
Cost-Sensitive Online Active Learning
with Application to Malicious URL Detection

Peilin Zhao
School of Computer Engineering
Nanyang Technological University

50 Nanyang Avenue, Singapore 639798
peilinzhao@ntu.edu.sg

Steven C.H. Hoi
School of Computer Engineering
Nanyang Technological University

50 Nanyang Avenue, Singapore 639798
chhoi@ntu.edu.sg

ABSTRACT
Malicious Uniform Resource Locator (URL) detection is an
important problem in web search and mining, which plays
a critical role in internet security. In literature, many ex-
isting studies have attempted to formulate the problem as
a regular supervised binary classification task, which typ-
ically aims to optimize the prediction accuracy. However,
in a real-world malicious URL detection task, the ratio be-
tween the number of malicious URLs and legitimate URLs
is highly imbalanced, making it very inappropriate for sim-
ply optimizing the prediction accuracy. Besides, another key
limitation of the existing work is to assume a large amount
of training data is available, which is impractical as the hu-
man labeling cost could be potentially quite expensive. To
solve these issues, in this paper, we present a novel frame-
work of Cost-Sensitive Online Active Learning (CSOAL),
which only queries a small fraction of training data for la-
beling and directly optimizes two cost-sensitive measures to
address the class-imbalance issue. In particular, we propose
two CSOAL algorithms and analyze their theoretical per-
formance in terms of cost-sensitive bounds. We conduct an
extensive set of experiments to examine the empirical perfor-
mance of the proposed algorithms for a large-scale challeng-
ing malicious URL detection task, in which the encouraging
results showed that the proposed technique by querying an
extremely small-sized labeled data (about 0.5% out of 1-
million instances) can achieve better or highly comparable
classification performance in comparison to the state-of-the-
art cost-insensitive and cost-sensitive online classification al-
gorithms using a huge amount of labeled data.
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1. INTRODUCTION
The World Wide Web (WWW) allows people to access

massive information on the internet, but also brings mali-
cious information, such as fake drug, malware, and so on. A
user accesses all kinds of information (benign or malicious)
on the WWW by clicking on a URL (Uniform Resource Lo-
cator) that links to a particular website. It is thus very
important for internet users to evaluate the risk of click-
ing a URL in order to avoid accessing the malicious web
sites. This is however very challenging for individual in-
ternet users. To tackle this challenge, researchers have at-
tempted to investigate techniques to automatically classify
whether a URL is malicious or not over the past few years,
which is formally known as “malicious URL detection” [20,
25, 26, 27].

In literature, a variety of techniques have been proposed
to solve the malicious URL detection problem [20, 25, 26,
27]. One major category of techniques formulates the URL
detection as a classical supervised classification task and at-
tempts to train a binary classification model in an offline
learning fashion to distinguish between malicious and nor-
mal URLs [20, 25]. These techniques usually require to col-
lect a considerable amount of training data in order to build
a good classification model. In contrast, another category
of techniques formulates it as an online supervised learning
task [27], which is more suitable for large-scale problems.
However, all these algorithms try to maximize the classifi-
cation accuracy of the learnt model by assuming the ratio
between the malicious and benign ULRs is balanced explic-
itly or implicitly.

Although malicious URL detection has been well studied
for years, it remains a very challenging research problem
today, which is primarily due to several reasons. First of
all, it is often a highly class-imbalanced learning problem
as the number of malicious is significantly smaller than that
of normal ones, which brings a critical challenge to many
schemes using regular classification techniques. Second, it is
usually very expensive to collect labeled data, especially the
positive training data (“malicious”), which limits the appli-
cation of some classical supervised classification approaches.
Moreover, in a real-world application, data usually arrives
in a sequential/online fashion and the size of data patterns
can be very large, leading to a big challenge for developing
efficient and scalable algorithms for malicious detection.

To address the above challenges of malicious URL detec-
tion, in this paper, we present a novel framework of Cost-
Sensitive Online Active Learning (CSOAL) which can tackle
malicious detection in a fairly natural, effective, and scal-
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able approach. Unlike many existing batch learning ap-
proaches, the key idea of our framework is to formulate
malicious URL detection as an online active learning task
which aims to maximize the detection performance by ac-
tively querying a small amount of informative labeled data
via a cost-sensitive online learning setting. In particular, we
propose two CSOAL algorithms by optimizing two different
cost-sensitive measures (i.e., the weighted sum of sensitivity
and specificity and the weighted cost), and theoretically an-
alyze the performance bounds of the proposed algorithms.
We further validate the empirical performance of the pro-
posed algorithms through an extensive set of experiments
for a large-scale online malicious URL detection task.

The rest of the paper is organized as follows. Section 2
reviews related work. Section 3 presents the proposed frame-
work and algorithms, followed by their theoretical analysis
in Section 4. Section 5 discusses our experimental results
and Section 6 concludes our work.

2. RELATED WORK
Our work is closely related to two topics in web mining

and machine learning: malicious URL detection and online
learning. Although both have been well studied separately,
to the best of our knowledge, this is the first work to tackle
the malicious URL detection task using online active learn-
ing. Below briefly reviews important work in both areas.

2.1 Online Learning
Online learning represents a family of efficient and scal-

able machine learning algorithms [29, 11, 5, 9, 39, 33, 19].
Unlike conventional batch learning methods that assume all
training instances are available prior to the learning task,
online learning repeatedly updates the predictive models se-
quentially, which is more appropriate for web applications
where training data often arrive sequentially.

In literature, a variety of online learning methods have
been proposed in machine learning [30]. One very well-
known method is the Perceptron algorithm [29, 13], which
updates the model by adding a new example with some con-
stant weight into the current set of support vectors when
the example is misclassified. Recently a lot of new online
learning algorithms have been developed based on the cri-
terion of maximum margin [11, 15, 21, 9, 23]. One notable
technique is the Passive-Aggressive (PA) method [9], which
updates the classification function when a new example is
misclassified or its classification score does not exceed some
predefined margin. In this work, we apply the PA algorithm
to solve the online learning task. Different from the regular
PA learning setting which assumes class label of every on-
line incoming instance will be revealed, our approach queries
the class labels of only a limited amount of online incoming
instances through active learning.

In addition to regular online learning techniques, our work
is also closely related to another online learning topic in
machine learning, that is, selective sampling [14, 4] or label-
efficient learning [16, 7], which also queries class labels of
a subset of online received instances by developing appro-
priate sampling strategies. However, conventional label-
efficient learning approaches often aim to optimize the mis-
take rate (or equivalently the classification accuracy), which
is clearly inappropriate for malicious URL detection tasks.
In contrast, our approach addresses the challenge of online
malicious URL detection by attempting to optimize cost-

sensitive metrics (either weighted sum of sensitivity and
specificity or weighted cost) [32].

Finally, our work generally belongs to the category of “on-
line” active learning, which differs from a large family of
“batch” active learning studies in literature [31, 17, 18].

2.2 Malicious URL Detection
Malicious URL detection is about how to detect malicious

URLs automatically or semi-automatically, which has been
extensively studied in web and data mining communities for
years [20, 28, 36]. In general, we can divide the existing work
into two categories: (i) non-machine learning methods, such
as blacklisting [37] or rule-based approaches [38, 35]; and
(ii) machine learning methods. The non-machine learning
approaches generally suffer from poor generalization to new
malicious URLs and unseen malicious patterns. In the fol-
lowing, we will focus on reviewing important related work
using machine learning methods.

In literature, a variety of machine learning schemes have
been proposed for malicious URL detection, which can be
grouped into two categories: (i) regular batch machine learn-
ing methods [25, 8, 34], and (ii) online learning methods [26].
Most of the existing malicious URL detection methods em-
ploy regular batch classification techniques to learn a clas-
sification model (classifier) from a training data set of la-
beled instances [8], and then applies the model to classify a
test/unseen instance. In general, the classification problem
can be formulated as either binary classification (normal vs.
abnormal) [25] or multi-class classification (assuming nor-
mal patterns come from multiple classes). In literature, a
variety of classification techniques have been applied, such
as Support Vector Machines (SVM) [25, 8], Logistic Regres-
sion [25], maximum entropy [20], Naive Bayes [3, 25], and
so on. However, these algorithms typically require to collect
and store all the training instances in advance and build
the models in a batch learning fashion, which is both time
and memory inefficient and suffers from very expensive re-
training cost whenever any new training data arrives.

Unlike the batch machine learning algorithms, online Learn-
ing [26] has been recently proposed as a scalable approach
to tackling large-scale online malicious URL detection tasks.
In general, online learning methods are more suitable for
large-scale, real-world online web applications due to their
high efficiency and scalability. However, most of the pre-
vious online learning algorithms were designed to optimize
the classification accuracy, typically by assuming the under-
lying training data distribution is class-balanced explicitly
or implicitly. This is clearly inappropriate for online mali-
cious URL detection tasks since the real-world URL data
distribution is often highly class-imbalanced, i.e, the num-
ber of malicious URLs is usually significantly smaller than
the number of benign URLs on the WWW. Therefore, it is
very important to take this issue into consideration when
designing a machine learning and data mining algorithm for
solving a practical URL detection task.

Finally, all the existing learning approaches usually have
to label a fairly large amount of training instances in or-
der to build a sufficiently good classification model, which is
impractical as the labeling cost is often expensive in a real-
word application. This thus motivates us to study a unified
learning scheme, which not only is able to minimize the la-
beling cost, but also maximize the predictive performance
with the given amount of labeled training instances.
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3. FRAMEWORKOFCOST-SENSITIVEON-
LINE ACTIVE LEARNING

3.1 Overview
Consider a real-world online malicious URL detection prob-

lem where data instances arrive sequentially. The goal of
supervised malicious URL detection is to construct a predic-
tive model that can accurately predict if an incoming URL
instance is malicious or not. In general, this can be formu-
lated as a binary classification task where malicious URL
instances are from positive class (“+1”) and normal URL
instances are from negative (“-1”). For an online malicious
URL detection task, the goal is to develop an online learner
to incrementally build a classification model from a sequence
of URL training data instances via an online learning fash-
ion. In particular, for each learning round, the learner first
receives a new incoming URL instance for detection; it then
applies the classification model to predict if it is malicious or
not; at the end of the learning round, if the truth class label
of the instance can be revealed from the environment, the
learner will make use of the labeled instance to update the
classification model whenever the classification is incorrect
(or the prediction loss is nonzero).

Figure 1: Framework of the proposed CSOAL sys-

tem for malicious URL detection

In general, it is natural to apply online learning to solve
online malicious URL detection. However, it is impracti-
cal to directly apply an existing online learning technique
to solve the problem. This is because a conventional online
classification task usually assumes the class label of every
incoming instance will be disclosed so as to be used to up-
date the classification model at the end of every learning
round. Clearly it is impossible or highly expensive if the
learner queries the class label of every incoming instance in
an online malicious URL detection task. To address this
challenge, we propose to investigate a novel framework of
Cost-Sensitive Online Active Learning (CSOAL), as shown
in Figure 1. In general, the proposed CSOAL framework
attempts to address two key challenges in a systematic and
synergic learning approach: (i) the learner must decide when
it should query the class label of an incoming URL instance;
and (ii) how to update the classifier in the most effective
way where there is a new labeled URL instance. The ba-
sic idea of our unified learning approach is to explore active
learning strategy to address the first issue, and to investigate
cost-sensitive online learning strategy to address the second
issue. Before presenting our detailed technique, we first give
a formal formulation of the online malicious URL detection
problem in the following.

3.2 Problem Formulation
Let us denote by xt ∈ R

d the feature vector of a URL
instance received at the t-th learning round, and wt ∈ R

d

a linear prediction model learned from the previous t − 1
training examples. We also denote the prediction of the t-th
instance as ŷt = sign(wt ·xt). The value |wt ·xt| is known as
“margin”, which can be used as the confidence of the learner
on the prediction. The true label for instance xt is denoted
as yt ∈ {−1,+1}. If ŷt 6= yt, the learner made a mistake.

We consider a sequence of examples (x1, y1), . . . , (xT , yT )
for online malicious URL detection, where class label yt can
be revealed after online prediction (depending on if it is
queried). To solve such a task, traditional online learning
would try to maximize the online accuracy (or minimize the
online mistake rates equivalently). However, this is inap-
propriate for malicious URL detection problem because a
trivial learner that simply classifies any example as negative
could achieve a quite high accuracy for a dataset with highly
rare malicious URLs. Thus, we propose to study new online
learning algorithms, which can optimize a more appropriate
performance metric, such as the sum of weighted sensitivity
and specificity, i.e.,

sum = ηp × sensitivity + ηn × specificity (1)

where 0 ≤ ηp, ηn ≤ 1 and ηp+ηn = 1. When ηp = ηn = 1/2,
sum is the well-known balanced accuracy, which is adopted
as a metric in the existing studies for anomaly detection [22].
In general, the higher the sum value, the better the perfor-
mance. Besides, another suitable metric is the total cost
suffered by the algorithm, which is defined as:

cost = cp ×Mp + cn ×Mn (2)

where Mp and Mn are the number of false negatives and
false positives respectively, 0 ≤ cp, cn ≤ 1 are the cost pa-
rameters for positive and negative classes, respectively, and
we assume cp + cn = 1. The lower the cost value, the better
the classification performance.

3.3 CSOAL Algorithms
We now propose an online learning framework for online

malicious URL detection by optimizing the previous two
cost-sensitive measures. Before presenting our algorithms,
we prove an important proposition below to motivate our
solution. For simplicity, we assume ‖xt‖ = 1 for the rest.

Proposition 1. Consider a cost-sensitive classification
problem, the goal of maximizing the weighted sum in (1) or
minimizing the weighted cost in (2) is equivalent to mini-
mizing the following objective:

∑

yt=+1

ρI(ytw·xt<0) +
∑

yt=−1

I(ytw·xt<0) (3)

where ρ =
ηpTn

ηnTp
for the maximization of the weighted sum,

Tp and Tn are the number of positive examples and negative
examples respectively, ρ =

cp
cn

for the minimization of the
weighted misclassification cost, and Iπ is the indicator func-
tion that outputs 1 if the statement π holds and 0 otherwise.

The proof is omitted due to space limitation. Proposition
1 gives the explicit objective function for optimization, but
the indicator function is non-convex. To tackle this issue,
we replace the indicator function by its convex surrogate,
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i.e., a modified hinge loss function:

ℓ(w; (x, y)) = max(0, ρ ∗ I(y=1) + I(y=−1) − y(w · x)) (4)

As a result, we can formulate the primal objective function
for online malicious URL detection as follows:

Fb
p(w) =

1

2
‖w‖2 + C

T
∑

t=1

ℓt(w) (5)

where the regularization parameter C > 0, the loss function
ℓt(w) = ℓ(w; (xt, yt)) = max(0, ρt − y(w · x)) and ρt = ρ ∗
I(yt=1) + I(yt=−1). The idea of this formulation is somewhat
similar to the biased formulation of batch SVM for learning
with imbalanced datasets [1].

To online optimize the above objective (5), following the
passive aggressive learning method [9], we have a similar
online optimization objective:

wt+1 = arg min
w∈Rd

1

2
‖w −wt‖

2 +Cℓt(w)

which enjoys the following closed-form solution:

wt+1 ← wt + τtytxt, where τt = min(C, ℓt(wt)). (6)

Based on the above derived updating method, we would
develop an online active learning algorithm for malicious
URL detection. However, unlike regular online learning [27],
the key challenges to an online active scheme for malicious
URL detection are two-fold: (i) a learner should decide when
to query the class label of an incoming instance, and (ii)
once the class label is queried and disclosed, how to exploit
the labeled instance to update the learner in an effective
way. To tackle these challenges, we propose a framework
of Cost-Sensitive Online Active Learning (CSOAL), which
adopts a simple yet effective active learning scheme to decide
whether an incoming instance should be queried, and employ
the above proposed cost-sensitive updating method (6) to
exploit the labeled instance for updating the online learner.

Specifically, at the t-th round, the CSOAL algorithm de-
cides if the class label should be queried according to a
Bernoulli random variable Zt ∈ {0, 1} with probability

qt = δ/(δ + |pt|), (7)

where pt = wt · xt and δ > 0 is a sampling factor param-
eter to trade off the ratio of queries. Such an approach is
similar to the idea of margin-based active learning [31, 2]
and has been adopted in other previous work [6, 12]. If the
outcome Zt = 1, the class label is queried and the outcome
yt is disclosed, then the CSOAL algorithm will adopt the
proposed updating method (6) to update the linear classi-
fication model wt+1. If Zt = 0, the class label will not be
queried and the learner is not updated. Finally, Algorithm 1
summarizes the details of the proposed CSOAL algorithms.

Remark. It is interesting to analyze the impact of the sam-
pling factor parameter δ. In general, the larger the value of
δ, the larger the resulting number of queries issued by the
online active learner. In particular, when setting δ → ∞,
it is reduced to the extreme case of querying class label of
every instance in the online learning process. In general, one
can simply fix δ to some constant to trade off a proper ratio
of queries. Besides, an even better approach is to adaptively
change the value of δ during the online learning process. In
particular, we expect to query more examples at the begin-
ning of the online learning task in order to build a good

Algorithm 1 Cost-Sensitive Online Active Learning algo-
rithm (CSOAL).

INPUT: penalty parameter C, bias parameter ρ and
smooth parameter δ.
INITIALIZATION : w1 = 0.
for t = 1, . . . , T do

receive an incoming instance xt ∈ R
d;

predict label ŷt = sign(pt), where pt = wt · xt;
draw a Bernoulli random variable Zt ∈ {0, 1} of param-
eter δ/(δ + |pt|);
if Zt = 1 then

query label yt ∈ {−1,+1};
suffer loss ℓt(wt) = ℓ(wt; (xt, yt));
wt+1 = wt + τtytxt, where τt = min{C, ℓt(wt)};

else

wt+1 = wt + τtytxt, where τt = 0;
end if

end for

classifier, and gradually reduce the ratio of queries when the
classifier becomes more and more accurate during the online
learning process. To this purpose, we suggest a simple yet
effective scheme to adaptively update the parameter δ at the
t-th learning step as: δt ← δt−1 ∗

t
t+1

. We will examine the
impact of the sampling factor δ in our experiments.

3.4 Time and Space Complexity
From Algorithm 1, it is obvious to see that the overall time

complexity of the algorithm is O(T ×d), which is linear with
respect to T — the total number of instances in the online
malicious URL detection task and d — the dimensionality
of the input, and the space complexity of each learning step
is O(d) linear with respect to the data dimensionality. In
practice, when the data set is sparse and high-dimensional
(d can be large), one can exploit the sparse implementation
trick to further reduce the time and space cost considerably.

4. ANALYSIS OFTHEORETICALBOUNDS
Although the proposed CSOAL algorithm is simple, it is

the first approach proposed for online malicious URL de-
tection tasks. Below gives theoretical analysis of its per-
formance for malicious URL detection tasks in terms of two
types of performance metrics. Before presenting the bounds,
we begin by showing a lemma which would facilitate the
proofs in this section. With this lemma, we could then de-
rive the performance bounds for the CSOAL algorithm. For
convenience, we introduce the following notations:

M = {t |yt 6= ŷt, t ∈ [T ]}, L = {t|yt = ŷt, ℓt(wt) > 0, t ∈ [T ]},

where [T ] = {1, . . . , T}.

Lemma 1. Let (x1, y1), . . . , (xT , yT ) be a sequence of in-
put instances, where xt ∈ R

d and yt ∈ {−1,+1} for all t.
Let τt = min(C, ℓt(wt)), then the following bound holds for
any w ∈ R

d and α > 0

T
∑

t=1

Zt2τt
[

lt(α− |pt|) +mt(α+ |pt|)
]

≤ α2‖w‖2 +

T
∑

t=1

τ 2
t ‖xt‖

2 +

T
∑

t=1

2ατtℓt(w),

where mt = I(t∈M) and lt = I(t∈L).
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The detailed proofs of Lemma 1 and the following the-
orem are omitted, due to space limitation. According to
the above lemma, we can prove the following theorem that
bounds the expected weighted summation of mistakes, which
can further bound the the cost-sensitive metrics for online
malicious URL detection tasks.

Theorem 1. Let (x1, y1), . . . , (xT , yT ) be a sequence of
examples where xt ∈ R

d and yt ∈ {−1,+1} and ‖xt‖ =
1 for all t. Then, for any vector w ∈ R

d , the expected
weighted number of prediction mistakes made by CSOAL on
this sequence of examples is bounded as:

E[

T
∑

t=1

ρtmt] ≤
1

δ

{

(
1 + δ

2
)2‖w‖2 +

T
∑

t=1

(1 + δ)Cℓt(w)

}

,

where C ≥ ρ is the aggressiveness parameter for CSOAL.

Now our goal is to analyze the performance of the pro-
posed algorithm in terms of the metrics for malicious URL
detection. We first consider the weighted sum of sensitivity
and specificity, i.e.,

sum = ηp × sensitivity + ηn × specificity,

where ηp + ηn = 1 and ηp ≥ ηn > 0. The following theo-
rem gives the bound on the sum by the proposed CSOAL
algorithm.

Theorem 2. Let (x1, y1), . . . , (xT , yT ) be a sequence of
examples, where xt ∈ R

d, yt ∈ {−1,+1} and ‖xt‖ = 1

for all t. By setting ρ =
ηpTn

ηnTp
, and assuming C ≥ ρ, for

any w ∈ R
d, we have the following bound for the proposed

CSOAL algorithm:

E[sum] ≥ 1−
ηn
Tn

1

δ

{

(
1 + δ

2
)2‖w‖2 +

T
∑

t=1

(1 + δ)Cℓt(w)

}

Furthermore, when ηp = ηn = 1/2, the balanced accuracy
(BA) is bounded from below by

E[BA] ≥ 1−
1

2Tn

1

δ

{

(
1 + δ

2
)2‖w‖2 +

T
∑

t=1

(1 + δ)Cℓt(w)

}

Proof. Following the condition that ρ =
ηpTn

ηnTp
≥ 1 and

the result of Theorem 1, we have

1

δ

{

(
1 + δ

2
)2‖w‖2 +

T
∑

t=1

(1 + δ)Cℓt(w)

}

≥
(

ρEMp + EMn

)

=
[

(
ηpTn

ηnTp

)EMp + EMn

]

=
Tn

ηn

[

ηp(
EMp

Tp

) + ηn
EMn

Tn

]

=
Tn

ηn

(

ηp(1− Esen) + ηn(1− Espe)
)

=
Tn

ηn
(1− E[sum])

Rearranging the above inequality leads to the conclusion:

E[sum] ≥ 1−
ηn
Tn

1

δ

{

(
1 + δ

2
)2‖w‖2 +

T
∑

t=1

(1 + δ)Cℓt(w)

}

Remarks. In the above, setting δ = 1 leads to the following
bound

E[sum] ≥ 1−
ηn
Tn

{

‖w‖2 + 2C
T
∑

t=1

ℓt(w)

}

.

Setting δ =

√

1 +
4C

∑
T
t=1

ℓt(wt)

‖w‖2
leads to the following bound

E[sum] ≥ 1−
ηn
Tn

∗







1

2
‖w‖2 +C

T
∑

t=1

ℓt(w) +
1

2
‖w‖

√

√

√

√‖w‖2 + 4C
T
∑

t=1

ℓt(w)







.

In the above approach, the bias parameter ρ is set to
ηpTn

ηnTp
,

in which the ratio Tn

Tp
may not be available in advance. To

alleviate this issue, we consider another approach using the
cost based performance metric. Specifically, we propose to
set ρ =

cp
cn

, where cp and cn are the predefined cost param-
eters of false negative and false positive, respectively. We
assume cp + cn = 1 and 0 ≤ cn ≤ cp since we would prefer
to improve the accuracy of predicting the rare positive ex-
amples. By this setting, the following theorem gives us the
cumulative cost bound of the proposed CSOAL algorithm.

Theorem 3. Let (x1, y1), . . . , (xT , yT ) be a sequence of
examples, where xt ∈ R

d, yt ∈ {−1,+1} and ‖xt‖ = 1 for all
t. By setting ρ =

cp
cn

, and assuming C ≥ ρ, for any w ∈ R
d,

the overall cost made by the proposed CSOAL algorithm over
this sequence of examples is bounded as follows:

E[cost] ≤ cn
1

δ

{

(
1 + δ

2
)2‖w‖2 +

T
∑

t=1

(1 + δ)Cℓt(w)

}

Proof. Following the result of Theorem 1, we have

1

δ

{

(
1 + δ

2
)2‖w‖2 +

T
∑

t=1

(1 + δ)Cℓt(w)

}

≥ (EMp(ρ) + EMn)

= (EMp(
cp
cn

) + EMn) =
1

cn
E[cost]

Rearranging the above inequality concludes the theorem.

Remarks. Setting δ = 1 for the above theorem leads to
the following bound:

E[cost] ≤ cn

{

‖w‖2 + 2C

T
∑

t=1

ℓt(w)

}

.

Setting δ =

√

1 +
4C

∑
T
t=1

ℓt(wt)

‖w‖2
leads to the following bound:

E[cost] ≤

cn







1

2
‖w‖2 + C

T
∑

t=1

ℓt(w) +
1

2
‖w‖

√

√

√

√‖w‖2 + 4C
T
∑

t=1

ℓt(w)







.

5. EXPERIMENTAL RESULTS
This section will evaluate the empirical performance of the

proposed CSOAL algorithm for large-scale online malicious
URL detection. Our experiments are designed to answer
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several open questions: (i) how does the class imbalance
issue affect the predictive performance of online malicious
URL detection? (ii) if the proposed online active learn-
ing approach is effective to reducing the amount of labeled
data significantly in order to maintain comparable perfor-
mance?(iii) how is the efficiency and scalability of the pro-
posed learning algorithms for a web-scale application?

5.1 Experimental Testbed
To examine the performance, we test all the algorithms

on a large-scale benchmark dataset for malicious URL detec-
tion, which can be downloaded from 1. The original data set
was created in purpose to make it somehow class-balanced.
In our experiment, we create a subset by sampling from the
original data set to make it close to a more realistic distri-
bution scenario where the number of normal URLs is signif-
icantly larger than the number of malicious URLs. Table 1
shows the data set used in our experiment for online mali-
cious detection, where Tp/Tn denotes the ratio between the
number of positive (malicious) instances and the number of
negative (normal) instances. A variety of features were ex-
tracted to represent the content of a URL, including both
lexical features (such as hostnames, primary domain, path
tokens, etc) and host-based features (such as WHOIS info,
IP prefix, AS number, Geographic, etc.).

Table 1: The data set of malicious URL detection.
dataset # training examples # features Tp/Tn

URL 1,000,000 3,231,961 1:99

Note that we also did experiments on varied ratios of
Tp/Tn and found the results were consistent to our observa-
tions and conclusions reported in this work. Thus, to keep
the paper concise and easy to follow, we omit the details of
duplicate results due to space limitation. All the datasets,
code, and supplemental material will be made available in
our project website: http://murl.stevenhoi.org/.

5.2 Compared Algorithms and Setup
We compare the proposed CSOAL algorithms against a

variety of state-of-the-art algorithms as follows:
• “PE”: the classical PErceptron algorithm [29], which

queries label of every instance; this is impractical as it
requires huge amount of labeled data, which is used as
a yardstick to evaluate the efficacy of our algorithm;

• “PA”: the regular Passive-Aggressive algorithm [9], which
also queries class label of every instance; similarly, this
is another yardstick for comparison;

• “CW-diag”: the ConfidenceWeighted (CW) algorithm [10],
which also queries label of every instance, and exploits
the second-order info. we adopt the CW-diag version
to make it feasible for high-dimensional data.

• “PAUM”: this is the cost-sensitive Perceptron Algo-
rithm with Uneven Margin [24], which also queries la-
bel of every instance;

• “CPA”: the Cost-sensitive Passive-Aggressive algorithm
based on prediction [9] which also queries all labels;

• “LEPE”: the Label Efficient PErceptron algorithm [6],
which actively queries label for informative instances;

• “CSRND”: a variant of the proposed CSOAL algo-
rithm, but randomly queries label of incoming instances;

1http://sysnet.ucsd.edu/projects/url/

• “CSOAL”: the proposed Cost-Sensitive Online Active
Learning algorithm as shown in Algorithm 1.

To make a fair comparison, all the algorithms adopt the
same setup. All the compared algorithms learn a linear clas-
sifier for the malicious URL detection task. In particular, for
all the compared algorithms, we set the penalty parameter
C = ρ = Tn/Tp. For the proposed CSOALsum algorithm,
we set ηp = ηn = 1/2 for all cases, while for the CSOALcos,
we set cp = Tn/T and cn = Tp/T . The smoothing parame-

ter δ for LEPE and CSOAL is set as 2[−10:2:10] in order to
examine varied ratios.

All the experiments were conducted over 5 random per-
mutations of the dataset. The results were reported by aver-
aging over these 5 runs. We evaluate the online classification
performance by two key metrics: the weighted sum of sensi-
tivity and specificity, and the weighted cost. We denote by
CSOALsum the algorithm aiming to improve the weighted
sum of sensitivity and specificity, and CSOALcos the algo-
rithm aiming to improve the overall cost. All experiments
were run on a machine of 2.3GHz CPU.

5.3 Evaluation on Fixed Ratio of Queries
The first experiment is to evaluate the performance by

fixing the ratio of queries issued by the (active learning) al-
gorithms. Table 2 shows the results of the sum performance
under a fixed ratio of queries to about 2%, and Table 3 sum-
marizes the cost performance under the similar query ratio.

Several observations can be drawn from the results. First
of all, according the classification accuracy (a misleading
metric for cost-sensitive classification), we found that both
PE and PA algorithms significantly outperform the other
algorithms, while, in terms of both sum and cost measures,
they are considerably worse than their cost-sensitive vari-
ants (i.e., PAUM and CPA). This indicates the importance
of taking the class imbalance issue into consideration for on-
line malicious detection tasks. Second, when querying the
same ratio of labeled data, in terms of both sum and cost
performances, CSOAL significantly outperforms the LEPE
algorithm, which validates the effectiveness of the proposed
cost-sensitive online updating strategy. Third, when query-
ing the same ratio of labels, CSOAL significantly outper-
forms CSRND, which implies the proposed querying strat-
egy is able to actively select those fairly informative in-
stances for querying labels, which are considerably better
than just randomly querying. Moreover, among all the ap-
proaches, the proposed CSOAL algorithm and the PAUM al-
gorithm achieve the highest sum performance. However, the
proposed CSOAL only queried 2 percent of labels, while the
PAUM algorithm requires to query the labels of all the in-
coming instances, which is very expensive to label 1-million
training instances in a real-world application. We thus be-
lieve the proposed CSOAL algorithm is more practically at-
tractive and suitable for a web-scale application.

Finally, we notice that the proposed CSOAL algorithm is
able to achieves the best sensitivity performance, while at
the same time achieves fairly good specificity performance
which is generally quite comparable to the other algorithms.
This implies that the proposed CSOAL algorithm can not
only significantly improve the prediction accuracy on the
rare class, but also not sacrifice much the prediction accu-
racy on classifying the other majority class. This promising
observation again validates the effectiveness of the proposed
CSOAL algorithm.
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Table 2: Evaluation of the malicious URL detection performance in terms of the cumulative sum measure.

Algorithm
Measures

Sum (%) Sensitivity(%) Specificity (%) Accuracy (%) Time (s) Query Ratio (%)

PE 87.012 ± 0.100 74.284 ± 0.199 99.741 ± 0.002 99.486 ± 0.004 18.903 100.000 ± 0.000
PA 87.203 ± 0.059 74.544 ± 0.115 99.862 ± 0.003 99.609 ± 0.004 27.458 100.000 ± 0.000
CW-diag 88.550 ± 0.067 77.160 ± 0.133 99.940 ± 0.001 99.712 ± 0.002 48.616 100.000 ± 0.000
PAUM 89.049 ± 0.083 78.770 ± 0.166 99.329 ± 0.002 99.123 ± 0.003 28.527 100.000 ± 0.000
CPA 92.748 ± 0.078 86.410 ± 0.154 99.087 ± 0.005 98.960 ± 0.006 41.248 100.000 ± 0.000
LEPE 79.162 ± 0.476 58.492 ± 0.957 99.833 ± 0.011 99.419 ± 0.010 19.414 2.019 ± 0.057

CSRND 87.776 ± 0.410 79.018 ± 0.711 96.534 ± 0.286 96.358 ± 0.284 20.984 2.018 ± 0.025

CSOAL 92.697 ± 0.245 88.156 ± 0.513 97.237 ± 0.045 97.146 ± 0.042 20.304 2.029 ± 0.018

Table 3: Evaluation of the malicious URL detection performance in terms of the cumulative cost measure.

Algorithm
Measures

Cost Sensitivity(%) Specificity (%) Accuracy (%) Time (s) Query Ratio (%)

PE 2571.568 ± 19.862 74.284 ± 0.199 99.741 ± 0.002 99.486 ± 0.004 19.994 100.000 ± 0.000
PA 2533.800 ± 11.678 74.544 ± 0.115 99.862 ± 0.003 99.609 ± 0.004 28.800 100.000 ± 0.000
CW-diag 2267.124 ± 13.216 77.160 ± 0.133 99.940 ± 0.001 99.712 ± 0.002 47.747 100.000 ± 0.000
PAUM 2057.452 ± 20.843 79.840 ± 0.208 99.378 ± 0.005 99.182 ± 0.006 28.939 100.000 ± 0.000
CPA 1435.806 ± 15.494 86.410 ± 0.154 99.087 ± 0.005 98.960 ± 0.006 42.687 100.000 ± 0.000
LEPE 4214.998 ± 125.053 57.592 ± 1.275 99.832 ± 0.013 99.410 ± 0.007 21.655 1.984 ± 0.045

CSRND 2314.544 ± 126.476 80.030 ± 1.265 96.591 ± 0.130 96.425 ± 0.130 20.371 2.027 ± 0.043

CSOAL 1482.338 ± 31.270 87.742 ± 0.324 97.285 ± 0.029 97.189 ± 0.027 22.237 2.027 ± 0.030

5.4 Evaluation on Varied Ratios of Queries
This experiment is to evaluate the performance of the pro-

posed algorithms by varying the ratios of queries for com-
paring different online malicious URL detection algorithms.
Figure 2 and Figure 3 shows the online average sum perfor-
mance and the online average cost performance under varied
query ratios, respectively. From the experimental results,
several observations can be drawn as follows.
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Figure 2: Evaluation of the online cumulative aver-

age sum performance with respect to varied ratios.

First of all, among all four fully supervised online learning
algorithms (PE, PA, PAUM, and CPA), the cost-sensitive al-
gorithms (PAUM and CPA) generally outperform the cost-
insensitive versions. This result validates the importance of
studying the proposed cost-sensitive online learning method-
ology for malicious URL detection tasks.

Second, compared with the CSRND algorithm that ran-
domly queries the labels, CSOAL consistently achieves much
higher sum and much lower cost performance over all the
ratios of queried labels, especially when the query ratio is
relatively small. This promising result indicates that the
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Figure 3: Evaluation of the online cumulative aver-

age cost performance with respect to varied ratios.

querying strategy of the proposed CSOAL technique is able
to effectively query the informative labeled data from the
online stream of unlabeled data instances.

Third, compared with LEPE, CSOAL achieves higher sum
over all the ratios of queried labels, which implies that the
proposed online updating strategy is able to effectively ex-
ploits the labeled data for improving the classifier. In addi-
tion, compared with PA, CSOAL with query ratio equals to
1 (equivalent to querying label of every instance) achieves
a significantly higher sum performance, which shows the bi-
ased penalty function does effectively optimize the objective
metric of the weighted sum of sensitivity and specificity.

Finally, we notice that when the query ratio increases, we
generally observe an improvement of the cost-sensitive clas-
sification performance by the proposed CSOAL algorithm.
However, While the query ratio reaches about 1%, the im-
provement tends to become saturated, which is very close
to the same algorithm that queries the label of every unla-
beled data. This interesting observation indicates that the
proposed learning strategy is able to attain potentially the
best possible predictive performance using a small amount
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Table 4: Evaluation of the malicious URL detection performance in terms of both sum and cost metrics.

Algorithm
Measures

Sum (%) Sensitivity(%) Specificity (%) Accuracy (%) Time (s) Query Ratio (%)

CPA 92.748 ± 0.078 86.410 ± 0.154 99.087 ± 0.005 98.960 ± 0.006 37.087 100.000 ± 0.000
LEPE 69.556 ± 1.353 39.274 ± 2.712 99.838 ± 0.015 99.232 ± 0.025 16.777 0.515 ± 0.017

CSRND 80.724 ± 1.852 66.578 ± 3.855 94.871 ± 0.206 94.588 ± 0.177 17.039 0.526 ± 0.011

CSOAL 88.756 ± 0.746 83.628 ± 1.701 93.883 ± 0.373 93.781 ± 0.359 17.260 0.513 ± 0.020

CSOAL(a) 92.401 ± 0.703 89.054 ± 1.810 95.748 ± 0.406 95.681 ± 0.384 18.211 0.510 ± 0.014

Algorithm
Measures

Cost Sensitivity(%) Specificity (%) Accuracy (%) Time (s) Query Ratio (%)

CPA 1435.806 ± 15.494 86.410 ± 0.154 99.087 ± 0.005 98.960 ± 0.006 36.640 100.000 ± 0.000
LEPE 6170.384 ± 152.639 37.818 ± 1.549 99.855 ± 0.009 99.235 ± 0.009 17.137 0.525 ± 0.023

CSRND 3618.938 ± 466.228 68.634 ± 5.240 94.811 ± 0.598 94.549 ± 0.546 16.843 0.522 ± 0.017

CSOAL 2265.136 ± 299.126 82.916 ± 3.226 94.204 ± 0.275 94.091 ± 0.249 17.603 0.525 ± 0.017

CSOAL(a) 1484.396 ± 117.269 89.498 ± 0.831 95.508 ± 0.490 95.448 ± 0.490 17.917 0.525 ± 0.015

of label data (only 1% or even less) over the entire train-
ing data set, which can thus save a significant amount of
labeling cost in a practical real-world application.

5.5 Evaluation on Adaptive Sampling Factor
In the above experiments, the sampling factor δ was sim-

ply fixed to a constant. This experiment aims to examine
if it is possible to further improve the proposed CSOAL
approach using the adaptive sampling factor, denoted as
“CSOAL(a)” for short (as discussed in the “remark” of Sec-
tion 3.3). In this experiment, the initial value of δ is set
to an extremely large value, i.e., δ0 = 214, and is updated
adaptively using the proposed strategy in Section 3.3. To
enable a fair comparison, we set appropriate parameters of
the other algorithms (LEPE, CSRND and CSOAL) to make
them sample the similar ratio of labeled data. Table 4 shows
the experimental results, where “CSOAL” adopts the con-
stant sampling factor. Some observations can be drawn from
the results. First, the CSOAL(a) algorithm using the adap-
tive sampling factor significantly outperforms both CSRND
using the random query strategy and CSOAL using a con-
stant sampling factor under the same query ratio. Second,
we found that by querying only 0.5% out of the entire 1-
million instances, the proposed CSOAL(a) algorithm is able
to achieve the best performance, which is almost the same
(statistically no difference according to student t-test) to the
state-of-the-art cost-sensitive algorithm CPA which has to
query labels for all the 1-million instances. This promising
result shows that the proposed CSOAL technique is able to
save a significant amount of labeling cost while maintaining
the state-of-the-art performance.

5.6 Evaluation on Eff ciency and Scalability
Finally, we examine the time efficiency of the proposed

algorithms. The “time” columns of Table 2, 3 and 4 show
the average time costs of the proposed CSOAL algorithms
on the fixed query ratios. In addition to these tables, we also
evaluate the scalability of the proposed algorithms, as shown
in Figure 4, which measures the online cumulative time cost
of different algorithms over the number of received instances
in the online malicious URL detection process.

From the results, we can see that all the proposed online
learning algorithms are fairly efficient and scalable, which
typically took about 20 to 30 seconds to run on the data set
with 1-million instances on a single regular machine. More-
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Figure 4: Evaluation of online cumulative time cost.

over, by examining the efficiency and scalability of the pro-
posed CSOAL algorithms, we found that CSOAL is among
the most efficient and scalable algorithms, which is at least
as efficient as the other algorithms and even slightly bet-
ter than some of the other algorithms. These encouraging
results again validate the practical value of the proposed
CSOAL algorithm for web-scale real-world applications.

6. CONCLUSIONS
This paper proposed a novel framework of cost-sensitive

online active learning (CSOAL) as a natural, simple yet
fairly effective approach to tackling a real-world online ma-
licious URL detection task. We presented the CSOAL al-
gorithms to optimize cost-sensitive measures and theoreti-
cally analyze the bounds of the proposed algorithms. We
also extensively examined their empirical performance on
a large-scale real-world data set. Our encouraging results
showed that (i) the proposed CSOAL method is able to con-
siderably outperform a number of supervised cost-sensitive
or cost-insensitive online learning algorithms for malicious
URL detection tasks; (ii) the proposed CSOAL method is
able to attain the comparable (or even better) state-of-the-
art predictive performance of a cost-sensitive online learner
by querying a significantly small amount of labeled data
(0.5% or less);and(iii)the proposed CSOAL algorithms are
highly efficient and scalable for web-scale applications.
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