total number of indicators attached
to user ui assigned to community k in the networkGd. Then,
at each time, we sample v∗di from ∼ N(v∗di|xiωd, λ

−1I) and
accept it with probability min

(
A(v∗di, vdi), 1

)
.

Sampling x and ω Given v, for each time stamp t, we
can infer the hierarchical priors: ωt

d for each network and xt
i

for each user ui. To find the optimal values, we first define
the union distribution over v and priors as

p(vt, ωt,xt) =
�∏

d=1

N∏
i=1

N(vtdi|xt
iω

t
d, λ

−1I) (8)

N∏
i=1

N(xt
i |xt−1

i , λ−1
u I)

�∏
d=1

N(ωt
d|ωt−1

d , λ−1
d I)

where x0
i = 0 and ω0

d = 0. By calculating the derivatives of
the log of likelihood with respect to ωt

d and xt and set them
as zero, we obtain the sampling equations as

ωt
d ∼ N

(
(λdI + xtTxt)−1xtT vt + ωt−1

d , λ−1
d I

)
(9)

xt ∼ N
(
vtωtT

d (λuI +
�∑
d

ωtT
d ωt

d)
−1 + xt−1, λ−1

u I
)

(10)

where xt is a N ×D matrix, each row of which is xt
i.

Parameter Estimation As follows, we propose a max-
imum a posteriori (MAP) method to estimate the hyper-
parameters, including λ, λu and λd. To avoid overfitting,
we place Gamma priors so that their prior distributions are
conjugate with the likelihoods. For λ, we have

p(λ|v,x, ω, a, b) (11)

∝ Gam
(
λ|a, b

) T∏
t=1

�∏
d=1

N∏
i=1

N
(
vtdi|xt

iω
t
d, λ

−1I
)

∝ Gam
(
λ|1

2
NT	K + a,

1

2

∑
k,t,d,i

(vtdik − [xt
iω

t
d]k)

2 + b
)

Similarly, we obtain the sampling equations for λu and λd:

p(λu|x, au, bu)∝Gam
(
λu|1

2
NTD + au,

1

2

∑
f,t,i

xt2
if + bu

)
(12)

p(λd|ω, ad, bd)∝Gam
(
λd|

1

2
T	K + ad,

1

2

∑
k,t,d

ωt2
dk + bd

)
(13)

Framework We put all the components above into an
SMC framework. Firstly, we set priors as arbitrary val-
ues, then initialize the latent variables and finally sample
the community assignments. Consequently, it alternatively
updates community assignments, community memberships,
priors and hyperparameters in each round of inference:

• Update community assignments using Eq.(6)
• Update community activations v using Eq.(7)
• Update network-specific priors ω using Eq.(9)
• Update user priors x using Eq.(10)
• Update hyperparameters using Eq.(11), (12) and (13)

This process is repeated until convergence. Besides, the s-
parsity ratio ρ can be estimated independently by maxi-
mizing likelihood [10]. To avoid overfitting and reduce the
computational cost, we update latent variables periodically.
Specifically, we update v every 5 iterations, both λ and x ev-
ery 10 iterations, and hyperparameters every 20 iterations.
In addition, as in most real-world datasets, we observe on-
ly positive links. For each user, we randomly sample other
users who are more than two-hops away and build negative
links to the current user. The number of negative links is
kept in the same order to that of positive links.

Time Complexity At each iteration, SMC needs to look
up all M links in nested networks to pick community assign-
ments and then update v with time O(T�NKD) where N
is the number of users. Metropolis-Hastings sampler spends
O(TND) on updating x andO(T�K) on updating ω. Conse-
quently, the updating of hyperparameters takes O(T�NK).
Typically, T�K, TND and T�NK are much smaller than
T�NKD. Thus, with I iterations, the whole complexity
is O(I(MK + T�NKD)) which linearly increases with the
number of links M and users N . Following the similar idea
in [19], that partitions data into multiple machines for paral-
lel computing and then combines pieces of results, the infer-
ence process can be implemented on Map/Reduce straight
forward to cope with large datasets efficiently.

3. EXPERIMENTS
We evaluate ITCom, on eight large-scale datasets from

Tencent, SinaWeibo1, Xiaonei, Facebook/Twitter2, Github3,
Stackoverflow4 and Epinion5. Most datasets can be down-
loaded from the URLs in footnote and the pre-processed
Stackoverflow dataset is also available6. The tasks include
(1) link prediction, that predicts who will interact with each
other in a given time stamp, and (2) macro-evolution, which
predicts changes of networks’ statistics, e.g., clustering coef-
ficients and degree distribution, etc. We adopt Mean Aver-
age Precision (MAP) as the evaluation criterion. It measures
how well the algorithm ranks new links above non-existing
links. We set D = 5, κ = 1 and other hyperparameters as
1.0. The number of iterations is 1000.

In the link prediction task, we compare ITCom with Mixed
Membership Stochastic Blockmodels (MMSB) [1], dynam-
ic MMSB (dMMSB) [6], Nonparametric Metadata Depen-
dent Relational Model (NMDR) [9], dynamic Infinite Rela-
tional Model (dIRM) [8] and Tensor Factorization (TF) [7].

1http://www.wise2012.cs.ucy.ac.cy/challenge.html
2http://socialnetworks.mpi-sws.org
3http://www.githubarchive.org/
4http://meta.stackoverflow.com/
5http://konect.uni-koblenz.de/networks/epinions
6http://www.cse.ust.hk/~ezhong/dataset/so.zip
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Table 2: Summary of Data Characteristics

Collections #User #Relations/Interactions Starting time #T Types of Relations/Interactions

Tencent ∼ 1M ∼ 110M 2011/05 12 weeks Instant Messaging (QQ), Microblog Following (MB)
Epinion ∼ 0.1M ∼ 0.8M 2001/01 32 months Trust, Distrust

Facebook ∼ 0.06M ∼ 1.8M 2006/09 25 months Link, Wall Posting
Xiaonei ∼ 0.5M ∼ 32M 2012/04 28 weeks Recording, Browsing, Chat, Friends Application
Twitter ∼ 0.3M ∼ 0.9M 2009/09 13 months Forwarding, Mention

Sina Weibo ∼ 6M ∼ 320M 2009/12 25 months Forwarding, Mention
Github ∼ 0.05M ∼ 1M 2012/03 43 weeks Following, Collaborating

StackOverflow (SO) ∼ 0.8M ∼ 33M 2008/11 43 months Answering, Commenting, Voting

0 2 4 6 8 10 12
−15

−10

−5

0
Tencent

Num of Degrees (log)

Pe
rc

en
ta

ge
 (l

og
)

 

 

mb
qq

(a) Tencent

0 2 4 6 8
−15

−10

−5

0
Epinion

Num of Degrees (log)

Pe
rc

en
ta

ge
 (l

og
)

 

 

trust
distrust

(b) Epinion

0 1 2 3 4 5 6 7
−15

−10

−5

0
Facebook

Num of Degrees (log)

Pe
rc

en
ta

ge
 (l

og
)

 

 

links
wall

(c) Facebook

0 2 4 6 8 10
−14

−12

−10

−8

−6

−4

−2

0
Xiaonei

Num of Degrees (log)

Pe
rc

en
ta

ge
 (l

og
)

 

 

friend
record
chat
browsing

(d) Xiaonei

0 2 4 6 8
−15

−10

−5

0
Twitter

Num of Degrees (log)

Pe
rc

en
ta

ge
 (l

og
)

 

 

mention
forward

(e) Twitter

0 2 4 6 8 10 12
−15

−10

−5

0
Weibo

Num of Degrees (log)

Pe
rc

en
ta

ge
 (l

og
)

 

 

mention
forward

(f) Weibo

0 2 4 6 8 10 12
−15

−10

−5

0
Github

Num of Degrees (log)

Pe
rc

en
ta

ge
 (l

og
)

 

 

follow
member

(g) Github

0 2 4 6 8 10
−15

−10

−5

0
StackOverflow

Num of Degrees (log)

Pe
rc

en
ta

ge
 (l

og
)

 

 

answer
comment
vote

(h) StackOverflow

0 2 4 6 8 10 12 14
0

50

100

150

200

250
Tencent

Time Stamps

A
vg

 N
um

 o
f D

eg
re

es

 

 

mb
qq

(i) Tencent

0 5 10 15 20 25 30
4

6

8

10

12
Epinion

Time Stamps

A
vg

 N
um

 o
f D

eg
re

es

 

 

trust
distrust

(j) Epinion

0 5 10 15 20 25
0

5

10

15

20

25
Facebook

Time Stamps

A
vg

 N
um

 o
f D

eg
re

es

 

 

links
wall

(k) Facebook

0 5 10 15 20 25
0

50

100

150

200
Xiaonei

Time Stamps

A
vg

 N
um

 o
f D

eg
re

es

 

 

friend
record
chat
browsing

(l) Xiaonei

0 2 4 6 8 10 12
2

2.2

2.4

2.6

2.8

3
Twitter

Time Stamps

A
vg

 N
um

 o
f D

eg
re

es

 

 

mention
forward

(m) Twitter

0 2 4 6 8 10 12
0

10

20

30

40
Weibo

Time Stamps

A
vg

 N
um

 o
f D

eg
re

es

 

 

mention
forward

(n) Weibo

0 10 20 30 40
1

2

3

4

5
Github

Time Stamps

A
vg

 N
um

 o
f D

eg
re

es

 

 

follow
member

(o) Github

0 10 20 30 40
5

10

15

20

25

30

35
StackOverflow

Time Stamps

A
vg

 N
um

 o
f D

eg
re

es

 

 

answer
comment
vote

(p) StackOverflow

Figure 3: Degree Distribution ((a)∼(h)) and Density Evolution ((i)∼(p))

MMSB is the basic baseline, dMMSB is a dynamic extension
of MMSB, NMDR is a nonparametric extension of MMSB,
dIRM is a dynamic and nonparametric extension of MMSB,
and TF models multiple relations and time factors togeth-
er but it does not model the network differences and in it
the number of communities is fixed. For MMSB, dMMSB
and TF, we set the number of communities K as 50 while
NMDR, dIRM and ITCom can determine K automatical-
ly. We set other parameters as the default values in original
papers. For macro-evolution, we introduce the Microscopic
Evolution (ME) model [10] as the baseline.

3.1 Dataset Description
Each dataset contains a composite network, where each

composite network contains multiple individual networks.
According to different link types, these datasets can be clas-
sified as relational networks, e.g., Tencent and Epinion, and
interaction networks (the remaining six datasets), where us-
er pairs in relational networks are distinct but users in in-
teraction networks can interact with each other multiple
times. Specifically, Tencent collection contains an instan-
t messaging network (QQ) and a Weibo network (MB). In
Epinion, people can build trust or distrust relations with
others. Facebook collection captures users’ friendships and
wall posting actions. In Xiaonei collection, users can leave
records, visit friends’ homepages, chat with friends, and
send friends applications. For Twitter and Sina Weibo, peo-
ple can forward (RT) and mention (@) others’ tweets. In
Github, users follow each other as well as being collabo-
rators in different projects. In Stackoverflow, people can
answer others’ questions, comment on others’ answers and

vote others’ posts. Their statistics can be found in Table 2.
Their degree distributions in the last time stamp and density
evolutions are plotted in Figure 3. Although the degree dis-
tributions all follow the power-low distribution and networks
become denser as time evolves, different individual network-
s in each collection have similar but different properties. It
also implies that simply merging networks does not work,
where networks’ specific patterns can be hidden. In sum-
mary, these datasets come from different applications with
different scales and time lengths. The correlations between
individual networks in different datasets are very differen-
t. For example, forwarding and mention may have highly
positive correlation while trust and distrust relations are
strongly negative correlated. This variety property makes
the experiments convinced. To crawl data, we employ ran-
dom walk based sampling method to select sub networks in
Tencent and Xiaonei networks and extract relational knowl-
edge from whole public data dumps of other datasets. In
each dataset, users in different individual networks can be
identified by unified user identity, such as the QQ number in
the Tencent collection. In the link prediction task, the net-
works at the previous T − 1 time stamps are considered as
the model input and the output is the prediction at time T .
To simulate the evolution process, we consider the network

series {Gt}T/2
t=1 and evolve it from t = T/2, . . . , T .

3.2 Interaction/Friendship Prediction
Table 3 summarizes the MAP of all baselines in the link

prediction task. ITCom consistently outperforms other base-
lines on MAP in all networks except Tencent’s Microblog
against TF. The MAP of ITCom is at least 0.02 higher than
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Table 3: Performance Comparisons on MAP
Networks MMSB MMSB-C dMMSB dMMSB-C NMDR NMDR-C dIRM dIRM-C TF ITCom

Tencent
QQ 0.5097 0.5034 0.5135 0.5211 0.5131 0.5055 0.5132 0.5127 0.5241 0.5599
MB 0.2154 0.2151 0.2255 0.2397 0.2473 0.2293 0.2339 0.2337 0.2551 0.2549

Epinion
Trust 0.7235 0.6937 0.7282 0.7112 0.7251 0.7010 0.7205 0.7005 0.7300 0.7375

Distrust 0.7020 0.6738 0.7151 0.6864 0.6996 0.6829 0.6945 0.6937 0.7001 0.7116

Facebook
Link 0.7298 0.7372 0.7360 0.7376 0.7330 0.7339 0.7337 0.7345 0.7358 0.7469
Wall 0.6873 0.6773 0.6981 0.6956 0.6927 0.6954 0.6975 0.6972 0.6963 0.7029

Xiaonei

Record 0.5112 0.5290 0.5219 0.5211 0.5196 0.5211 0.5193 0.5196 0.5191 0.5477
Browsing 0.2038 0.2070 0.2140 0.2125 0.2098 0.2131 0.2185 0.2186 0.2188 0.2477

Chat 0.2813 0.2661 0.3010 0.2977 0.3003 0.2969 0.2960 0.2965 0.2960 0.3306
Friend 0.3490 0.4092 0.3206 0.3968 0.3874 0.4095 0.3788 0.4171 0.4119 0.4535

Twitter
Forwarding 0.6945 0.7003 0.7204 0.7033 0.7082 0.7043 0.7218 0.7131 0.7135 0.7361
Mention 0.7538 0.7450 0.7799 0.7743 0.7694 0.7701 0.7716 0.7728 0.7756 0.8059

Weibo
Forwarding 0.5562 0.5563 0.5876 0.5819 0.5831 0.5836 0.5913 0.5915 0.5933 0.6233
Mention 0.6652 0.6653 0.6775 0.6817 0.6781 0.6801 0.6834 0.6834 0.6826 0.7222

Github
Following 0.7447 0.7522 0.7662 0.7661 0.7649 0.7649 0.7685 0.7609 0.7627 0.7991

Collaborating 0.8136 0.8181 0.8228 0.8188 0.8377 0.8237 0.8272 0.8162 0.8270 0.8387

SO
Answering 0.8416 0.8476 0.8493 0.8589 0.8426 0.8442 0.8539 0.8539 0.8597 0.8715

Commenting 0.7715 0.7769 0.8298 0.8259 0.8138 0.8149 0.8144 0.8136 0.8280 0.8384
Voting 0.8000 0.7987 0.8152 0.8141 0.8117 0.8117 0.8129 0.8130 0.8152 0.8220
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Figure 4: Network Evolution on Degree Distribution ((a)∼(d)) and Clustering Coefficient ((e)∼(h))

MMSB. If we overlook the model differences, ITCom on av-
erage achieves 0.042, 0.028, 0.027, 0.026 and 0.021 higher
MAP as compared to MMSB, dMMSB, NMDR, dIRM and
TF respectively. The better performance of ITCom over
baselines with one individual network can be ascribed to
the fact that, ITCom considers more knowledge from auxil-
iary networks and captures more aspects of users’ interests.
Due to the data sparseness, not all users’ interests can be
reflected by one individual network. Thus some knowledge
will be missed if only one network is considered. On the
other hand, although models with simply combined network,
such as MMSB-C, exploit knowledge from multiple networks
to improve accuracies, they do not consider network differ-
ences, i.e., users actually make different friends in different
networks. Thus, they may introduce unnecessary regulariza-
tion from unrelated networks. However, ITCom adaptively
captures the cross-network influence and keeps the network-
specific growth patterns, hence solves the above problems.

We have other interesting discoveries. First, comparing
the performance of other baselines and MMSB, infinite and
dynamic modeling can help improve the prediction precision.
Second, due to the network differences, combining knowl-
edge may not always be helpful. For example, the perfor-
mance on the combined networks degrades as the trust and
distrust relations are different across networks, thus, simply
combined different networks bring negative impacts. Third-
ly, the prediction precisions in Github and Stackoverflow
are higher than in other networks. The reason is that, user-
s in Github and Stackoverflow are programmers, who may
have more consistent interaction patterns. Last but not the
least, network influence is not symmetrical. For example, in
Xiaonei collection, the improvement in friends application
network is higher than that in other networks, as friends ap-

plications are much fewer than other interactions but others
are highly dependent on friends application.

3.3 Network Evolution
Figure 4 summarizes the evolution results of ME and IT-

Com in Tencent and Epinion networks on degree distribution
and clustering coefficient. Both networks are relational net-
works which are suitable for the settings of ME, and thus the
comparison is fair. Overall, the performance of ME and IT-
Com are close on the evolution of degree distribution in the
last time stamp. They approximate the true distribution of
networks well in both collections. Nonetheless, on the Ten-
cent dataset, ITCom performs slightly better than ME. The
reason is that ME models network evolution anonymously,
that ignores users’ personalities. When a network is large,
the estimated distribution from a set of anonymous users is
stable. However, when data is insufficient, estimation may
overfit the rare observations. On the other hand, ITCom
models users’ activities in person and hence provides more
accurate modeling. In addition, ITCom collectively exploits
knowledge from two networks, where knowledge in different
networks can regularize the evolution process in each indi-
vidual network and thus alleviate the overfitting issue. The
performances of ME and ITCom on clustering coefficient are
similar as well. But for long-tail users, e.g., whose number of
neighbors is less than 10, the estimation of ITCom is more
accurate than ME. That ascribes to the fact that ITCom
considers more knowledge from multiple networks.

3.4 Performance Analysis
We perform extended experiments on the Tencent dataset

to answer three questions: (1). does ITCom capture the net-
work differences and reflect specific growth patterns? (2).
how do the model parameters affect the performance of IT-
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Figure 5: Performance Analysis
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Figure 6: Efficiency Analysis
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Figure 7: Component Analysis

Com? (3). what is the effectiveness of corresponding ratio
among individual networks? (4). what is the effectiveness
of each component in ITCom?

We plot the community relation matrices of QQ and Wei-
bo in Figure 5(a), where nodes are communities and the
thickness of edges represent the relational strength between
communities. Obviously, the number of communities and
community relations are different (43 in QQ vs. 33 in Wei-
bo). Communities in Weibo are more centralized while those
in QQ are more diverse. This is consistent with real appli-
cations, as people on Weibo follow others based on interests
while people on QQ may interact with only close friends.
This suggests that different networks have different commu-
nity structures and ITCom can capture this difference.

We analyze the effects to change the number of features
D (5 to 100). The results are illustrated in Figure 5(b). The
performance of ITCom is not sensitive to the number of D
but decreases with very large D. The reason is that D de-
notes the representation complexity of each user. Thus, if D
exceeds a threshold (e.g., 50), the model is too complex and
results in overfitting. At this point, it is less helpful to im-
prove the model performance by increasing D. In practice,
D can be tuned through cross-validation techniques. For κ,
we vary it from 1 to 10, the results are shown in Figure 5(c).
The performance of ITCom drops down slightly with larger
κ but it is not sensitive nonetheless.

As many people may only use parts of online services, i.e.,
they may exist in one individual network but not in all net-
works, we test the effect of the correspondence ratio between
different individual social networks, e.g., the number of users
who exist in both networks. Figure 5(d) presents the results
with different ratios between the QQ and MB networks. IT-
Com’s performance becomes worse if fewer correspondences
are provided across networks. In addition, it outperforms
MMSB consistently if there are corresponding users, imply-
ing that ITCom successfully uses the overlapping users as
bridges to capture cross-network influences.

To test the effectiveness of each component, i.e., compos-
ite, infinite and dynamic in ITCom, we perform experiments
on the Tencent dataset by removing specific components in
ITCom and produce three baselines. Com considers only
composite network knowledge but fixes the number of com-

munities and ignores the temporal information, ICom is the
same as ITCom but ignores the temporal information and
TCom fixes the number of communities. As shown in Fig-
ure 7, the composite modeling contributes most improve-
ments while the infinite and dynamic extensions improve
the model performance further.

3.5 Efficiency Analysis
As analyzed in the end of Section 2.6, the computational

time of ITCom increases linearly with the number of inter-
actions between users. In addition, the computational time
is closely related to the convergence property of the infer-
ence algorithm. We evaluate these empirically as shown in
Figure 6. Figure 6(a) illustrates the computational time of
MMSB-C, dMMSB-C, NMDR-C, dIRM-C and ITCom on
the Tencent dataset, with different ratio of links. We ob-
serve that the computational time increases linearly with
larger data size. For our experimental setting, every round
of inference takes about 45 seconds in our computer, of which
memory is 16G and CPU is 3.2Gz. ITCom not only has bet-
ter prediction performance as shown in Table 3, but also has
similar time cost with dIRM-C and dMMSB-C. Figure 6(b)
shows the convergence property of ITCom. Clearly, ITCom
becomes convergent after about 400 iterations. Combining
with the time cost of each round, the inference algorithm of
ITCom takes about five hours to build a model.

4. RELATED WORKS
Social Network Analysis [5] has drawn much research

interest, ranging from link prediction [12], community detec-
tion [11], to social influence [17]. Several works have been
proposed to handle social networks with multiple relations,
such as tensor factorization [7]. However, these works treat
each type of relationship as equally important and do not
consider network differences. In previous research [19], we
introduced the concept of composite social networks. Based
on the property that different social networks reflect differ-
ent aspects of users’ interests, we introduced a hierarchi-
cal Bayesian model to predict users’ behaviors by exploiting
knowledge in different individual networks adaptively.

Network DynamicsAs social networks change over time,
studying network dynamics and evolution is also an impor-
tant topic. Network dynamics focuses on the microscopic
changes of networks, such as the links generated by specif-
ic users, etc. For example, Nguyen et al. proposed a two-
step framework to trace the evolution of overlapped network
communities in dynamic mobile networks [14]. On the oth-
er hand, network evolution aims to describe the change of
macroscopic network properties, such as diameter, cluster-
ing coefficients, etc. For example, Leskovec et al. proposed
a simulation method to construct networks step-by-step de-
pending on parameters estimated by maximal-likelihood meth-
ods [10]. However, these existing works studied only one
network but did not consider the influences across network-
s. Besides, previous research works mostly deal with one
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aspect, dynamics or evolution, but the proposed model can
handle both simultaneously.

Mixed Membership Models Recently, mixed mem-
bership models have been demonstrated to be effective to
model relational data, such as MMSB [1]. The main idea
is to represent each entity as a mixed membership vector
over communities or topics. Recently, MMSB has been ex-
tended from two aspects: dynamic [6, 8, 4] and nonpara-
metric [18], in order to model dynamical data and release
the constraints on the number of communities. In addition,
auxiliary data are also considered to improve the model per-
formance [9]. Cross-domain collaborative filtering is intro-
duced [13], where hierarchical Bayesian models are proposed
to solve multiple domain user personalization. However, it
is applied on static user-item interaction networks.

5. CONCLUSION
In this paper, we studied a new problem on dynamics

analysis of composite social networks. We defined a com-
posite social network as a set of nested individual networks,
where users and links in different individual networks over-
lap. The dynamical process of each individual network can
influence each other while keeping specific evolution pat-
terns. To model this co-evolution process, we proposed a
nonparametric Bayesian model, ITCom, by capturing cross-
network influences adaptively. The main idea is to model
users’ latent interests, which carry the common knowledge
embedded in multiple networks and use network-specific fac-
tors to describe the network dependent growth patterns on
community structures. These two kinds of knowledge are
then encoded as a hybrid prior for a dynamic mixed member-
ship model to generate the links between users in each time
stamp. To allow communities vary over time and networks,
we construct nonparametric models. Unlike prior works, the
proposed model can capture the microscopic and macroscop-
ic aspects of network dynamics, including the links of each
specific user and the global changes of networks properties.
The proposed model is flexible in that, it can be extended to
any number of networks and the number of communities can
be determined automatically. We conducted large-scale em-
pirical studies on eight real-world network collections, where
ITCom outperforms several state-of-the-art baselines on link
prediction by as high as 0.11 on MAP efficiently and esti-
mates the evolution of degree distribution and clustering
coefficient accurately.

Future Works In this paper, the proposed model re-
quire the users across networks to be identical. We propose
to relax this restriction in the future. Besides modeling the
network dynamics and predicting users’ behaviors [19], the
rich data embedded in composite social networks can ben-
efit many other applications. Firstly, users’ characteristics
and their interactions can be exploited to build an accurate
user distance measure. In addition, by considering multiple
networks together, common patterns can be extracted from
users’ behaviors/interactions and these patterns can be used
to infer their characteristics.
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