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ABSTRACT
The key algorithmic problem in viral marketing is to identify a set
of influential users (called seeds) in a social network, who, when
convinced to adopt a product, shall influence other users in the net-
work, leading to a large number of adoptions. When two or more
players compete with similar products on the same network we talk
about competitive viral marketing, which so far has been studied
exclusively from the perspective of one of the competing players.

In this paper we propose and study the novel problem of compet-
itive viral marketing from the perspective of the host, i.e., the owner
of the social network platform. The host sells viral marketing cam-
paigns as a service to its customers, keeping control of the selection
of seeds. Each company specifies its budget and the host allocates
the seeds accordingly. From the host’s perspective, it is important
not only to choose the seeds to maximize the collective expected
spread, but also to assign seeds to companies so that it guarantees
the “bang for the buck” for all companies is nearly identical, which
we formalize as the fair seed allocation problem.

We propose a new propagation model capturing the competitive
nature of viral marketing. Our model is intuitive and retains the de-
sired properties of monotonicity and submodularity. We show that
the fair seed allocation problem is NP-hard, and develop an effi-
cient algorithm called Needy Greedy. We run experiments on three
real-world social networks, showing that our algorithm is effective
and scalable.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining

Keywords
Social networks, influence propagation, viral marketing

1. INTRODUCTION
Recent years have witnessed tremendous interest in social in-

fluence and the phenomenon of influence-driven propagations in
social networks, fueled by a variety of applications, among which
the most prominent one is viral marketing. The key computational
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problem behind viral marketing is the identification of a set of k
influential users, whom should be “targeted” by a viral marketing
campaign. Here, targeting means giving free (or price discounted)
samples of a product and k represents the company’s budget. The
targeted users, also called seeds, should be those that are well po-
sitioned to create word-of-mouth driven cascades, so to transitively
convince the largest number of other users to adopt the product.

The bulk of research in this field assumes that there is one com-
pany, introducing one product in the market. In other words, there
is no competition. However, in the real world, typically multiple
players compete with comparable products over the same market.
For example, consider consumer technologies such as videogame
consoles (X-Box vs. Playstation), digital SLR cameras (Canon vs.
Nikon) or smartphones (Android vs. iPhone): since the adoption
of these consumer technologies is not free, it is very unlikely that
an average consumer will adopt more than one of the competing
products. Recognizing this, there has been some recent work on
competitive viral marketing, where two or more players compete
with similar products for the same market. The majority of these
studies focus on the best strategy for one of the players [1–4,11,15].

Our motivating observation is that social network platforms are
owned by third party such as Facebook and LiveJournal. The owner
keeps the proprietary social graph secret1 for obvious reasons of the
company benefits, as well as due to privacy legislation. We call the
owner the host. Companies that want to run viral campaigns are
the host’s clients. The clients typically do not have direct access
to the network and thus cannot choose seeds for their campaign on
their own. Any campaign would need the host’s permission and
privilege to run. Take Facebook as an example, business owners
can set up a Facebook Page and create display ads or promoted
posts to reach users2, but they are not able to effectively implement
a viral marketing campaign which directly reaches individual users,
due to the lack of access to the network graph and privacy concerns.

Motivated by this observation, we propose and study the novel
problem of competitive viral marketing from the host perspective.
We consider a new business model where the host offers viral mar-
keting as a service, for a price. It allows the clients to run cam-
paigns by specifying a seed budget, i.e., number of seeds desired.
The host controls the selection of seeds and their allocation to com-
panies. Once seeds are allocated, companies compete for adopters
of their products on the common network.

In classical non-competitive influence maximization, the objec-
tive is to choose the seeds so as to maximize the expected number
of adopters. However, in a competitive setting, from the host’s per-
spective, it is important not only to choose the seeds to maximize

1http://techcrunch.com/2013/01/24/
my-precious-social-graph/
2https://www.facebook.com/business
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the collective expected number of adoptions across all companies,
but also to allocate seeds to companies in a way that guarantees
the “bang for the buck” for all companies is nearly the same. In-
tuitively, the bang for the buck for a company is the cost benefit
ratio between the expected number of adopters of its product over
its number of seeds. We call this the amplification factor, as it re-
flects how investing in a small number of seeds gets amplified by
the network effect. If the host allocates the seeds carelessly to its
clients, it can result in a wide variance in the amplification factors,
leading to resentful clients. Consider the following hypothetical
scenario. Suppose Canon and Nikon are two clients with seed bud-
gets 20 and 30, and Facebook, as host, selects 50 seeds. If those
50 seeds are allocated in such a way that Canon ends up getting ex-
pected spread of 400 (“bang for the buck” being 20), while Nikon
gets 300 (“bang for the buck” being 10), this allocation is unfair
and may lead to Nikon to feel resentful.

Motivated by the above, we propose a new propagation model
called K-LT by extending the classical Linear Threshold (LT)
model [13] to capture the competitive aspect in viral marketing.
Intuitively, propagation in our model consists of two phases. A
node (user) is in one of three states: inactive, influenced, or active.
It adopts a product only in the active state. In the first phase, inac-
tive nodes may become influenced (to adopt a product) as a result
of influence coming in from their neighbors. In the second phase,
an influenced node makes its choice to adopt one of the products
(i.e., becomes active) based on the relative strengths of incoming
influence for different products. The model is intuitive and retains
the desired properties of monotonicity and submodularity.

We then define the fair seed allocation problem whose goal is to
allocate seeds to the companies such that their amplification factors
are as close to each other as possible, while the total expected num-
ber of adoptions over all companies is maximized. The problem is
NP-hard and we devise an efficient and effective greedy heuristic
to tackle it. To summarize, we make the following contributions:
• We study competitive viral marketing from a campaign host’s

perspective. We propose the K-LT propagation model and
show that in our model, expected influence spread for any indi-
vidual competing product is monotone and submodular (§4.1).
• We define the problem of Fair Seed Allocation (FSA) and dis-

cuss a number of options for formalizing it. As a case study,
we focus on minimizing the maximum amplification factor of-
fered to companies (§3.2).
• We show that FSA under K-LT model is NP-hard (§4.1).

However, it can be solved exactly using dynamic program-
ming when there are only two companies competing (§4.4).
• We develop an efficient heuristic algorithm, Needy Greedy, a

natural adaptation of the classic greedy algorithm for the non-
competitive setting for any number of companies (§4.3).
• We conduct extensive experiments on three real-world net-

work datasets and our results show that our algorithms are
effective and efficient, significantly outperforming two simple
baselines including random allocation (§5).

The next section reviews necessary background and related
work. In §6, we summarize the paper and discuss future work.

2. BACKGROUND AND RELATED WORK
Kempe et al. [13] modeled viral marketing as a discrete opti-

mization problem, named influence maximization, and focusing on
two fundamental propagation models: Independent Cascade (IC)
and Linear Threshold (LT). In both models, we are given a directed
social graph G = (V,E) with edges (u, v) ∈ E labeled by influ-

ence weights pu,v ∈ (0, 1]. If (u, v) �∈ E, define pu,v = 0. At a
given time step, each node is either active (an adopter of product)
or inactive. An active node never becomes inactive. Initially all
nodes are inactive, and at time 0, a set S of seeds are activated. In
the LT model, the sum of incoming weights to v is no more than
1. Each node v chooses a threshold θv uniformly at random from
[0, 1]. If at time t, the total weight from the active neighbors of v is
at least θv , then v becomes active.

Given a propagation model (e.g., IC or LT) and a seed set S ⊆ V ,
the expected number of active nodes at the end of the process or the
(expected) spread is denoted by σ(S). The influence maximization
problem asks for a set S ⊆ V , |S| = k, such that σ(S) is maxi-
mum, where k is an input parameter. Under both IC and LT models,
the problem is NP-hard [13]. Kempe et al., however, show that the
function σ(S) is monotone (i.e., σ(S) ≤ σ(T ) whenever S ⊆ T )
and submodular (i.e., σ(S ∪ {w})− σ(S) ≥ σ(T ∪ {w})− σ(T )
whenever S ⊆ T , and w ∈ V \ T ). When equipped with such
properties, the simple greedy algorithm that at each iteration greed-
ily extends the current set of seeds S with the node w providing the
largest marginal gain σ(S ∪ {w}) − σ(S), gives a (1− 1/e − ε)-
approximation to the optimum [13, 17] (for any ε > 0). After [13],
considerable work has been done on developing more efficient and
scalable influence maximization algorithms [5, 6, 9, 10, 16].

Competitive viral marketing. There have been some recent stud-
ies on competitive viral marketing, by extending the IC or the LT
model. A common theme among all of them is that they all focus
on the client perspective as opposed to the host perspective.

Bharathi et al. [1] and Carnes et al. [4] study the problem from
the “follower’s perspective”. The follower is the player trying to
introduce a new product into an environment where a competing
product already exists. Both studies show that the problem for the
follower maintains the desired properties of monotonicity and sub-
modularity and thus the greedy algorithm can be applied to provide
approximation guarantees.

Kostka et al. [15] study competitive influence diffusions under a
game-theoretic framework and show that finding the optimal strat-
egy of both the first and second player is NP-Complete. Budak et
al. [3] and Chen et al. [11] study the problem of influence blocking
maximization, where one entity tries to block the influence propa-
gation of its competitor as much as possible, under extended IC and
LT models, respectively. Pathak et al. [18] propose an extension of
the voter model to study multiple cascades. Borodin et al. [2] pro-
pose extensions to the LT model to deal with competing products.
Their work is also from the perspective of one of the competing
players. As this work is the most related to our proposal, we present
it in greater detail in the next section.

3. MODELS AND PROBLEM DEFINITION
In this section we present the propagation model underlying our

work and provide the problem statement. We first introduce our
extended LT model (dubbed K-LT) that captures competition, and
then provide conceptual justifications of the model. Then we high-
light the difference between K-LT and the Weighted-Proportional
Competitive (WPCLT) model by Borodin et al. [2].

3.1 The K-LT propagation model
Let K be the number of competing companies (or colors)3. Let

Ci and Si with i ∈ {1, 2, . . . ,K}, denote the i-th company and
its seed set, respectively. Each node v ∈ V picks an activation
threshold θv uniformly at random from [0, 1]. Initially, all nodes
are inactive. At time 0, for each color Ci, a seed set Si is targeted
3We use the two terms interchangeably.
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(with disjoint seed sets for different colors). This means that if
u ∈ Si, then u becomes active with color Ci at time 0.

At any time t ≥ 1, the activation of a node takes place in
two phases. First, an inactive node v becomes influenced when
the total incoming influence weight from its in-neighbors (denoted
N in(v)) which are active (regardless of colors) reaches v’s thresh-
old:

∑
active u∈Nin(v) pu,v ≥ θv. Then, in a second phase (still at

time t), v becomes active by picking a color out of those of its
in-neighbors that activated at t− 1.

Let Ai
t−1 denote the set of nodes that are active with color

Ci at the end of time t − 1 and At−1 denote the set of
nodes that are active at the end of time t − 1, w.r.t. any color.
Hence, v becomes active at time t with color Ci with probabil-
ity

∑
u∈Ai

t−1
\Ai

t−2
pu,v /

∑
u∈At−1\At−2

pu,v. Once a node be-
comes active, it remains active and will not switch colors. The
diffusion process continues until no more nodes can be activated.

The K-LT model reflects several phenomena of competitive in-
fluence propagation that match our daily experience as well as stud-
ies in the literature. While the first phase models the threshold be-
havior in influence propagation, as in the original LT model, the
second phase incorporates the recency effect in the final decision
among competing products. Indeed, it has been recognized in var-
ious studies that influence decays very quickly in time, and thus
customers are more likely to rely on recent information than on old
information, when choosing which product to adopt [12, 19, 20].

Comparisons with the WPCLT model. In the WPCLT model [2],
the first phase in which a node is influenced remains exactly the
same as in K-LT. The difference lies in the second phase, i.e., the
way in which newly influenced nodes decides the color to adopt.
In WPCLT, a node v picks a certain Ci with probability equal to
the ratio between the total weight from the Ci-active in-neighbors
and that from all active in-neighbors. That is, all past exposure are
accounted for adoption. Thus, v becomes active with color Ci with
probability

∑
u∈Ai

t−1
pu,v /

∑
u∈At−1

pu,v.

To fully understand the difference between the WPCLT model
and our K-LT, we first need to define the expected spread of in-
fluence. Let S = {S1, ..., SK} be the set of seeds sets for the
various colors, i.e., S corresponds to a seed set allocation. We use
S−i to denote the set of seed sets for all colors but color Ci, i.e.,
S−i =def {S1, . . . , Si−1, Si+1, . . . , SK}.

DEFINITION 1 (EXPECTED SPREAD). For a color Ci, we
use σi(Si,S−i) to denote the expected number of active nodes, or
the expected spread, w.r.t. Ci, given seed set allocation S. We define
the overall expected spread, denoted σall =def

∑K
i=1 σi(Si,S−i),

to be the expected number of active nodes w.r.t. any color.

As we will show in Theorem 1 (§4.1), σi(Si,S−i) is monotone
and submodular in Si under the K-LT model, while this property
does not hold in WPCLT, which is somewhat counter-intuitive as
noted by the authors that proposed it (cf. [2]). Indeed, σi(Si,S−i)
being non-monotone means that adding a new seed x to Si may
cause the spread for Ci to go down. This is not desired as a com-
pany expects the influence spread to go up when it increases its bud-
get. These counter-intuitive phenomena stem from the possibility
that a certain graph structure will allow the seeding of some nodes
to trigger multiple “activation attempts” for seeds of a different
company, which we show by an example below. For more detailed
examples illustrating non-monotonicity and non-submodularity of
the WPCLT model, we refer the reader to [2].

EXAMPLE 1 (ACTIVATION IN WPCLT). Consider Figure 1.
Suppose that there are two colors with seed sets S1 = {u} and

S2 = {w}. Also suppose that θv and θx fall into the inter-
val (0.5, 1). At time step 1, v becomes active w.r.t. color 2 (as
pw,v = 1 > θv), while x remains inactive (as pu,x = 0.5 < θx).
Subsequently, at time step 2, x first gets influenced as the total in-
coming influence weight is now 1. Then, x will activate w.r.t. color
1 with probability 0.5 and color 2 with probability 0.5.

v w
0.5 0.5 1.0

Figure 1: Graph for Example 1.
In this example, although u (in color 1) fails to activate x at time

step 1, x may still adopt color 1 under WPCLT. The reason is that
x gets additional influence from v which has color 2! Thus, seed-
ing w for color 2 ends up “helping” the competitor color 1: u gets
a second chance at activating x after failing at first. However, this
phenomenon will not occur in K-LT: at time step 2, after getting in-
fluenced, x will activate w.r.t. color 2 exclusively, with probability
0.5/0.5 = 1.

3.2 Problem definition
We are ready to provide the formal problem statement of fair

competitive viral marketing from the host perspective. We will fo-
cus on the K-LT model hereinafter, unless otherwise specified. As-
sume that there are K companies, as clients of the hostH, compet-
ing with similar products (one product each). Before the campaign
is run, each company Ci would approach the host, specifying a pos-
itive integer bi as its budget (maximum number of seeds wanted),
and it is assumed that b1 + b2 + . . . + bK < |V |. As its business
model, H charges every company a fixed amount of money per
requested seed, as well as surcharges proportional to the expected
spread achieved. Before defining the problem, we first introduce
the important notion of amplification factor.

DEFINITION 2 (AMPLIFICATION FACTOR). The amplifica-
tion factor of Ci, denoted αi, is the average influence spread that
Ci gets per seed, i.e.,

αi =
σi(Si,S−i)

bi
. (1)

Intuitively, after receiving budgets from all companies, H will
allocate each company Ci a seed set Si, |Si| = bi, such that (1)
the overall influence spread, σall (Definition 1) is maximized, and
(2) the expected influence spread across all companies is as “bal-
anced” as possible, i.e., the amplification factor of each company
is as close as possible. Formally, we define the problem of com-
petitive influence maximization from the host’s perspective, which
consists of two subproblems, as follows.

PROBLEM 1 (OVERALL INFLUENCE MAXIMIZATION).
Given a directed graph G = (V,E) with pair-wise edge weights,
numbers b1, b2, . . . , bK ∈ Z+ with

∑K
i=1 bi ≤ |V |, select a seed

set S ⊆ V of size
∑K

i=1 bi, such that σall is maximized.

A first observation is that, under both K-LT and WPCLT models,
the first phase of activation follows the activation condition of the
classic LT model. Therefore, we have the following proposition.

PROPOSITION 1. Given a directed graph G = (V,E) with
edge weights, and K pair-wise disjoint subsets S1, S2, . . . , SK of
V , then under both the K-LT model and the WPCLT model, letting
S = S1 ∪ . . . ∪ SK , we have

σall = σLT (S). (2)

where σLT is the spread function for the classical LT model.
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This implies that once a seed set S is given, no matter how it
gets partitioned into K disjoint subsets, σall remains the same, i.e,
is invariant under any K-partition of S. Another consequence of
Proposition 1 is that under both K-LT and WPCLT models, Prob-
lem 1 is equivalent to the original influence maximization under the
LT model, and hence is NP-hard. By the same token, since σLT is
monotone and submodular, selecting the set of seeds S can be done
using the classic greedy algorithm outlined in the introduction as
for the original LT model, giving a (1− 1/e − ε)-approximate so-
lution to the optimum selection of seeds. In the rest of the paper,
we assume that the seeds are selected in this way, and focus on their
allocation to the companies.

The goal of our second problem is to allocate seeds among the
K clients such that the amplification factor of all companies is as
close as possible, so as to maximize fairness. We have various op-
tions to formalize this notion of “to be as close as possible”. In the
following problem statement and hereinafter we adopt as objective
function to minimize the maximum amplification factor αmax. In-
tuitively, when the maximum amplification factor is minimized, it
balances out all the amplification factors. We believe this min-max
objective is a natural choice, as it is widely recognized and adopted
in the literature of resource allocation and load balancing [14]. A
discussion on several other alternatives is provided in §3.3.

PROBLEM 2 (FAIR SEED ALLOCATION (FSA)). Given a
directed graph G = (V,E) with pair-wise edge weights, numbers
b1, b2, . . . , bK ∈ Z+, a set S ⊆ V with |S| = ∑K

i=1 bi, find a
partition of S into K disjoint subsets S1, S2, . . . , SK ⊆ S, such
that |Si| = bi, i ∈ [1, K], and the maximum amplification factor
of any color is minimized.

Note that although the two problems are formulated separately,
the host H needs to solve both in a sequential order to achieve its
goals. In other words, the output of Problem 1, i.e., the union seed
set S, is given as input for Problem 2.

3.3 Discussion: choice of objective function
Our goal while partitioning the seed set S is to make the am-

plification factors as close as possible, so as to maximize the fair-
ness. To achieve this goal, in Problem 2, we defined the objective
function as minimizing the maximum amplification factor αmax.
One can offer similar alternative objective functions, while trying
to achieve the same goal. For instance, one can ask for maximizing
the minimimun amplification factor αmin . Similarly, another ob-
jective could be to minimize the difference αmax − αmin, or the
ratio αmax/αmin . More sophisticated objective functions can be
based on L1 or L2 norms. In general, the objective function based
on Lp norm could be[

K∑
i=1

∣∣∣∣σi(Si,S−i)− σall · bi
B

∣∣∣∣
p
]1/p

, (3)

which we may want to minimize. A comprehensive theoretical
analysis of these various objective functions would be an interest-
ing exercise, but it is not the focus of this paper. In the experiments
section, we show that our algorithm performs well w.r.t. essentially
all of these objectives.

4. MODEL PROPERTIES AND SEED AL-
LOCATION ALGORITHMS

Before we develop the algorithms for Problem 2, we take a
deeper look in the properties of our K-LT model, which will allow
us to characterize the complexity of FSA under K-LT and develop
efficient and effective seed allocation algorithms.

4.1 Properties of K-LT model
We first show that the expected spread function for individual

colors is monotone and submodular (Theorem 1) in the K-LT
model. To prove this result, we employ a plot similar to the one in
Kempe et al. [13], by establishing the equivalence between the K-
LT model and a competitive version of the “live-edge” model (Def-
inition 3). This, importantly, will in turn help us derive a closed-
form expression for the spread function (Theorem 2), which will
play a pivotal role in the design of our algorithms and characteriz-
ing the complexity of FSA: it is NP-hard in general (Theorem 3),
but can be solved in polynomial time for K = 2.

We start by introducing the competitive live-edge model, by ex-
tending the live-edge model defined in [13].

DEFINITION 3 (COMPETITIVE LIVE-EDGE MODEL).
Given a directed graph G = (V,E) with edges labeled by
influence weights, we can obtain a possible world X as follows.
Each node v picks at most one of its incoming edges at random,
selecting edge (u, v) with probability pu,v and selecting no edge
with probability 1 − ∑

w∈Nin(v) pw,v . The selected edges are
declared “live”, while others “blocked”. By definition, incoming
edges to nodes in the seed set S are blocked. We call a directed
path a live-edge path if it consists entirely of live edges.

In a possible world X, we say a node is Ci-reachable, if there
exists a live-edge path from a node in Si to v. Note that a node
v has at most one incoming live edge, thus there is at most one
live-edge path from S to v. Thus, the notion of color rechability is
well-defined.

It is easy to see that the spread function under the competitive
live-edge model is monotone and submodular. Clearly, each pos-
sible world X is a deterministic graph. Let RX({u}) be the set
of reachable nodes from a particular node u on live-edge paths,
in X. Then the set of nodes reachable from Si is RX(Si) =
∪u∈SiRX({u}). The function |RX(Si)| is clearly monotone and
submodular. Finally, the expected number of Ci-reachable nodes
according to the live-edge model,

∑
X Pr[X] · |RX(Si)|, is a non-

negative linear combination of monotone submodular functions,
and thus is monotone and submodular (in Si). Here, Pr[X] is the
probability of the possible world X, which is determined by the
choice of live/blocked edges. We now state the submodularity re-
sult for K-LT:

THEOREM 1. Under K-LT model, for any color Ci, the ex-
pected spread of influence σi(Si,S−i) is monotone and submodu-
lar in Si, with S−i fixed.

PROOF. We prove this result by establishing the equivalence be-
tween the K-LT model and the competitive live-edge model (Defi-
nition 3). We show : Given K colors and their corresponding seed
sets S1, S2, . . . , SK (all disjoint), for any color Ci, the following
two distributions over sets of nodes are equivalent : (1) The distri-
bution over Ci-active sets obtained by running the K-LT process
to completion from S1, S2, . . . , SK , and (2) The distribution over
sets of Ci-reachable nodes according to the live-edge model. The
theorem follows from this claim. We next prove the claim. If a
node v has not become active after time step t, then the probability
that it becomes Ci-active at t+ 1 is∑

u∈At\At−1
pu,v

1−∑
u∈At−1

pu,v
·
∑

u∈Ai
t\Ai

t−1
pu,v∑

u∈At\At−1
pu,v

=

∑
u∈Ai

t\Ai
t−1

pu,v

1−∑
u∈At−1

pu,v
,

where the former quantity is the probability that v becomes active
at t + 1, and the latter is the probability that v adopts color Ci,
given that v gets activated.
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For the competitive live-edge model, we start the “reach-out”
process with seed sets S1, S2, . . . , SK . In the first stage, if a node
v’s selected live-edge is incident on Si, then v is Ci-reachable
from a seed in Si. We denote the set of such nodes by A′i

1. In
general, let A′i

t denote the set of nodes which are found to be
Ci-reachable from a node in Si in stage t. In this way, we can
obtain sets A′i

2, A
′i
3, . . . . Similarly, we can also obtain sets A′

t,
t = 1, 2, 3, . . . , which represent the set of nodes reachable from
S1∪S2∪. . .∪SK in stage t. Now, if a node v has not yet been deter-
mined Ci-reachable by the end of stage t, then the probability that
v will be determined Ci-reachable at stage t+ 1 is the chance that

its chosen edge is from A′
t \ A′

t−1, which is
∑

u∈A′
t\A′

t−1
pu,v

1−∑
u∈A′

t−1
pu,v

.

Given that, the probability that v proceeds to become Ci-reachable

is

∑

u∈A′i
t\A′i

t−1
pu,v

∑
u∈A′

t\A′
t−1

pu,v
. By the product rule, the probability that v

will be determined to be Ci-reachable at stage t + 1, given that it

is not already so determined, is

∑

u∈A′i
t\A′i

t−1
pu,v

1−∑
u∈A′

t−1
pu,v

.

Applying induction on time steps (stages), it is easy to see that
the distributions over Ai

t and A′i
t are identical, and the same holds

for At and A′
t, ∀t. This was to be shown.

Closed-form expression for σi(Si,S−i). We first introduce the
needed notation. By virtue of the equivalence shown in Theorem 1,
σi(Si,S−i) is equal to the expected number of Ci-reachable nodes
under the competitive live-edge model. Let X be a possible world.
For simplicity, we write V − S for V \ S and V − S + u for
(V \S)∪{u} hereinafter. With node-sets as superscripts, we denote
the corresponding induced subgraph: e.g., σW

LT (S), where W ⊆
V , denotes the expected spread of the seed set S in the subgraph
of G induced by the nodes W . When there is no superscript, the
entire graph G is meant by default.

We now derive the closed-form expression by establishing con-
nections to the classical LT model. Let IV −S−i

X (Si, v) be the indi-
cator function which takes 1 if there exists a node s in Si and a path
from s to v, in a possible world X for the subgraph of G induced
on V − S−i (otherwise the function takes 0). Thus, by definition,

σi(Si,S−i) =
∑

X
Pr[X] · σi,X(Si,S−i),

where σX
i,X(Si,S−i) is the number of Ci-reachable nodes in pos-

sible world X. Then, because any live-edge path from any node
u ∈ Si to v must not go through any node w ∈ S−i, as all incom-
ing edges to nodes in S−i are blocked by definition of the live-edge
model (in other words, it has the effect of removing nodes in S−i

from G and hence from the possible world X), we have

σi(Si,S−i) =
∑

X
Pr[X] ·

∑
v∈V

I
V −S−i

X (Si, v).

Let W = V − S−i, the set of nodes after removing nodes in
S−i. Then, by switching the summations, we have

σi(Si,S−i) =
∑

v∈V

∑
X
Pr[X] · IWX (Si, v)

=
∑

v∈V
ΥW

Si,v , (4)

where ΥSi,v is the probability that there exists a path from Si to
v in the subgraph induced by V − S−i. Since Si is the seed set
for company Ci, it also denotes the probability that v becomes Ci-
active on the corresponding subgraph. Note that the indicator func-
tion depends only the seed set Si and the subgraph W , and not on
the seeds for other colors. Therefore, ΥW

Si,v
is equal to the prob-

u1 u2

u3

0.4
0.3 0.2

0.1 0.5

Figure 2: Example of Adjusted Marginal Gain

ability that v is activated in the subgraph induced by V − S + u,
under classical LT model, with seed set Si.

Adjusted marginal gain. Next, we introduce the notion of ad-
justed marginal gain, which is key to solving Problem 2.

DEFINITION 4 (ADJUSTED MARGINAL GAIN). Given a set
S of seeds, for any u ∈ S, the adjusted marginal gain of u, de-
noted δu, is the expected spread of influence of {u} on the graph
induced by V − S + u under the classical LT model. That is,
δu = σV −S+u

LT ({u}).

Consider the example in Fig. 2. Suppose S = {u1, u2} is the
seed set. Then, one can verify that δu1 is the expected spread of u1

on graph consisting of u1 and u3 only, which is 1 + 0.3 = 1.3.
Next, we show the following useful result for the K-LT model,

which says that given a set of seeds S selected by the host, the ex-
pected spread for company Ci only depends on the seeds Si allo-
cated it, and not on how the remaining seeds S−Si are distributed
among the other companies.

THEOREM 2. Consider an allocation of seed sets, where the
seed set Si ⊆ S is assigned to company Ci and the remaining
seeds S−Si are allocated arbitrarily to other companies (denoted
by S−i). Then under the K-LT model,

σi(Si,S−i) =
∑

u∈Si

δu (5)

PROOF (THEOREM 2). Consider the right hand side of the
equation. Since S is the set of all seeds, that is, S = Si + S−i. we
have by Definition 4,∑

u∈Si

δu =
∑

u∈Si

σ
V −S−i−Si+u

LT ({u})

=
∑

u∈Si

∑
v∈V

Υ
V −S−i−Si+u
u,v ,

where Υ
V −S−i−Si+u
u,v is the probability with which v is activated

given seed set {u}, on the subgraph induced by the nodes V −
S−i − S + u, under LT model. We next make use of the proof
of Theorem 1 of [10]. There, it is shown that, under LT model,
ΥSi,v =

∑
u∈Si

ΥW−Si+u
u,v , for any set Si ⊆ W ⊆ V , where

ΥSi,v is the probability that v becomes active, given seed set Si, on
the subgraph induced by the nodes W−Si+u. Let W = V −S−i,
then by switching the summations and applying this result, we get∑

u∈Si

δu =
∑

v∈V
ΥW

Si,v .

From the equivalence with the live-edge model, and Eq. 4, the
theorem follows.

Consider again the example shown in Fig. 2. Suppose there
are two companies with S1 = {u1} and S2 = {u2}. Then,
σ1(S1,S−1) = δu1 = 1.3. Similarly, σ2(S1,S−2) = δu2 = 1.5.
Also, note that σall = σLT ({u1, u2}) = 2.8.

4.2 NP-Hardness of Fair Seed Allocation
Having established the notion of adjusted marginal gain, we are

ready to prove the complexity of Problem 2 (Fair Seed Allocation).
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THEOREM 3. The Fair Seed Allocation problem under the K-
LT model is NP-hard.

PROOF. We prove the theorem by reduction from 3-
PARTITION [7]. In 3-PARTITION, we are given a set A of
3 · m elements, and a size s(a) ∈ Z+ for each element. Let
Y be the sum of sizes of all elements, i.e., Y =

∑
a s(a),

then the question is whether there exists a partition of A into m
disjoint subsets A1, ..., Am, each with exactly 3 elements, such
that the sum of sizes of elements in each subset is the same, i.e.,∑

a∈Ai
s(a) = Y/m. This problem is known to be strongly

NP-hard [7]. Recall that a problem is strongly NP-hard if it
remains NP-hard even when the numerical parameters of the
problem are bounded by a polynomial of the input size. In the
context of 3-PARTITION problem, it implies that the problem
remains NP-hard even when Y is bounded by a polynomial in m.

Let I be an instance of 3-PARTITION. We reduce it to an in-
stance J of FSA as follows. Create m companies, and for each
element a ∈ A with size s(a), create a seed ua in instance J , with
its adjusted marginal gain set to δua := s(a). Set the seed budget
of each company to 3. Suppose there exists a polynomial time algo-
rithmA that provides an optimal solution to FSA. Then by running
this algorithm on instance J and checking whether the maximum
amplification factor is exactly Y/3m or not, we can separate the
YES-instances from the NO-instances of 3-PARTITION, which is
not possible unless P = NP.

Above, we performed the reduction entirely in terms of adjusted
marginal gains, instead of creating a graph, which is a required
input to FSA. It is easy to create an input graph whose seed nodes
ua satisfy the adjusted marginal gains above. E.g., create 3 · m
disjoint trees, each rooted at a node ua. The root ua has exactly
s(a) − 1 children, with influence weights on all edges set to 1.
Since the trees are disjoint, δua = s(a). Notice this reduction is
polynomial time in m since Y is a polynomial in m.

When K = 2, the FSA problem resembles the PARTITION
problem, which is weakly NP-hard and admits an exact dynamic
programming algorithm in pseudo-polynomial time. We can adapt
it to solve FSA. In our case, the dynamic programming algorithm
(See §4.3) is truly polynomial in the size of the input, since the
number of nodes is a natural bound on all adjusted marginal gains.

4.3 The Needy Greedy algorithm
Suppose there are K companies approaching a host for running a

competitive viral campaign and each company Ci specified a seed
budget bi. Let B =

∑K
i=1 bi. The host owns a social graph G.

How can the host effectively find seeds and allocate them to the
K companies? As pointed out by Proposition 1, the host can se-
lect B seeds using the classic greedy algorithm. Let S be this set.
The real challenge is in finding a good partition of S into disjoint
subsets S1, ..., SK such that the allocation of Si to company Ci

minimizes the maximum amplification factor. Given the hardness
result above, a natural question is whether we can devise efficient
heuristic algorithms that work well in practice. In this section, we
develop an algorithm called Needy Greedy (NG for short), which
works for any K. Later, in §4.4, we will give an algorithm based
on dynamic programming, for K = 2.

The Needy Greedy algorithm takes advantage of Theorem 2,
which says that given the set S of seeds, the expected spread of
Ci is solely determined by the seeds Si ⊆ S that are allocated
to company Ci, and it can be calculated by summing the adjusted
marginal gains of the seeds in Si in appropriate subgraphs. Thus,
we first find all seeds S using the classic greedy algorithm. Then
we determine the adjusted marginal gains δu of the seeds (Defini-
tion 4) and keep seeds sorted in non-increasing order of the gains.

Algorithm 1: NEEDY-GREEDY (NG)
Input : S (with δu,∀u ∈ S) and bi, ∀i ∈ {1, . . . ,K}.
Output: A K-partition of S, with |Si| = bi, ∀i.

1 Initialize Si = ∅, ∀i;
2 for each u ∈ S do
3 T ← {i | i ∈ {1, 2, . . . ,K}, |Si| < bi};
4 j ← argmini∈T {σi(Si,S−i)/bi};
5 Sj ← Sj ∪ {u};

Needy Greedy (Algorithm 1) takes as input the seeds with ad-
justed marginal gain sorted In addition, it is given the budgets of
various companies. It starts by initializing all seed sets Si to be
empty (line 1). Then, we process each seed u ∈ S (line 2). Let T
be the set of of companies for which the budget has not yet been
exhausted, i.e., |Si| < bi (line 3). Note that we can allocate a new
seed only to such companies. In line 4, we find the company j
which has the least amplification factor. Finally, we add the seed u
to Sj (line 5). In Sec. 5, we will show how NG can be adapted to
deal with other objective functions (Lp-norms) for FSA.

Time complexity. The time complexity of NG is O(B logK),
as there are |S| = B iterations, in each of which the algorithm
examines each company to determine i∗. Using a min-heap, we
can perform the search and update in O(logK) time.

4.4 The case of two companies: a dynamic
programming algorithm

In the special case of K = 2 (only two competing companies),
the FSA problem can be solved exactly by a dynamic programming
(DP) algorithm in polynomial time4. Also note that when K = 2, it
can also be shown that the minimizing the objective function based
on the Lp-norm, ∀p ≥ 1 (Eq. 3), is all equivalent to minimizing the
maximum amplification factor.

FSA with K = 2 resembles the partition problem, in which
we are given a collection of positive integers, and the question is
whether there exists a partition of two subcollections such that the
sum of elements in the two subcollections is the same. While there
is some similarity among the two problems, FSA comes with car-
dinality constraints, in the form of seed set budgets. In addition,
while the partition problem involves integers, FSA involves ad-
justed marginal gains of seeds which are real numbers, and thus
we should pay attention to precision.

The dynamic programming algorithm is set up as follows. First,
let the seed set be S = {u1, u2, . . . , uB} (recall B =

∑
i bi)

and let Sj denote the “partial” seed set {u1, ..., uj} for j ∈
{1, 2, . . . , B}. Then, we define

P (j, μ, �) =

{
1, if ∃Q ⊆ Sj : |Q| = � and σ1(Q,Sj −Q) = μ
0, otherwise

Here j keeps track of the horizon, i.e., which seeds from S have
been explored; � is the size of a seed set Q, such that with Q allo-
cated to C1 and Sj −Q allocated to C2, σ1(Q,Sj −Q), is exactly
μ. The size of Q is bounded by b1, the budget of C1.

Since μ represents the spread, it virtually can take any real value
in [1, σall]. To keep the DP table size finite, we can round the
spread μ at any level of precision desired. E.g., if we want preci-
sion up to two decimal places, all we need to do is amplify all real
numbers involved in the calculation, namely the adjusted marginal
gains δu and the spread μ by 100 and round all results to the nearest

4For any fixed precision of the real numbers involved.
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integer. In the rest of this section, we assume some fixed precision
and that the appropriate amplification and rounding are done.

Dynamic programming formulation. Notice that there is a subset
of Sj of size �, which when allocated to C1, yields the spread μ,
if and only if one of the following is true: (1) There is a subset of
Q ⊆ Sj−1 of size �, which when allocated to C1, yields spread
μ; or (2) There is a subset of Sj−1 of size � − 1, which does not
give spread μ for C1 itself, but will if we add uj to C1’s allocation.
More formally, P (j, μ, �) = 1 if P (j − 1, μ, �) = 1, or P (j −
1, μ − δuj , � − 1) = 1. This gives rise to the following dynamic
programming equation:

P (j, μ, �) = max{P (j − 1, μ, �), P (j − 1, μ− δuj , �− 1)}
with the base case P (1, 0, 0) = 1.

Notice that, in the ideal partition, the spread of C1 would be
exactly Z = b1

B
· σall. This is the best possible allocation w.r.t.

minimizing maximum amplification factor. Thus, after the entire
DP table is populated, to obtain the partition, we can set our target
be the number t obtained by amplifying and rounding the number Z
as outlined earlier. Modulo our precision, if P (B, t, b1) = 1, then
we have found this ideal partition; if not, find the number t′ such
that P (B, t′, b1) = 1 and |t− t′| is minimized. This represents the
optimal solution at the chosen level of precision.

Time complexity. From the ranges for j, μ, and �, the size of the
DP table is O(b1(b1 + b2)|V |) which determines its running time.
Note that typically, b1 and b2 are much smaller than |V |. In our
implementation, we apply a couple of optimizations. First, there is
no need to populate cells with � > j, Second, if μ < δuj , there is
no need to examine the second argument in the RHS of the dynamic
programming equation.

5. EMPIRICAL EVALUATIONS

5.1 Experiments settings
To evaluate the effectiveness of our proposed algorithms (NG

and DP) developed for FSA and compare them with several base-
lines, we conduct simulations on three real-world networks – Epin-
ions, Flixster, and NetHEPT. Table 1 presents the statistics of the
datasets. We use the classic greedy algorithm to select the union
seed set S, and following Kempe et al. [13], 10, 000 iterations of
Monte Carlo (MC) simulations are run to estimate influence spread.
This is an expensive step and limits the size of the graph we can
work on. The scale can be extended by using scalable heuristic al-
gorithms for the LT model [6, 10], but this is not the focus of our
experiments, which is on testing seed allocation algorithms. Imple-
mentations are in C++ and all experiments were run on a Windows
7 machine with 2.66GHz Intel i5 CPU and 6GB RAM.

Preparation of datasets. We use models in [8] to compute edge
weights. For Epinions, we apply both the Bernoulli and Jaccard
models and then normalize the weights. In Bernoulli, the influence
weight on edge (u, v) is calculated as pu,v = Au2v/Au where
Au2v is the number of actions that v performed after u, and Au

is the total number of actions u performed. In Jaccard, pu,v =
Au2v/Au|v where Au|v is the number of actions either u or v has
performed. After computing these weights, we normalize them to
ensure that the sum of incoming weights to any node is 1.

NetHEPT is a collaboration network from the High Energy
Physics Theory section on arXiv.org with nodes representing
authors and edges representing co-author relationships. We calcu-
late the weights as pu,v = Au,v/Nv where Au,v is the number of
papers u and v co-authored. Flixster is a friendship network from

Table 1: Statistics of network datasets.
Epinions Flixster NetHEPT

Number of nodes 76K 7.6K 15K
Number of edges 509K 50K 62K
Average out-degree 13.4 6.5 4.12
Maximum out-degree 3079 197 64
#Connected components 11 761 1781
Largest component size 76K 2861 6794

Table 2: Test cases with varying budget distribution. (N,F):
NetHEPT & Flixster. (E): Epinions.

K Equal budgets case Unequal budgets case

2
b1 = b2 = 30 (N,F) b1 = 20, b2 = 40 (N,F)
b1 = b2 = 15 (E) b1 = 10, b2 = 20 (E)

3
b1 = b2 = b3 = 20 (N,F) b1 = 10, b2 = 20, b3 = 30 (N,F)
b1 = b2 = b3 = 10 (E) b1 = 5, b2 = 10, b3 = 15 (E)

6
b1 = . . . = b6 = 10 (N,F) b1 = b2 = b3 = 5 (N,F)

b4 = b5 = b6 = 10

b1 = . . . = b6 = 5 (E) b1 = b2 = b3 = 4 (N,F)
b4 = b5 = b6 = 6 (E)

social movie site Flixster.com, for which Au,v is the num-
ber of movies rated by both u and v. In both datasets, Nv is the
normalizing factor to ensure the sum of weights incoming to v is 1.
Baselines. We compare our algorithms with two simple baselines:
Random and Alternating. In Random, seeds are assigned uni-
formly at random to different companies (with budget constraints
obeyed). The Alternating heuristic first fixes a random permuta-
tion of the K companies, and then allocates seeds to the companies
in a round-robin fashion according to that order.
Competition settings. We vary K, the number of competing enti-
ties, to be 2, 3 and 6. For NetHEPT and Flixster, we take 60 seeds,
while for the much larger Epinions dataset, we take 30 seeds so that
MC simulations can finish within a reasonable amount of time (48
hours). The budget distributions we choose to test are summarized
in Table 2. For instance, for K = 3, we consider “equal budgets”
cases, where each company has a budget of 20 (on NetHEPT and
Flixster) or 10 (on Epinions). Likewise, we also consider “unequal
budgets” cases where the three companies have budgets of 10, 20
and 30 (on NetHEPT and Flixster) or 5, 10 and 15 (on Epinions).
We believe these various cases are representative.

After the seeds are chosen, we compute the adjusted marginal
gain of all seeds (Definition 4), whose statistics are presented in
Table 3. As can be seen, the variance is much larger in both Epin-
ions graphs than in NetHEPT and Flixster. Especially, NetHEPT
has the most concentrated values. We run NG, Random, and Al-
ternating for all settings, and also DP for the cases of K = 2.

5.2 Experimental results and analysis
Evaluation metrics. To compare accuracy (i.e., quality of par-
tition), we obtain the maximum amplification factor (denoted by
αmax) output by the algorithm and calculate its relative error w.r.t.
the theoretical lower bound σall/B (in which case the allocation is
perfectly fair, with every company having the same amplification
factor). The relative error is defined as follows.

RelativeError(αmax) =
αmax − σall/B

σall/B
× 100%. (6)

By definition, it is nonnegative as αmax ≥ σall/B always holds:
σall/B is the average spread-to-budget ratio, while αmax is the
maximum ratio in a solution.
Comparing relative errors. The relative errors of the maximum
amplification factor achieved by NG, Random and Alternating
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Figure 3: Relative error of the maximum amplification factors in three algorithms: Needy Greedy, Random and Alternating. On
the X-axis, 2(eq) refers to the setting of K = 2, budgets equal, while (neq) refers to unequal budgets.

Table 3: Statistics of adjusted marginal gains.
Mean Median Max Min Std. Dev.

Epinions (Bernoulli) 328.4 265.4 829.1 122.1 158.9
Epinions (Jaccard) 437.6 375.0 1304 143.6 252.5
NetHEPT 26.30 25.87 51.68 16.01 6.38
Flixster 74.77 65.05 216.4 30.65 31.91

solutions are illustrated in Fig. 3. As can be seen, NG consistently
outperform the two baselines, achieving significantly smaller errors
in all cases. In fact, the errors of NG never exceed 5.1% in all cases.
By contrast, the errors by Random and Alternating can be as bad
as 59.8% and 48.8%, respectively.

In most of the cases when K = 2 or 3, the error by NG is un-
der 2.0%. The largest NG error is 5.02%, observed on Epinions
(Jaccard) with 6(eq), while the smallest is 0.01%, achieved on
NetHEPT with 2(eq), in which case Random (5.5%) and Al-
ternating (1.4%) both have errors two orders of magnitude larger.
As another example, on Epinions (Bernoulli) with 6(neq), NG,
Random, and Alternating have an error of 1.83%, 35.7%, and
43.9%, respectively. These results straightaway establish the effec-
tiveness of our Needy Greedy algorithm.

A deeper look into NG solutions. We graphically summarize the
amplification factors using the box-and-whisker diagram in Fig. 4.
In the plot, a box (shown in color blue) represents a subset of the
data points from the lower quartile to the the upper quartile. The
red line inside the box is the median. Two black bars outside the
box correspond to the minimum and maximum, and a red plus sign
means the extremum could be considered as an “outlier”. Intu-
itively, the more “compressed” the box is, the more balanced the
partition is. The green line is the theoretical lower bound, σall/B.

As can be seen from Fig. 4, in all cases, the difference between
maximum amplification factor αmax and the minimum amplifica-
tion factor αmin is small. For instance, for Epinions (Bernoulli)
with 6(eq), αmax − αmin = 24.8 (or 7.8% of αmin, which
is 318.4). Similarly, on NetHEPT and Flixster, with 6(neq),
αmax − αmin is 0.72 (2.7% of αmin) and 3.56 (4.9% of αmin),
respectively. We also observe that the error tends to enlarge when
K increases. Besides, the difference is relatively higher for Epin-
ions, and we believe this is because the size of the whole seed set
is small (which is 30, compared to 60 on other datasets).

Dynamic programming. We next consider the special case when
only two companies compete (K = 2). The DP algorithm, being
theoretically optimal, must produce the best partitions, and as ex-
pected, its accuracy is better than NG: the relative errors are very
close to zero on all datasets, as shown in Table 4. For instance,
on NetHEPT with 2(eq), DP (with precision up to two decimal
places) achieves an error of 0.0004%, while NG achieves 0.013%.

Table 4: Relative error of the maximum amplification factor for
Dynamic Programming (with precision up to 2 decimal places)

Epinions Bernoulli Epinions Jaccard NetHEPT Flixster
b1 = b2 0.0013% 0.0040% 0.0004% 0.0049%
b1
b2

= 1
2 0.0016% 0.0026% 0.0004% 0.0028%

For the same case, if the precision drops to one and zero decimal
place, the error increases to 0.007% and 0.23%, respectively. The
trend is similar for other cases, and hence we omit them here.

Running time. The running time of DP is reasonable: it finishes
within 1.2 seconds in all cases. NG is three orders of magnitude
faster, completing within 5 milliseconds in all cases, while produc-
ing allocations with quality comparably close to those of DP. Ran-
dom and Alternating have similar running time as NG’s. We also
note that all algorithms require adjusted marginal gains as input,
whose computational overhead, however, is much smaller com-
pared to the greedy algorithm for selecting seeds. For example,
on Epinions (Jaccard), computing adjusted marginal gains for all
seeds takes only 3 minutes, compared to 48 hours taken by the
greedy algorithm to select 30 seeds.

Extended results: NG with Lp-norms. As mentioned in §3.3,
the fair allocation objective can also be defined using the Lp-norms
(Eq. 3). Our algorithm NG is easily extensible to Lp-norms. The
adapted NG iterates through every seed, and in any iteration j + 1,
it assigns the seed to the company whose deviation |σi(Si,S−i)−
bi
B
·σall|p is the largest among those with budget not yet exhausted.

Here σi(Si,S−i) is the value by the end of iteration j. Since the
power function is monotone,5 the allocation choice made by NG is
essentially the same for all p, and thus it suffices to test only L1.

In Fig. 5, we compare the objectives of using L1-norms and of
using αmax

6. When the budgets are equal, NG with both objec-
tives has exactly the same performance, but when the budgets are
unequal, NG does better on minimizing the maximum amplifica-
tion factor than it does on minimizing the L1-norm. For instance,
on Epinions (Bernoulli) with 6(neq), the relative error (Eq. 6) is
1.8% and 4.4% for the αmax and L1-norm objectives, respectively.
It implies that our choice of objective function, which is minimiz-
ing the maximum amplification factor, is a better one.

In sum, we have demonstrated the effectiveness and efficiency of
our proposed algorithms (NG and DP) for the FSA problem. We
show that NG, while not optimal, produces partitions comparable
to those by DP, with very small errors, and it is significantly better
than the Random and Alternating baselines. We also show that
NG performs reasonably well for various other objective functions.

5Note that it’s the absolute value that is raised to power p.
6We only show results on two Epinions graphs with K = 3 and 6;
the results for other cases are similar, and hence omitted.
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Figure 4: Box-and-whisker diagrams on amplification factors by Needy Greedy.
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Figure 5: Box-and-whisker diagrams on amplification factors for comparing objective functions.

6. CONCLUSIONS
Influence maximization has received significant attention re-

cently. However, there is a gap between this problem and real-
world viral marketing, and we believe this paper takes a step to-
wards closing this gap by studying influence maximization under
a more realistic setting, in which: (i) there is competition, and (ii)
the network is owned by a host as in real life, and the competing
companies cannot just autonomously set up their campaigns, but
have to buy viral marketing as a service from the host.

We posed the novel problem of Fair Seed Allocation in which
the host must allocate influential users to competing companies to
guarantee “the bang for the buck” for the competitors is as balanced
as possible. We proved that the problem is in general NP-hard, and
developed two algorithms for it: Needy-Greedy and dynamic pro-
gramming (for the case of two companies). We performed simu-
lations on real world networks and showed that our algorithms are
both effective and efficient.

Investigation of competitive influence propagation and fair seed
allocation under other propagation models (e.g., in which the viral-
ity of different products may vary), other business models for the
host and for the companies, and game-theoretic aspects are three
examples of many fruitful directions for further research.
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