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ABSTRACT
Learning algorithms that embed objects into Euclidean space
have become the methods of choice for a wide range of
problems, ranging from recommendation and image search
to playlist prediction and language modeling. Probabilis-
tic embedding methods provide elegant approaches to these
problems, but can be expensive to train and store as a large
monolithic model. In this paper, we propose a method that
trains not one monolithic model, but multiple local embed-
dings for a class of pairwise conditional models especially
suited for sequence and co-occurrence modeling. We show
that computation and memory for training these multi-space
models can be e�ciently parallelized over many nodes of a
cluster. Focusing on sequence modeling for music playlists,
we show that the method substantially speeds up training
while maintaining high model quality.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.5.1 [Pattern
Recognition]: Models

General Terms
Algorithms, Experimentation, Performance

Keywords
Music Playlists, Recommendation, Embedding, Sequences,
Parallel Computing

1. INTRODUCTION
Learning methods that embed objects into Euclidean space

have become the method of choice for a wide range of prob-
lems, ranging from recommendation and image search to
playlist prediction and language modeling. Not only do they
apply to modeling problems where a feature-vector represen-
tation of objects is not available (e.g., movies, users, songs),
they actually compute a vectorial representation that can
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be used as the basis for subsequent modeling steps (e.g.,
semantic and syntactic language modeling).

While small to medium-scale models can be trained by
standard methods, training large-scale models may not be
feasible on a single machine. This is especially true for em-
bedding problems that go beyond the Gaussian model of
rating prediction. For example, when the embedding is used
to model probability distributions over discrete objects like
sequences (e.g., playlists [18], words in a sentence[10], pur-
chases [16]) or complex preferences (e.g., as extension to
[15]), computation time and memory for storing data and
model become a bottleneck.

In this paper, we explore training algorithms for embed-
ding models that execute a distributed fashion, especially for
logistic embedding models of sequences and co-occurrences.
We formulate an extended logistic model that directly ex-
ploits the properties of the data — namely that many de-
pendencies are local even though we are training a global
model. By uncovering the locality in the data, we parti-
tion the global embedding problem into multiple local em-
bedding problems that are connected through narrow inter-
faces, which we call portals. We show that training this
portal model in a distributed fashion can be decomposed
into two steps, each of which performs maximum-likelihood
optimization.

By deriving this portal model as an explicit probabilis-
tic model for merging multiple local embeddings, the model
not only allow more e�cient training but also allows e�-
cient prediction in a distributed fashion. Furthermore, the
portal model provides understanding for why and when par-
allel training will be e↵ective. We conduct extensive experi-
ments on probabilistic sequence modeling for music playlist
prediction, showing that we can train on hundreds of nodes
in parallel without substantial reduction in model fidelity,
but in orders of magnitude less time.

2. RELATED WORK
Embedding methods have been long studied and proved to

be e↵ective in capturing latent semantics of how items (e.g.
words in sentences) interact with each other. These meth-
ods only have a linear blowup in parameters as the number
of items goes up. For the purpose of this paper, this line
of works can be categorized into two classes. The first class
[17, 19, 20, 6, 21, 8, 16] defines a score to measure the in-
tensity of any interaction, which is optimized while learning
the embedding. The other class [1, 5, 11, 4, 10] explicitly
reasons about the embedding under a probabilistic model
of the data. Particularly relevant for this paper are those
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that normalize via a soft-max function to model distribu-
tions over discrete items, and that are trained via maximum
likelihood.

There are at least two approaches to training these em-
bedding models. First, one can formulate a relaxation of
the training problem that can be optimized globally (e.g. a
semidefinite programming or singular value decomposition
[17, 19, 20]). Second, one can explicitly fix the dimensional-
ity and solve the resulting non-convex objective function to
a local optimum. Most popular and generally e↵ective for
this second approach are stochastic gradient method [18, 4,
16] that take one interaction at a time to compute and up-
date with local gradients. However, for probabilistic models
using the soft-max function computing gradients requires
summation over all items. This can be troublesome when
the number of total items scales up.

One way to address the growing computational needs aris-
ing from large datasets is the use of parallel computation.
In particular, there are several works that aim to parallelize
training via stochastic gradient methods for both shared-
memory [14] and distributed-memory settings [22, 2]. The
extension to multi-space embedding models we propose is
di↵erent from these works. The embedding problem is di-
vided into subproblems in multiple spaces that are only
losely coupled, so that they can be solved in an embarrass-
ingly parallel fashion. Furthermore, the model we introduce
not only distributes computation, but also reduces that over-
all amount of computation that is necessary.

3. PROBABILISTIC EMBEDDING MODELS
We would like to first introduce a general family of models

that can benefit from the techniques we propose in this pa-
per. Suppose we have n types of items X =

S
n

i=1

X
i

, with
all X

i

being disjoint. Each type X
i

contains |X
i

| distinct
items x

(i)

1

, x
(i)

2

, . . . , x
(i)

|Xi|. The training dataset D consists

of directional pairwise observations in the form of (y|x),
where x, y 2 X . For each x 2 X , we associate it with
a d-dimensional (d is predefined) vector X(x), so that the
conditional probability of the pair (y|x) can be modeled as

Pr(y|x) =
nY

i=1

 
eI(X(y),X(x))

P
y

02Xi
eI(X(y

0
),X(x))

! {y2Xi}

. (1)

Here {·} is the indicator function and I(·, ·) is the inter-
action function between two vectors in the d-dimensional
space. Common choices include negative Euclidean distance
and the inner product. The goal is to learn the collection of
all the d-dimensional vectors (or a

P
n

i=1

|X
i

| by d matrix),
which can be done by maximizing the likelihood

X = argmax
X2<(

Pn
i=1

|Xi|)⇥d

Y

(y|x)2D

Pr(y|x). (2)

Several existing works fall into this class of models:

• Logistic Markov Embedding (LME) [18] aims to model
sequences for music playlist generation. x and y are
consecutive songs in a playlist, and Euclidian distance
in the embedding space reflects the probability of a
transition from x to y.

• The sphere embedding [10] is proposed for modeling
sentence structure in natural language. Such language

models are important components in systems for ma-
chine translation, speech recognition, etc. Here (y|x)
means that word y follows word x.

• Stochastic Neighbor Embedding (SNE) [5] embeds gen-
eral vectorial data points into low-dimensional space.
x and y are data points that belong to the same type,
and a directional pair (y|x) exists if x and y are neigh-
bors.

• The conditional model of Co-occurrence Data Embed-
ding (CODE) [4] deals with two types of items, and
the interaction is the co-occurrence of two items from
di↵erent types (e.g. a word appears in a document).
(y|x) exists if x and y co-occur, and x is manually
designated as the item being conditioned on.

One should note that it is also possible to model joint
distributions instead of conditional ones. Following [4], we
could let

Pr(x, y) ⇡ Pr(y|x)Pr(x), (3)

where Pr(x) is estimated empirically from the training set.
If symmetry is important, one could also consider

Pr(x, y) ⇡ 1
2
(Pr(y|x)Pr(x) + Pr(x|y)Pr(y)). (4)

In the rest of the paper, we mainly focus on sequence mod-
eling via LME. However, it is possible to extend the ideas to
this more general family, as to be discussed in Section 4.5.

3.1 Logistic Markov Embedding
LME [18, 12] was introduced as a probablistic model for

learning to generate playlists. Given a collection of songs
S = {s

1

, ..., s|S|}, a playlist is a sequence of songs from S.
We use p = (p[1], ..., p[kp]) to denote a playlist p of length
k
p

. We use D to represent a collection of playlists. Given
a training sample D of playlists, the goal is to learn a d-
dimensional vector for each of the songs in S.

Suppose the vector that represents song s is X(s). The
transition probability given the previous song in a playlist p
to the next song is modeled as

Pr(p[i]|p[i�1]) =
e�||X(p

[i]
)�X(p

[i�1]

)||2
2

P|S|
j=1

e�||X(sj)�X(p

[i�1]

)||2
2

=
e��(p

[i]
,p

[i�1]

)

2

Z(p[i�1])
, (5)

where Z(p[i�1]) denotes the partition function in the denom-
inator, and the distance ||X(s)�X(s0)||

2

is abbreviated by
�(s, s0). Given this local transition probability, the proba-
bility of a playlist is modeled as

Pr(p) =

kpY

i=1

Pr(p[i]|p[i�1]) =

kpY

i=1

e��(p

[i]
,p

[i�1]

)

2

Z(p[i�1])
. (6)

The learning problem is to find the coordinates for each of
the songs (they form a |S| by d matrix X) that maximize
the likelihood on a training playlist collection D

X = argmax
X2<|S|⇥d

Y

p2D

kpY

i=1

e��(p

[i]
,p

[i�1]

)

2

Z(p[i�1])
. (7)

Since this model only uses order-one Markov dependency,
it is convenient to use a transition matrix T to represent
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the collection of playlists D. The element at the ith row
and jth column T

ij

is the number of transitions from s
i

to
s
j

(We will denote this transition pair as (s
i

! s
j

), with
s
i

called from-song and s
j

called to-song) in the playlist
collection. T is usually very sparse. Thus it can be stored
e�ciently via hashing. Using T , the optimization problem
can be rewritten as

X = argmax
X2<|S|⇥d

|S|Y

i=1

|S|Y

j=1

 
e��(sj ,si)

2

Z(s
i

)

!
Tij

. (8)

Following the empirical results in [18], it is beneficial to in-
clude a popularity boost term b(s) for each of the songs,
slightly modifying (5) into

Pr(p[i]|p[i�1]) =
e
��(p

[i]
,p

[i�1]

)

2

+b

idx(p[i])

P
j

e��(sj ,p
[i�1]

)

2

+bj

, (9)

where idx(s) returns the index of a song in the song col-
lection (e.g. idx(s

j

) = j). Equation (6) - (8) need to be
changed accordingly. We call this model boosted-LME and
the original model unboosted-LME. For brevity, we use the
unboosted-LME for all mathematical derivations in this pa-
per, but use the boosted-LME in the experiments.

3.2 Training and Lack of Scalability
The LME is typically trained using stochastic gradient,

with the gradient for the log likelihood of any transition
pair (s

a

! s
b

) expressed as

@l(s
a

, s
b

)
@X(s

i

)
= {i=a}2

"
�!
�(s

a

, s
b

)�
P|S|

j=1

e��(sa,sj)
2�!
�(s

a

, s
j

)

Z(s
a

)

#

� {i=b}2
�!
�(s

a

, s
b

) + 2
e��(sa,si)

2�!
�(s

a

, s
i

)
Z(s

a

)
, (10)

where
�!
�(s

a

, s
b

) denotes X(s
b

)�X(s
a

). Note that the com-
putation of Z(s

a

) involves summing over |S| terms.
In each iteration of stochastic gradient descent, the algo-

rithm sequentially traverse all the transition pairs (s
i

! s
j

)
in D. To be more specific, it first picks a from-song s

i

, com-
putes and accumulates gradients for the transition pairs that
have s

i

as from-song, then adds it back to update the em-
bedding and move on to the next from-song. This grouping
by from-song allows that gradients for pairs (s

i

! s
j

) and
(s

i

! s
j

0) can share the computation of Z(s
i

). There are
|S| from-songs, and for each from-song, the complexity for
computing the partition function is O(|S|). Thus, the time
complexity for each iteration is O(|S|2). This causes serious
scalability issue, and training LME on dataset with around
75K songs and 15K playlists took more than two weeks even
for dimensionality d = 2.

3.3 Naive Parallelization
A first approach to speed up training is to parallelize the

algorithm. The most natural approach is to perform the
gradient computation in parallel. In each iteration, we as-
sign each thread/process an approximately equal number of
from-songs, and let it be responsible for the gradients that
are associated with those from-songs. When it comes to the
implementation of this method, there is a distinction be-
tween shared-memory setting and distributed-memory set-
ting.
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Figure 1: Time for computing the embedding
on yes big with respect to number of cores used
for shared-memory (left) and distributed-memory
(right) parallelization. The di↵erence in runtime for
1 core result from di↵erent hardware used in the two
experiments.

In the shared-memory parallelization, all threads share the
same copy of the parameters (in our case, the embedding
matrix X itself) to learn in main memory. A read-write
lock ensures consistent access to X. We implemented the
shared-memory parallelization with pthread, and tested it
on an eight-core machine. A typical time-against-number-
of-cores curve is shown in Fig. 1 (left), showing a close to
linear speedup. However, the cost of a multi-core CPU goes
up superlinearly with respect to the number of cores, and
locking X will become a bottleneck as the number of cores
increases.

In a distributed-memory architecture, where multiple ma-
chines connected via a network are used, it is easier to get
a large number of processors. However, the communication
overhead is typically larger. We implemented the algorithm
using the Message Passing Interface (MPI), again letting
each process be in charge of a subset of from-songs. Since
each process now has its own copy of the embedding matrix
X, we need to introduce checkpoints for communication over
network to sync the matrices. At each checkpoint, one mas-
ter process collects all the accumulated gradient from all
the processes, adds them together to update the embedding
matrix, and then redistributes the updated embedding ma-
trix to each process. Each checkpoint for communication
involved one MPI Reduce and one MPI Bcast call. A curve
from one run is plotted in Fig. 1 right. The speedup is much
less than for the shared-memory implementation, and it is
not monotone, let alone linear. In general, network commu-
nication creates large overhead and large variability in the
runtime.

We conclude that naive parallelization provides only lim-
ited benefits and has its own scalability limits. In particular,
the naive parallelization does not reduce the total compu-
tation needed for training, meaning that even under perfect
scaling through parallelization we need to grow the number
of processors quadratically for this O(|S|2) algorithm. In
the next section, we therefore explore a new probabilistic
embedding model that not only enables parallelization, but
also addresses the O(|S|2) scaling.

4. MULTI-SPACE EMBEDDING
The key insight motivating the Multi-space Logistic

Markov Embedding (Multi-LME) proposed in the following
lies in the locality of the data. Generally, songs only have
transition connecting with a small subset of (similar) songs
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Figure 2: Illustration of transitions under Multi-
LME. Gray, blue and orange circles represent real
songs, entry portals and exit portals respectively.
Left: intra-cluster transition from s

a

to s
b

in the
same cluster C

u

. Right: inter-cluster transition from
s
a

in C
u

to s
b

in C
v

. Two portals oexit
u,v

and oentry
v,u

are
used in the process.

(e.g. songs of the same genre). While we would still like to
learn a global transition model, we only need to model these
local transitions in detail, while a coarser model su�ces for
songs that are far away. The Multi-LME exploits this lo-
cality and abstracts far-away song songs behind a narrow
interface that allows them to be processed largely indepen-
dently on di↵erent compute nodes.

The Multi-LME model itself is a probabilistic embedding
model that is trained via maximum likelihood in two steps.
First, we formulate the problem of coarsely partitioning the
songs as a maximum likelihood problem. Second, models
for local sets of songs and their interfaces, called portals, to
remote songs can be solved as largely independent maximum
likelihood problems.

4.1 LME in Multiple Spaces
Suppose, for now, we already have a partition of all songs

S into c clusters {C
1

, C
2

, . . . , C
c

}. How to get this parti-
tion will be explained later. Naively, we could train a sepa-
rate LME on each cluster in fully parallel fashion to embed
its songs in an individual space. This o↵ers a probabilis-
tic model for the intra-cluster transitions. However, we still
need to account for the inter-cluster transitions, since there
is typically still a substantial portion of inter-cluster transi-
tions.

We model these inter-cluster transitions via what we call
portals

1. Portals can be thought of as virtual songs added
to each cluster to connect them. Each cluster has 2(c � 1)
portals, half of which are entry portals from the other c� 1
clusters and the other half are exit portals to the other c�1
clusters. We use oentry

u,v

/oexit
u,v

to denote the entry/exit portal
in cluster C

u

from/to cluster C
v

. We also use O
u

to denote
the set of portals in C

u

.
With the help of portals, it it now possible to model inter-

cluster transition in a two-step fashion: suppose we want to
do the transition (s

a

! s
b

), with s
a

2 C
u

and s
b

2 C
v

as
shown in Fig. 2 (right). The Markov chain first transitions
from s

a

to the exit portal oexit
u,v

to cluster v in cluster u
(colored orange). It then transitions with probability 1 to
the entry portal oentry

v,u

from cluster u in cluster v (colored
blue). From there, the chain takes a second step to go to s

b

.

1The name portal is inspired by the video game Portal
by Valve Corporation. A illuminating video that explains
the idea can be found on their website http://store.

steampowered.com/video/400.

Figure 3: Illustration of the e↵ect of portal trick
on the transition probability matrix for the case
of three clusters. We assume the songs within
the same cluster are grouped together. The intra-
cluster transitions (diagonal blocks) are decided by
the local LME. The inter-cluster transitions (o↵-
diagonal blocks) are rank-one approximated by the
outer product (denoted by ⌦) of an exit vector and
an entry vector.

This means that Pr(p[i]|p[i�1]) is modeled as the product of
Pr(oexit

u,v

|p[i�1]) and Pr(p[i]|oentry
v,u

), each of which depends on
its embedding in its own space. More specifically, we have

Pr(p[i]|p[i�1]) =
e�||X(o

exit

u,v )�X(p

[i�1]

))||2
2

P
s2Cu[Ou

e�||X(s)�X(p

[i�1]

)||2
2

· e�||X(p

[i]
)�X(o

entry

v,u )||2
2

P
s2Cv[Ov

e�||X(s)�X(o

entry

v,u )||2
2

,

if p[i�1] 2 C
u

, p[i] 2 C
v

and u 6= v. (11)

Adding portals does not change the representations of the
intra-cluster transition by much. Intra-cluster transition still
takes only one-step. As shown in Fig. 2 (left), we go directly
from s

a

to s
b

in cluster u. A slight di↵erence is that, when
it comes to the partition function, we also need to consider
the contribution of the portals. Formally, we have

Pr(p[i]|p[i�1]) =
e�||X(p

[i]
)�X(p

[i�1]

))||2
2

P
s2Cu[Ou

e�||X(s)�X(p

[i�1]

))||2
2

,

if p[i�1] 2 C
u

and p[i] 2 C
u

. (12)

Adding popularity terms to equation (11) and (12) for
both songs and portals is straightforward.

Figure 3 summarizes and further illustrates the structure
of the portal model. Denote with P exit

u,v

the length-|C
u

| exit
vector that contains Pr(oexit

u,v

|s), 8s 2 C
u

, and with P entry

v,u

the
length-|C

v

| entry vector that contains Pr(s|oentry
v,u

), 8s 2 C
v

.
Then the |S| ⇥ |S| transition probability matrix that con-
tains all the Pr(s

j

|s
i

) is structured as illustrated in Fig. 3:
diagonal blocks that govern the intra-cluster transitions are
represented by their local LMEs; any o↵-diagonal block that
stands for inter-cluster transitions can be seen as a rank-1
approximation by the outer product of an exit vector P exit

and an entry vector P entry.
Finally, to verify that the Multi-LME is a valid proba-

bilistic model, the sum of transition probabilities to all the
songs in the collection must always be upper-bounded by 1.
Assuming p[i�1] 2 C

u

,
X

s2S
Pr(s|p[i�1]) =

X

s2Cu

Pr(s|p[i�1])+
X

s/2Cu

Pr(s|p[i�1])
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=
X

s2Cu

Pr(s|p[i�1])+
X

Cv,v 6=u

X

s2Cv

Pr(s|p[i�1])

=
X

s2Cu

Pr(s|p[i�1])+
X

Cv,v 6=u

X

s2Cv

Pr(oexit
u,v

|p[i�1]) Pr(s|oentry
v,u

)

=
X

s2Cu

Pr(s|p[i�1])+
X

Cv,v 6=u

Pr(oexit
u,v

|p[i�1])
X

s2Cv

Pr(s|oentry
v,u

)


X

s2Cu

Pr(s|p[i�1])+
X

Cv,v 6=u

Pr(oexit
u,v

|p[i�1])
X

s2Cv[Ov

Pr(s|oentry
v,u

)

=
X

s2Cu

Pr(s|p[i�1])+
X

Cv,v 6=u

Pr(oexit
u,v

|p[i�1])


X

s2Cu[Ou

Pr(s|p[i�1])

=1. (13)

The fact that it is not equal to 1 is because our model assigns
some probability to transitions from real songs to entry por-
tals and transitions that make more than one pass through
portals. We allowed them for the convenience of implemen-
tation. Note that this approximation is conservative, since
any probability or likelihood we compute is actually a lower
bound of the true value. We argue that the impact is mini-
mal as long as the number of portals/clusters is small com-
pared to the number of songs in each cluster. Also, when it
comes to playlist generation, we can always renormalize the
transition probabilities to make them sum to 1.

4.2 Parallelization
The key advantage of the Multi-LME model is that train-

ing can be completely (with respect to both objective func-
tions and parameters) decomposed for each cluster. To see
it, we can write the likelihood on the training sample as

L(D|X) =

|S|Y

i=1

|S|Y

j=1

Pr(s
j

|s
i

)Tij

=
cY

u=1

" |S|Y

i=1

|S|Y

j=1

Pr(s
j

|s
i

)Tij · {si2Cu^sj2Cu}

· Pr(oexit
u,v

|s
i

)Tij · {si2Cu^sj2Cv^u6=v}

· Pr(s
j

|oentry
u,v

)Tij · {si2Cv^sj2Cu^u6=v}
#

4
=

cY

u=1

L(D
u

|X
u

). (14)

D
u

is the local subset of the training sample D restricted to
the songs in cluster C

u

, as computed by Alg. 1. Note that
each L(D

u

|X
u

) depends only on the parameters X
u

, which
is a |C

u

|+2(c� 1) by d matrix representing the coordinates
of the songs and portals in the space of C

u

. To maximize the
entire likelihood L(D|X), we can optimize each L(D

u

|X
u

)
independently.

In practice, one can solve all local LMEs in parallel, with
each single LME running on one node without communicat-
ing with others over the network. If the number of local
LMEs exceeds the number of processors, we find the fol-
lowing scheduling algorithm to be e↵ective [9, p.600-606].
For each of the c LMEs, we associate it with the number
of the nonzero elements in the transition matrix as a load
factor. We then sort these LMEs in descending order of the

Algorithm 1 Build training set for a cluster

Input: Training set D, partition {C
1

, C
2

, . . . , C
c

}
Output: Training set D

u

for C
u

Initialize D
u

as an empty set.
for (s

i

! s
j

) 2 D do
if s

i

2 C
u

^ s
j

2 C
u

then
Add (s

i

! s
j

) to D
u

else if s
i

2 C
u

^ s
j

2 C
v

^ u 6= v then
Add (s

i

! oexit
u,v

) to D
u

else if s
i

2 C
v

^ s
j

2 C
u

^ u 6= v then
Add (oentry

u,v

! s
j

) to D
u

else
Do nothing

end if
end for

load factors. Starting from the LME with biggest load, we
sequentially assign them to the process with least total load.

If we sequentially solve all local LMEs on a single proces-
sor and assuming a fixed number of iterations, the overall
complexity is O(c(max

i

|C
i

| + 2(c � 1))2) for an appropri-
ate value of c, which is much better than the O(|S|2) of the
monolithic LME.

4.3 Multi-Space Partitioning
Finally, we need to resolve how to partition the collection

of songs S into c disjoint clusters. To a first approximation,
we want to create a partition of songs that gives us as many
one-step intra-cluster transitions as possible on one hand.
On the other hand, we would like to have the size of clusters
to be as balanced as possible, so that the whole process
would not be bottlenecked by one big local cluster. Overall,
this preclustering step needs to be e�cient and scale well,
since it will be executed on a single machine.

As shown in [18], the embedding produced by LME forms
meaningful clusters, with songs that have high transition
frequencies being close to each other. This suggests that
LME itself could be used for preclustering.

Consider a small subset of songs S
int

from S, which we call
“internal songs”. All other songs are called “external songs”,
denoted by S

ex

= S\S
int

. We propose a modified LME
objective that models transitions between internal songs as
usual, and aggregates transitions to external songs behind
special objects called“medleys”M = {m

1

,m
2

, . . . ,m
c

}. We
consider c medleys, one for each cluster, which are points in
embedding space like portals. Suppose we have a mapping
f(·) that maps a external song to a medley. Then our entire
training playlist dataset or training transition pairs D can
be rewritten into a new one D0 by replacing any external
songs s with its medley f(s) and only keeping transitions
that involve at least one internal songs.

We then train an LME on this new dataset with |S
int

|
real songs plus c medleys. Once the embedding is trained,
we can reassign each external songs to a medley that further
maximizes the training likelihood. For an external song s 2
S
ex

,

f(s) = argmax
m2M

Y

(s!s0)2D
s02S

int

⇥
Pr(s0|m)

⇤
T

idx(s)idx(s0)

·
Y

(s0!s)2D
s02S

int

⇥
Pr(m|s0)⇤Tidx(s0)idx(s) , (15)
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Algorithm 2 LME with medleys

Input: Training set D, internal and external song collec-
tion S

int

and S
ex

.
Initialize f(·) as random mapping from external songs to
medleys.
while have not converged do

Use Alg. 3 to build training set with medleys D0.
Train LME on D0.
Use equation (15) to update mapping f(·).

end while

with transition probabilities given by the LME. This can be
done by simply traversing all the medleys.

Training the LME and reassigning external songs to med-
leys can be alternated to greedily maximize likelihood. This
algorithms is summarized in Algs. 2 and 3. Once the al-
gorithm converges, we do the following to assign each song
into a cluster:

• For an internal song, assign it to the cluster repre-
sented by its closest medley in the embedding space.

• For an external song s that has transitions with inter-
nal songs, assign it to the cluster represented by its
medley f(s).

• For an external song that does not have transitions
with internal songs, we iterate through all clusters and
add the external song with the closest connection to
the current cluster. The iteration ends when all exter-
nal songs have been assigned.

There are a few tweaks we used in our implementation
that help improve the performances. First, we select the
songs with the largest number of appearances as internal
songs. Second, we stop the two-step algorithm when less
than 0.5% of the external songs that have transitions with
internal songs change its medley compared to the last itera-
tion. Third, we choose to train an unboosted LME as empir-
ically it gives more balanced clustering results, which is good
for parallelization to be discussed in later sections. Fourth,
we fix the dimensionality to be 2 to make the precluster-
ing phase as fast as possible. Fifth, each LME run except
the first one is seeded with the embedding produced by the
previous iteration.

The number of points that need to be embedded in each
LME run is |S

int

| + c, so the complexity of each LME it-
eration is O((|S

int

| + c)2). As we control |S
int

| to be less
than 10% of S, this is acceptable. Also, because of seed-
ing, later LME runs take much less time than earlier runs,
as most of the vectors are already near its optimal position
at initialization. Usually it takes less than 20 LME runs to
converge.

There are other algorithms/packages that could be used
for preclustering, and we explore the following two in the
following experiments:

1. Spectral Clustering [13] can be used to cluster an undi-
rected graph. The main routine of spectral clustering
is a eigenvalue decomposition on the graph Laplacian
matrix. Our playlist data forms an undirected graph
if we deem each song as a vertex, and transitions be-
tween songs as undirected edges associated with the
frequency as the weight. We need to run the kmeans
phase of the algorithm several times to pick the most
balanced partitioning.

Algorithm 3 Build transition pairs with medleys

Input: Training set D, internal and external song collec-
tion S

int

and S
ex

, external song to medley mapping f(·).
Output: New training set with medleys D0.
Initialize D0 as an empty set.
for (s

i

! s
j

) 2 D do
if s

i

2 S
int

^ s
j

2 S
int

then
Add (s

i

! s
j

) to D0

else if s
i

2 S
int

^ s
j

2 S
ex

then
Add (s

i

! f(s
j

)) to D0

else if s
i

2 S
ex

^ s
j

2 S
int

then
Add (f(s

i

) ! s
j

) to D0

else
Do nothing

end if
end for

yes small yes big yes complete

Appearance Threshold 20 5 0

Num of Songs 3,168 9,775 75,262

Num of Train Trans 134,431 172,510 1,542,372

Num of Test Trans 1,191,279 1,602,079 1,298,181

Uniform baseline -8.060856 -9.187583 -11.229025

Unigram baseline -7.647614 -8.635369 -9.013904

Bigram baseline -7.332255 -8.850634 -8.917027

Table 1: Statistics and baselines of the playlists
datasets.

2. METIS [7] is a popular software package that does
undirected graph partitioning by using a hierarchical
coarsening and refining algorithm as well as some finely
tuned heuristics. It is a very fast and highly optimized
implementation.

4.4 Implementation
We have implemented two versions of Multi-LME. One

is a single-process version, which is written in C and se-
quentially solves all local LMEs in the second phase. The
other one is an MPI version, which is implemented in C
with Open MPI [3]. It dispatches the LMEs in the sec-
ond phase to di↵erent processes. MPI allows the program
to be run on both shared-memory (a multi-core machine)
and distributed-memory (cluster of machines) setting, and
it handles communication transparently. For both versions,
we use the LME-based algorithm as the default precluster-
ing method. We also o↵er the option to take partitioning
results produced by other programs as an input file. The
source code is available at http://lme.joachims.org.

4.5 Extension and Generalization
The portal trick for parallelization can also be applied

more generally to the family of models defined in Section
3. The key modification is to introduce portals (potentially
di↵erent portals for di↵erent types of items), and rewrite the
conditional probability Pr(y|x) as Pr(y|oentry) · Pr(oexit|x).
Then the embedding problem breaks up into several inde-
pendent and much smaller problems in separate spaces. For
the preclustering phase, one can come up with a problem-
specific algorithm, or just use the general purpose clustering
methods discussed in the Section 4.3.

5. EXPERIMENTS
The following experiments analyze training e�ciency and

prediction performances of the Multi-LME on datasets of
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Figure 4: A plot of a multi-spaced embedding pro-
duced by Multi-LME with d = 2 and c = 9 for yes big .
Gray points represent songs. Blue and orange num-
bers represent entry and exit portals respectively,
with the number itself denoting the cluster it is
linked with.

di↵erent sizes. The monolithic LME will serve as the key
baseline. We also explore the e↵ect of di↵erent precluster-
ing methods, and how robustly the model behaves under
di↵erent parameter choices.

We evaluate on the playlists datasets collected from
Yes.com that is described in [18]. Yes.com is a website
that provides radio playlists of hundreds of stations in the
United States. Its web-based API2 allows user to retrieve the
playlists played in last 7 days at any station in the database.
Playlists were collected without taking any preferences on
genres. Preprocessing that keeps songs whose number of
appearance is above certain threshold o↵ered three datasets
with di↵erent number of songs, namely yes small (thresh-
olded by 20), yes big (thresholded by 5) and yes complete

(thresholded by 0, everything is kept). Then each of the
dataset was divided them into a training set and a testing
set, with the training set containing as few playlists as possi-
ble to have all songs appear at least once. The key statistics
about the datasets are given in Table 1, and the datasets
are available at http://lme.joachims.org.

Unless specified otherwise, our experiments use the fol-
lowing setup. Any model is first trained on the training set
and then tested on the testing set. The test performance
is evaluated by using the average log-likelihood. It is de-
fined as log(Pr(D

test

))/N
test

, where N
test

is the number of
transitions in testing set.

Following [18], our baselines include uniform, unigram
and bigram (with Witten-Bell smoothing) models. We al-
together list the baselines on three datasets in Table 1. A
detailed comparison against these baseline is not of great in-
terest in this paper, since the test log-likelihood of all mod-
els is substantially above these baselines. The baselines were
largely added to provide a meaningful scale for performance
di↵erences.

The experiments were run on a cluster of computers, with
each single one having a dual-core Intel Xeon CPU 3.60GHz
and 8Gb RAM.

5.1 What does the multi-space embedding with
portals look like?

To get an idea of how the songs and portals distribute in
the multiple spaces, we first provide the following qualitative

2

http://api.yes.com
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Figure 5: Test log-likelihood (left) and run time
(right) for various settings of c and d on yes small .
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analysis. We took the yes big dataset, set dimensionality of
embedding d = 2 and number of clusters c = 9, and then
plotted all the embeddings in their own 2D plane. The plots
can be seen in Fig. 4.

There are several interesting things worth pointing out.
First, di↵erent spaces have di↵erent scales, as can be seen
from the di↵erent granularities of x and y axes. This is the
result of independent training, and it shows that by intro-
ducing portals, we add links between clusters without en-
forcing any constraints to coordinate them. Second, some
clusters (e.g. Cluster 1 and 7) exhibit inner structure with
subclusters, which suggest that it is possible to further par-
tition into more clusters without hurting model fidelity. Fi-
nally, it can be observed that most of the portals are dis-
tributed in the peripheral areas of the mass of songs. This
makes sense, as the portals represent songs that are outside
the current cluster.

5.2 How does Multi-LME compare to the orig-
inal LME?

As the first question in our quantitative analysis, we want
to explore whether the decoupled training in multiple space
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substantially degrades model fidelity. We trained the Multi-
LME with various choice of d and c (c = 1 means the original
LME with no partitioning), on both yes small and yes big .
We used the LME-based preclustering method, with 8% of
songs chosen as internal songs. The test log likelihoods are
reported in Figs. 5 and 6 left. As can be seen, although
the curves tend to go down as we increase the number of
clusters, they are still high above the three baselines even
for the worst case. Note that for yes small the use of c = 200
clusters is excessive, and we even have more portals than real
songs in some clusters. The small loss in model fidelity is
well acceptable.

How does the runtime scale with the number of clusters?
To avoid any outside influence on the runtime, each experi-
ment was run sequentially on a single machine and process.
The time reported here are the time spent on preclustering
phase plus the average time for the local embeddings accross
all clusters. This gives us an idea of how fast training can be
done given enough machines so that all individual embed-
dings can be run at the same time. Figs. 5 and 6 right, show
that a substantial speedup until a sweet spot at around 100
clusters is reached. After that runtime increases again, as
preclustering and the number of added portals slows down
training. The bumps are largely due to some runs taking
a larger number of LME iterations than other due to nu-
merical issues with the stopping criterion. As expected, the
speedup is bigger the larger the dataset and the larger the
dimensionality.

The Multi-LME can also handle the yes complete dataset
with 75K songs, which is largely intractable using conven-
tional LME training. Here, we fix the ratio of internal songs
for preclustering to be 0.03. Fig. 7 shows the results. Note
that we are missing results for c = 1 and d > 2 — even for
d = 2, training original LME with a single process already
took us more than two weeks. For the test log-likelihood
on the left, we can see that Multi-LME is even slightly bet-
ter than the brute-force training. We conjecture that the
added modeling flexibility of not having to fit all points into
a single metric space can improve model fit. In terms of
runtime, the Multi-LME improves over the LME from more
than two weeks to just a few hours. There is a standalone
single red point, which stands for the naive parallelization
in the distributed memory setting on 50 cores for d = 2.
The Multi-LME is substantially faster when using the same
number of processors.
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Figure 9: Test log-likelihood on yes big , with d = 5
and the preclustering method varied. The ratio of
internal songs is set to 0.03 for LME-based method.

5.3 What are the effects of ratio of internal
songs in preclustering phase?

We explore how many songs are needed in the precluster-
ing stage. For a range of di↵erent numbers of clusters we
vary the ratio of internal songs in the preclustering phase.
The resulting curves are shown in Fig. 8. As expected, using
more internal songs produces Multi-LME embeddings with
better test log-likelihood. The models with bigger c tends
to need to more internal songs. The curves gradually flatten
once the ratio is above certain threshold, which should be
considered the best ratio.

In practice, the best ratio needs to be tuned for di↵erent
datasets. As in our experiments, 0.08 tends to work well for
yes small and yes big , but for yes complete 0.03 is enough.
This may be due to the fact that a small set of popular songs
are responsible for most of the plays in the playlists dataset.

5.4 What are the effects of different preclus-
tering?

As mentioned in Section 4.3, the preclustering phase can
be replaced by general graph partitioning methods. Here
we investigate how di↵erent methods a↵ect the final test
log-likelihood. For di↵erent methods, we vary the number
of clusters to draw the curves in Fig. 9. Spectral clustering
tends to perform slightly better than the LME precluster-
ing. METIS is the worst, but is still high above any of
the three baselines. The di↵erences between three methods
fairly small.

The comparison does not tell much in some sense, since
for all of the three methods, there are quite a few parameters
that need tuning. The LME preclustering takes the ratio of
internal songs; spectral clustering needs to choose the type
of Laplacian and number of rounds kmeans needs to run;
METIS has its balancing factor and type of algorithms to
use. For the experiments in Fig. 9, these parameters were
left at their default settings.

It is also di�cult to quantitatively compare run time, as
the three method are implemented quite di↵erently. LME
preclustering is implemented in C without use of any non-
standard libraries; Spectral clustering is written in MAT-
LAB, making use of the e�cient eigs function to solve the
eigenvalue decomposition problem; METIS is written in
highly optimized C code. Also, run time varies when dif-
ferent parameters are applied. Qualitatively, we observed
that METIS is almost always the fastest. Depending on the
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size of the dataset, the advantage our method and spectral
clustering may shift.

6. CONCLUSIONS
This paper proposes a probabilistic embedding model that

exploits locality in the data to reduce training complexity
and to permit parallelization. The key idea is to model
highly connected regions in detail, but connect remote re-
gion only through a narrow interface that largely decouples
the training problems. The formulation as a single proba-
bilistic model and its associated maximum likelihood train-
ing objective guides not only how each local model should
be fit and connected to other local models, but also how the
training problem should be split across multiple computer
nodes. Empirical results show orders of magnitude reduced
runtime with at worst slightly reduced, but sometimes even
improved model fidelity.
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