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ABSTRACT
We present a novel learning algorithm, DirectRank, which
directly and exactly optimizes ranking measures without re-
sorting to any upper bounds or approximations. Our ap-
proach is essentially an iterative coordinate ascent method.
In each iteration, we choose one coordinate and only up-
date the corresponding parameter, with all others remain-
ing fixed. Since the ranking measure is a stepwise function
of a single parameter, we propose a novel line search al-
gorithm that can locate the interval with the best ranking
measure along this coordinate quite efficiently. In order to
stabilize our system in small datasets, we construct a proba-
bilistic framework for document-query pairs to maximize the
likelihood of the objective permutation of top-τ documents.
This iterative procedure ensures convergence. Furthermore,
we integrate regression trees as our weak learners in order
to consider the correlation between the different features.
Experiments on LETOR datasets and two large datasets,
Yahoo challenge data and Microsoft 30K web data, show an
improvement over state-of-the-art systems.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Learning

General Terms
Algorithms, Experimentation, Performance

Keywords
Learning to rank, supervised learning, direct optimization,
ranking measures

1. INTRODUCTION
Learning-to-rank aims to automatically build a ranking

model from training data. Training data consists of queries
and documents that are matched with human-labeled rele-
vance scores. In testing, the ranking model yields permuta-
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tions from unseen lists. There are several common ranking
measures, including MAP, Precision, MRR and NDCG [21].

Learning-to-rank algorithms can generally be grouped into
three categories. The first category is the pointwise ap-
proach [13, 16, 32], which assumes that each query-document
pair has a numerical or ordinal score. Ranking is formu-
lated as a classification or regression problem, in which the
rank value of each document is generally computed indepen-
dently as an absolute quantity. Methods in this category are
fairly similar to conventional machine learning algorithms,
and cannot handle pairwise preference and orders.

The second category is the pairwise approach [12, 14, 17,
18, 30], in which the ranked list is decomposed into a set
of document pairs. Ranking is treated as a classification
problem that can determine which document is better than
the other for document pairs. The goal here is to minimize
the number of inversions in ranking. For example, Rank-
Boost [14] plugs the exponential loss of document pairs into
a framework of Adaboost [31]; FRank [35] defines a new
bounded loss function called fidelity; RankNet [5] defines a
logistic loss for document pairs and uses cross entropy as
the loss function, and RankSVM [17, 18] uses SVM to per-
form a binary classification on these instances. However,
the pairwise approach still ignores the information with re-
spect to partial or total orders of retrieved documents. Some
recently proposed algorithms, such as LambdaRank [4] and
LambdaMART [6], yield good performance. They tackle the
problem by defining a smooth approximation to the gradient
of the target cost, instead of searching for a smooth approx-
imation to the target cost itself. McAllester et al. [22] re-
cently proposed a perceptron-like algorithm to directly op-
timize loss functions. When applied to ranking problems,
the method is a pairwise approach that directly optimizes
the ranking measure. Bertsimas et al. [2] models the rank-
ing problem by mixed integer programming, which supports
many commonly adopted ranking measures. It has shown
promising performance on moderate-size data sets, but due
to the restriction of current computing ability, this method
might be difficult to extend to large data sets.

The third category is the listwise approach. In this ap-
proach, the entire ranked list of documents for each query
is treated as a training item. Ideally, the listwise meth-
ods should directly optimize the ranking measures. How-
ever, direct optimization of ranking measures faces a ma-
jor difficulty: the ranking measures are non-convex, non-
differentiable and discontinuous, due to the fact that the
ranking measures are determined by the ranked position of
documents rather than an explicit value of each document’s
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ranking score function. Previous studies partially solved this
problem by using surrogate functions of ranking measures.
These surrogate functions are either not directly related to
ranking measures [8, 19, 28, 39], or a continuous and differ-
entiable approximation or bounds of ranking measures [9,
11, 20, 26, 34, 37, 40, 41, 42]. Nevertheless, there is still
an open question of how to resolve a mismatch between the
objective function used in training and the final evaluation
criterion used to measure the task performance in testing.
The only listwise approach that directly optimizes ranking
measure is the coordinate ascent method proposed by Met-
zler and Croft [23]. However, it uses heuristics to find a
good point and fails to locate the optimal point along each
coordinate.
Our work is mainly inspired by the minimum error rate

training (MERT) algorithm [24] that is widely used in ma-
chine translation. We describe a novel algorithm, Direc-
tRank, which trains the ranking model by directly opti-
mizing the same ranking measures as used in the testing
phase. Our approach adopts the coordinate ascent method,
in which one parameter is chosen for tuning, while others
are kept unchanged. We observe that when the selected
parameter is posed with a small deviation, the ranking mea-
sures would not change unless two documents exchange their
ranks. Then, it is possible to speed up the optimization of
the chosen parameter by only examining those special points
that give rise to a change of ranks of any two documents.
We call these special points jumping points. Any value for
the parameter between two adjacent jumping points corre-
sponds to a constant ranking measure. We therefore propose
a novel line search algorithm that could efficiently enumerate
all jumping points to obtain the optimal interval. Further,
to gain better performance in small datasets, in each itera-
tion we adopt a probabilistic model to help select a point in
the optimal interval such that the likelihood of the objective
permutation of documents is maximized.
The time complexity of DirectRank is shown to be related

to the number of jumping points. By empirical studies, we
show that the number of jumping points is usually so limited
that DirectRank can efficiently enumerate them, and thus
perform very efficiently. As our framework and algorithms
can support arbitrary weak learners (or features), we also
apply them into a regression tree based model for the non-
linear combination of the features. In each iteration, once a
regression tree with respect to the current data distribution
is fitted, we call the line search algorithm to assign a suitable
weight to maximize the ranking measures. This method
proves to be effective in two very large datasets. Last but not
least, our algorithms converge into a local coordinatewise
optimum, but we empirically verify that our algorithm often
finds better solutions than many other systems that use a
convex surrogate loss function.
We mainly focus on optimizing the NDCG measure, which

is the most commonly used in learning-to-rank tasks, though
arbitrary ranking measures can be straightforwardly plugged
into our framework. We compare the performance with sev-
eral state-of-the-art baselines on small data sets provided
by LETOR [27], as well as large datasets, including Yahoo
Challenge data [10] and Microsoft 30K web data1.

1The Microsoft learning to rank dataset is available at
http://research.microsoft.com/en-us/projects/mslr/

2. DIRECTRANK: ANEXACTANDDIRECT
OPTIMIZATION METHOD

2.1 General Framework
Suppose that a set of training queries Qs = {q1, q2, · · · qn}

is given, and a set of documents di= {di1 , di2 , · · · , di,m(qi )}
is retrieved for each qi. Let m(qi) denote the number of re-
trieved documents. We define yi = {yi1, yi2, · · · , yi,m(qi)},
where yij ∈ {r1, r2, · · · , rl}, which represents the relevance
judgment. We define the order rl ≻ rl−1 ≻ · · · ≻ r2 ≻ r1,
where≻means the preference relationship. A T -dimensional
feature vector h(dij |qi) = (h1 (dij |qi), · · · , hT (dij |qi)), is cre-
ated for each query-document pair.

The objective of ranking is to construct a ranking func-
tion f such that for each query, the retrieved documents can
be assigned ranking scores using the function and then be
ranked according to the scores. The learning process turns
out to be that of optimizing the ranking measure which rep-
resents the agreement between the permutation by relevance
judgments and the ranking yielded by a ranking function.
We first define the ranking function using a linear model,

f(h(dij |qi)) = α · h(dij |qi))

where the weight vector α = (α1, α2, · · · , αT ) is the model
parameter. DirectRank can also be applied to non-linear
ranking models, introduced in Section 2.4.

In this paper, we use NDCG as the ranking measure. De-
fine G(dij , yij , qi , f ) for each query-document pair and their
normalized sum N (f ,yi, qi) for each query qi,

G(dij , yij , qi, f) =
2yij − 1

log2(1 + pos(πi,h(dij |qi), f))

N (f,yi, qi) =
1

Zi

m(qi)
∑

j=1

G(dij , yij , qi, f) (1)

where Zi is a normalization factor to guaranteeN (f,yi, qi) ∈
[0, 1], and pos(πi,h(dij |qi), f) denotes the position of dij in
the permutation πi. Given a training query set Qs, NDCG is

denoted by L̂NDCG(f) =
1
n

n
∑

i=1

N (f,yi, qi). Usually, NDCG

is trimmed at a certain ranking level τ , so we can change
m(qi) in Equation (1) to a constant value τ . Our goal is to
search for a model parameter vector α⋆ that achieves maxi-

mum L̂NDCG(f), i.e.,

α⋆ = argmax
α





1

n

n
∑

i=1

1

Zi

∑

dij∈TOPτ (qi)

G(dij , yij , qi, f)





TOPτ (qi) = argmax
topτ

f(h(dij |qi))

where TOPτ(qi) is the top τ documents with respect to
the ranking function f . The objective function above is
difficult to optimize, as it is non-convex, non-differentiable
and discontinuous with respect to α, thus we cannot directly
use gradient ascent algorithms to optimize.

We resort to an iterative coordinate ascent method. For
each iteration, there will be only one coordinate parameter
updated, denoted as αk, while others stay unchanged. The
rationale of this idea is that the ranking function is written
as a one-dimensional linear function,

f(h(dij |qi)) = αk · hk(dij |qi) +
T
∑

t 6=k

αtht(dij |qi)
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Algorithm 1 Coordinate ascent algorithm for direct optimization

Require: Qs = {qi}
n

i=1

1: for Repeatedly choose a parameter αk do

2: for qi ∈ Qs do

3: Call Algorithm 2 for qi
4: // Calculate the NDCG jumping points for qi
5: end for

6: Merge all the jumping points and sort them.
7: Calculate NDCG between the jumping points.
8: end for

9: Get the interval [Lαk
, Rαk

] that maximizes NDCG.
10: Pick the coordinates and corresponding intervals that

lead to the largest NDCG increments.
11: Update the parameter giving the highest likelihood of

top-τ documents for an ranking by human labels.
12: Repeat 1-11 until convergence.

Since hk(dij |qi) is constant with respect to αk, and so is the
second term, we can re-write these two quantities as aij and
bij , and convert the equation above to,

f(h(dij |qi)) = aij · αk + bij
Note that for each document di,j retrieved by each query qi,
there is a linear function of αk. Given an input of αk, each
document will get an output score from this linear function.
The order of such scores actually reflects the order of the
documents which further determines the NDCG value.
This is illustrated in Figure 1, where each of the lines rep-

resents a scoring function for a document. At any point of
αk, the rank of the linear function output scores is equiva-
lent to the rank of the documents. Note that a slight change
of αk cannot lead to a jump of NDCG value, unless it is big
enough to alter the order of the top-τ documents. Such al-
ternation in the order happens only at the point where two
lines intersect. We denote the set of such points as jump-

ing points. In Figure 1, we have ten lines corresponding to
ten documents, which belong to two queries. Intersections
(p1, p2, · · · p12) are jumping points. Theoretically, we can

q✶

q✷

☛❦
♣
✻

♣
✼

♣
✽

♣
�

♣
✾

♣
✁

♣
✸

♣
�
✵

♣
✹

♣
✺

♣
�
�

♣
�
✁

❞✶✶
❞✶✷
❞✶✂
❞✶✄
❞✶☎

◆❉❈●

✆✳✝

✆✳✞

✆✳✟

✆✳✠

❞✷✶

❞✷✷

❞✷✂

❞✷✄

❞✷☎

b
b b b

b

b

b
b b b

b b

✆✳✡

Figure 1: Line search algorithm. The top-τ documents for

each of the two queries are bold. Between each two bound-

aries, the NDCG value is shown. We can see the intervals

between p3 and p5 achieve the best NDCG.

search all the intersections to acquire all possible snapshots

of ranked documents. Because any two non-parallel lines will
form an intersection, the total number of intersections then
is m(qi)

2. When m(qi) is large, this effort is time-consuming
but unnecessary, because in real-world applications we are
merely interested in the rank of the top-τ documents, the
NDCG metric is always truncated to a certain level τ , and
usually τ ≤10. As a result, the jumping point size between
top-τ documents is quite limited, and increase less than lin-
early as the document size increases. This will be examined
by experiments in section 3.3.

Therefore, we can efficiently find all the jumping points
on one coordinate. The coordinate ascent algorithm is de-
scribed in Algorithm 1. For each coordinate, we exploit such
a line search algorithm as following: For each query, we ob-
tain all of its jumping points (Line 2 ∼ 5 in Algorithm 1).
For instance, in Figure 1, (p1, p2, · · · , p5) are the jumping
points of q1, while (p6, p7, · · · , p12) are the jumping points
of q2. Next, the jumping points of all queries are merged and
sorted (Line 6). Then, NDCG can be exactly computed, be-
cause the objective is a stepwise function. Between any two
adjacent jumping points, the top-τ documents of any query
stay unchanged, so does the NDCG value (For example, in
Figure 1, the NDCG will not change between p3 and p10).

In section 2.2, we introduce an efficient line search algo-
rithm, which can quickly enumerate all intervals with opti-
mal NDCG values in each coordinate ascent iteration. In
section 2.3, to alleviate the instability on small training
datasets, we adopt a probabilistic model to maximize the
likelihood of top-τ documents given a set of ranking by
human judgment labels. We progress to DirectRank with
nonlinear ranking functions, by exploiting regression trees
in section 2.4. Finally, in section 2.5, we present a series of
theoretical analysis and proofs on the proposed method with
respect to time complexity, convergence and consistency.

2.2 Searching for Jumping Points
We again use Figure 1 to illustrate the key ideas in the

line search algorithm. Suppose there are only two queries
in the training set, q1 and q2, each of which consists of five
documents that are denoted as d1 = {d11, d12, · · · , d15} and
d2 = {d21, d22, · · · , d25} respectively. We assign their rele-
vance judgments as {1, 2, 0, 1, 2} and {0, 0, 2, 1, 1}. Suppose
we intend to maximize NDCG@3 , and obtain the TOP3 (qi)
on the direction of the k-th coordinate. This means we ap-
ply the coordinate ascent method and search the optimal
value of the k-th parameter αk along the k-th coordinate,
while fixing all other parameters.

Interval < p1 > p1 > p2 > p3 > p4 > p5

Rank 0 d11 d12 d12 d12 d15 d15

1 d12 d11 d11 d15 d12 d12

2 d13 d13 d15 d11 d11 d13

3 d14 d14 d14 d14 d14 d14

4 d15 d15 d13 d13 d13 d11

Table 1: documents of q1 along αk. < p1 means the left side

of p1, while > p1 means the right side of p1, but on the left

side of the next point p2. Bold items denote any changes on

the order of ranked documents.

As shown in Figure 1, (p1, p2, · · · , p5) are the jumping
points of q1, while (p6, p7, · · · , p12) are the jumping points
of q2. Table 1 and 2 respectively show the top-τ documents
selected between those jumping points, and the changes of
rank are noted as bold. Clearly, for a given query, a change

858



< p6 > p6 > p7 > p8 > p9 > p10 > p11 > p12

0 d21 d22 d22 d22 d22 d24 d24 d24

1 d22 d21 d23 d23 d24 d22 d22 d25

2 d23 d23 d21 d24 d23 d23 d25 d22

3 d24 d24 d24 d21 d21 d21 d21 d21

4 d25 d25 d25 d25 d25 d25 d23 d23

Table 2: Ranked documents of q2 along αk. < p6 means

the left side of p6, while > p6 means the right side of p6, but

to the left side of the next point p7. Bold items denote any

changes on the order of ranked documents.

of document rank order happens when two linear functions
of documents intersect at a jumping point. For example, for
q1, its linear functions of d11 and d12 intersect at p1, which
causes a switch of rank between d11 and d12 in Table 1.
Algorithm 2 shows how to precisely compute these points.

First, we use selection sort to determine top-τ documents
with smallest aij , which is the slope of the lines in Figure 1.
This order is actually the rank when αk takes negative infin-
ity (Line 2 ∼ 4 in Algorithm 2). Here we just make sure the
top-τ documents are ranked by the scores. Next, we repeat
the following procedure in order to find the next intersec-
tion that leads to a change of top-τ documents (Line 6 ∼
25). Since the top-τ documents have already been sorted,
for each of the top τ -1 documents, we just calculate their
intersection with the candidate right below it (Line 8 ∼ 13).
On the other hand, for the candidate at the rank of τ , all
the documents below it have to be scanned, because they
might not be sorted, which means any of these documents
might be just below the τ -th candidate (Line 14 ∼ 19). We
choose the minimum one from these intersections, which is
the next jumping point (Line 21). We update the rank ac-
cording to the two intersected documents on this jumping
point (Line 23). Standing on the current jumping point,
we repeat the procedure above to locate the next jumping
point. Such procedure does not terminate until all the jump-
ing points are obtained. For example, as for q1 in Figure 1,
its jumping points will generate from left to right as a se-
quence: p1 → p2 → p3 → p4 → p5. The jumping points of
q1 and q2 are then merged and sorted, and NDCG between
them can be easily calculated. The stepwise NDCG values
are shown at the bottom of Figure 1.
Note that when calculating the NDCG values between the

jumping points, it is completely unnecessary to re-calculate
all the training queries. Instead, since at each jumping point
there are only a very small number of candidates (usually
two) in one query switching their rank order, we can up-
date NDCG values in an incremental manner. We store
the initial NDCG values for each query when αk ← ∞.
Whenever a jumping point is found (Line 21), the NDCG of
the corresponding query is updated only by the rank switch
of the candidates. For example, as shown in Figure 1 and
Table 1, when p2 < αk < p3, the NDCG of q1 is 0.889.
At p3, only d11 and d15 are switched between the rank 1
and 2, and the NDCG for q1 can simply be updated as

0.889 + 1
Z1

(21 − 1)×
[

1
log2(1+2)

− 1
log2(1+1)

]

+ 1
Z1

(22 − 1)×
[

1
log2(1+1)

− 1
log2(1+2)

]

= 1.

There are two ways to choose the coordinate in each iter-
ation. One is cyclic, which repeatedly update every coordi-
nate in the cycle. The other is greedy, which within a single
iteration, all coordinates are tried ahead, and then Direc-
tRank updates the parameter with the maximum NDCG.

Algorithm 2 Line search algorithm

Require: q, d = {di}, and τ
1: ℓ← {lines for each di following Formula 5}
2: Sτ ←{ℓi|ℓi ∈ ℓ, with top-τ smallest slope} ⊲ top-τ

documents
3: Sb ← {ℓi|ℓ− Sτ} ⊲ the documents out of top-τ
4: CurrP ← −∞ ⊲ Current jumping point
5: JumpS ← {} ⊲ All jumping points
6: repeat

7: CandS ← {}
8: for i = 1 to |Sτ | − 1 do

9: p← Intersection(Si
τ ,S

i+1
τ )

10: if p > CurrP then

11: CandS ← CandS + {p}
12: end if

13: end for

14: for i = 1 to |Sb| do

15: p← Intersection(S|Sτ |
τ ,Si

b)
16: if p > CurrP then

17: CandS ← CandS + {p}
18: end if

19: end for

20: if CandS 6= {} then

21: Currp = min{CandS} ⊲ get next jumping point
22: JumpS ← JumpS + {Currp}
23: Update Sτ , Sb ⊲ exchange the lines associated

with the current jumping point
24: end if

25: until CandS = {}
return JumpS

We observe that the greedy approach shows no obvious im-
provement compared to the cyclic way, and is much slower.
So we choose the cyclic pattern for experiments.

2.3 Determining the Optimal Value of Model
Parameter

Since NDCG is a stepwise function with a single weight
αk, thus there are infinite alternative points in a NDCG-
optimal interval. We found that, in small data sets a suitably
chosen point improves the stability of our framework, while
in big data sets, e.g. Yahoo challenge and Microsoft 30K
web, simply taking the middle point of the best interval
runs very well. Thus, our system adds the technique in this
subsection for small data sets by default, and removes it for
big data sets to gain a higher speed.

We exploit a surrogate to choose a point within the inter-
val. DirectRank adopts a probabilistic model in which the
only parameter is αk, and then maximizes the likelihood over
an objective permutation. Note that the objective permu-
tation is defined merely based on the human-labeled judg-
ment scores and fixed during the training. Here we use the
Plackett-Luce model [25], although any continuous surrogate
of NDCG can be used. The Plackett-Luce model treats the
ranking procedure as a random selection sequence without
replacement. Similar to [8], we define the log probability of
the top-τ documents for a specific permutation as,

logPαk
(m(πi); qi, f) =

τ
∑

j=1

log
exp(fαk

(di,µ(πi,j)))
m(qi)
∑

l=j

exp(fαk
(di,µ(πi,l)))

where j and l are the rank indices and µ(π, j) denotes the
document of the position j in a permutation π. The log
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probability is continuous, differentiable, and concave [3]. We
maximize the log likelihood of the objective permutation by
the binary search method [1]. This surrogate function opti-
mization is still performed within the best-NDCG interval.
Therefore, it is basically a supplementary step for the direct
NDCG optimization in section 2.2, in order to distinguish
the points with the same NDCG.

2.4 Regression Trees as Weak Learners
In this section, we describe how to integrate regression

trees into our framework effectively and conveniently. We
follow a stage-wise strategy. That is, Algorithm 2 is invoked
to tune the optimal weight after each new tree is generated.
Here, we use a least-square regression tree, called the MART
tree, which is mainly introduced in [15].
MART, one of powerful regression tree based models, aims

to construct an ensemble of tree-based weaker learners htree

such that the resulting new scoring function f(di) =
∑N

t=1

ht
tree(di)·αt is as close to the objective ri as possible with the

measure of square loss. Here di denotes a document, and ri
is the relevance by human judge of a document in learning-
to-rank task. The MART method bypasses the difficulties of
combinatory optimization of ranking by regression. When
weak learners are rich enough, such as with deeper depth
of trees, generated models from MART are indeed capable
of approaching the regression objective very well, and hence
lead to better performance than other linear models.
However, MART was not designed to optimize the ob-

jective, and Friedman [15] suggests the tree’s weight αt be
tuned towards specific goals. A similar approach also ap-
peared in [43], where another type of regression tree is con-
structed and combined with a brute search line search. In
that work, no significant improvements have been observed.
In our framework, we use MART trees as our weak learners,
and in order to enhance the stability, we follow the trick
in [43] to restrict the new weight αk in range [a, b], where
we empirically set the hyper-parameters between [0.1, 0.5] in
our experiments. If the output of Algorithm 2 is beyond the
range, we just take the border values.

2.5 Complexity, Consistency andConvergence
We give an empirical analysis on the complexity of the line

search algorithm (Alg. 2). Line 8∼13 and Line 14∼19 show
that to locate each jumping point, the line search algorithm
goes through all the documents once. For a query with m
retrieved documents, the proposed algorithm enumerates all
jumping points along one coordinate in O(m · v), where v
is the number of jumping points. v is related to the data
distribution, which is hard to be denoted as a function of
m. But we can study the empirical relation between them
in Table 12. In LETOR, when m equals 100, v/m is around
0.5; when m increases to 1000, this ratio decreases to around
0.062. The runtime of DirectRank is in Table 13.
We compare our algorithm to the exhaustive line search.

For simplicity, we just consider one query. The latter enu-
merates all the intersections and sorts them, then computes
ranking measures from left to right incrementally. Its time
complexity is O(m2 +m2 log(m2) +m2) = O(m2 log(m2)).
It is easy to see that the exhaustive algorithm runs faster
than DirectRank when v is approximately O(2m logm).
According to [38], the principle of empirical risk minimiza-

tion is consistent if it provides a sequence of loss functions
for which both expected risk and empirical risk converge to

the minimal possible value of the expected risk. Apparently
directly optimizing ranking performance measures such as
NDCG is an example of empirical risk minimization. To
make our presentation easier, let X̄ be the space of the fea-
ture vectors in which the documents are represented and
are typically derived from the query-document pairs. Let
Ȳ be the space of the relevance scores each document re-
ceives. Thus for any query q that sampled from the query
space Q, we have a list X = (X1, · · · ,Xm) ∈ X := X̄
of document feature vectors, and a corresponding list Y =
(Y1, · · · ,Ym) ∈ Y ∈ Ȳ of document relevance scores. Then
the expected NDCG measure can be written as

LNDCG(f) =

∫
Q

∫
X

∫
Y
N (f(X),Y,q)dP(X,Y|q)dP(q)

Following the standard proof of empirical risk minimiza-
tion [38], it can be shown that directly optimizing the em-
pirical NDCG measure is consistent as stated below.

Theorem 1. Denote f∗
n as the ranking function that maxi-

mizes the empirical NDCG L̂NDCG(f) over n query-document

pairs, and f∗ as the ranking function that maximizes the ex-

pected NDCG measure LNDCG(f) for a fixed but unknown

distribution over the probability space of query-document pairs.

Then LNDCG(f
∗
n)→ LNDCG(f

∗) as n→∞.

The empirical NDCG is non-convex, non-differentiable and
discontinuous, but we can prove the convergence of the pro-
posed coordinate ascent algorithm as stated below.

Theorem 2. The proposed coordinate ascent algorithm con-

verges to a set of local coordinatewise maximum solutions.

The proofs for both theorems are given in [33].
Even though consistent, DirectRank has a hard time find-

ing the ranking function that is the solution of the global
maximum of the empirical NDCG measure. The consistency
of a family of listwise surrogate functions for the NDCG
measure is proved in [29]. Optimizing the empirical concave
surrogate objective turns out to be a convex programming
problem with considerable computational advantages and
the guarantee of the global optimal empirical surrogate ob-
jective (but not the optimal empirical NDCG measure), and
for which learned ranking functions remain consistent. How-
ever, in practice, the size of the training dataset is always
limited and finite, the ranking function learned by optimiz-
ing listwise surrogate functions do not correspond to even a
local coordinatewise maximum solution of empirical NDCG
measure, and the ranking function learned by directly opti-
mizing the empirical NDCG measure does correspond to a
local coordinatewise maximum solution.

The experiments we conducted below show that Direc-
tRank not only always reaches a higher NDCG measure on
training data than other baselines whose surrogate objec-
tives are concave, but also gives a higher NDCG measure
on test data. This shows that the local optimal problem of
directly optimizing ranking performance measures is less se-
rious than the mismatch between the training objective and
the test objective introduced by a surrogate objective.

3. EXPERIMENTAL RESULTS
We study the performance of the proposed algorithm in

both small and large datasets. We first evaluate DirectRank
with a linear ranking function. We try to clarify two is-
sues: (1) DirectRank often reaches higher ranking measures
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Algorithm @1 @3 @5 @8 @10
DirectRank 33 44 44 42 48

SmoothRank 30 31 35 33 31
ListNet 27 29 28 33 30

AdaRank-MAP 25 22 23 23 24
AdaRank-NDCG 21 14 14 14 13

SVM-MAP 18 20 20 17 16
RankBoost 15 17 15 19 18
RankSVM 14 18 17 15 16

Table 3: Winning numbers of NDCG on LETOR 3.0

on training data than other baselines with surrogate objec-
tives. (2) DirectRank proves to be efficient in runtime and
stable in handling large datasets. Moreover, we compare the
regression-tree version of DirectRank with LambdaMART,
the champion of Yahoo Learning-to-rank Challenge.

3.1 Experiments with linear ranking functions
In this subsection, we restrict the ranking function of Di-

rectRank to a linear model and conduct a series of exper-
iments on Microsoft LETOR datasets, which are relatively
small, as well as two large datasets, including Yahoo Chal-
lenge data and Microsoft 30K web data.

3.1.1 Experiments on Small Datasets
The LETOR datasets website released several benchmark

datasets, baselines and evaluation tools. We evaluate Direc-
tRank on all nine datasets in LETOR. For each datasets, five
fold partitions for cross validation and their baseline results
have been published.
We compare DirectRank with several state-of-the-art learn-

ing to rank algorithms in LETOR, as shown in Figure 2.
We train our models on NDCG@5 only and evaluate them
on NDCG@1∼NDCG@10. We repeat our training proce-
dure 50 times with different initial parameters. Similar to
other LETOR baselines, we choose the iteration with the
best MAP of validation sets for testing.
Figure 2 provides the the average results of five folds for

different learning to rank algorithms in terms of NDCG at
each of the first 10 truncation levels. Since these algorithms
perform differently on different datasets, to evaluate the
overall performance, we use the concept of winning num-

ber Wi that is introduced by Liu [21] for each algorithm,
which counts the number of how many times the algorithm
beats other algorithms over all datasets.

Wi =
n
∑

j=1

m
∑

k=1

I(NDCGi(j) > NDCGk(j))

where n is the number of datasets, k is the indexes of com-
pared algorithms. The larger Wi is, the better the algorithm
performs. Due to the different numbers of baseline algo-
rithms in LETOR 3.0 and 4.0, we present winning numbers
separately in Table 3 and Table 4. For LETOR 3.0, n = 7
and m = 7; for LETOR 4.0, n = 2 and m = 5.
From Table 3, we observe that SmoothRank [11] and List-

Net [8] are the best two baseline algorithms. And gener-
ally speaking, listwise algorithms outperform pairwise algo-
rithms, except AdaRank-NDCG. On LETOR 3.0 datasets,
DirectRank ranks highest on all NDCG levels. For LETOR
4.0 in Table 4, DirectRank wins except on NDCG@1.
From Figure 2, we can see that out of the nine LETOR

datasets, there are six datasets for which DirectRank gen-

Algorithm @1 @3 @5 @8 @10
DirectRank 8 10 10 10 10

ListNet 3 6 5 7 6
AdaRank-MAP 1 3 3 2 2
AdaRank-NDCG 4 5 5 5 5

RankSVM 4 4 3 2 3
RankBoost 9 4 4 4 4

Table 4: Winning numbers of NDCG on LETOR 4.0

Yahoo Microsoft
Feature sizes 519 136

Training queries 19k 31k
Total retrieved doc. 473k 2M
Avg. retrieved doc. about 23 about 72

Table 5: Statistics of Yahoo and Microsoft Data

erally gives the best results, including TD2003, NP2004,
TD2004, OHSUMED, MQ2007 and MQ2008.

Compared with other algorithms, DirectRank performs
more stably. For example, AdaRank-MAP is the best base-
line on HP2004, but it does not fit well in TD2003 and
NP2004. SmoothRank generally performs better than other
baselines except on TD2003, in which SmoothRank is ranked
in the middle. In comparison, DirectRank generally achieves
relatively good performance on most of the datasets.

3.1.2 Experiments on Large Datasets
Using Yahoo Challenge Data and Microsoft 30K web data

(Table 5), we evaluate DirectRank on accuracy, efficiency
and stability. To be consistent, we follow the evaluation ap-
proach of Yahoo Challenge, adopting its NDCG formula on
both datasets and using NDCG@10 to be the main evalua-
tion criterion. Microsoft dataset releases five cross validation
folds, so we report the averaged results.

DirectRank randomizes the initial points 20 times, and
picks up the iteration with the best NDCG on the valida-
tion dataset. The winner of the Yahoo Challenge is Lamb-
daMART [6], which combines MART [15] and LambdaRank
[4]. Since we use a linear function in DirectRank in this sub-
section, to have a fair comparison, we compare it with Lamb-
daRank, whose ranking function is also linear. Table 6 shows
that DirectRank outperforms LambdaRank on NDCG@10.
And Tables 6 and 7 report our algorithm performance on Ya-
hoo and Microsoft data. We miss the results of RankBoost in
Table 7 because of the 64G memory limitation. We also com-
pare DirectRank with other baselines, such as SmoothGrad
[20], AdaRank, simple coordinate ascent [23], and Rank-
Boost [14]. In addition, we compare the proposed algorithm
with consistent-RankCosine [29], whose objective is proved
to be a surrogate consistent with NDCG. For LambdaRank,
we adopt the result on the testing set reported on Yahoo
Challenge Workshop. SmoothGrad’s code is from BMRM
(http://users.cecs.anu.edu.au/%7Echteo/BMRM.html). The
results of consistent-RankCosine are generated from the MAT-
LAB program provided by the author of [29]. The rest of
the baselines are acquired from RankLib, an open source
learning-to-rank package written in Java (http://www.cs.
umass.edu/%7Evdang/ranklib.html). We modified the code
to adopt the NDCG formula used in Yahoo Challenge. Di-
rectRank yields a general best performance. Consistent-
RankCosine has a performance close to DirectRank on Ya-
hoo data, and DirectRank’s advantage looks better on Mi-
crosoft data. This might reflect the claim in section 2.5, in
which even a large scale of queries is insufficient to guarantee

861



0.2 

0.25 

0.3 

0.35 

0.4 

0.45 

@1 @2 @3 @4 @5 @6 @7 @8 @9 @10 

N
D

C
G

 

m 

TD2003 
DirectRank 

SmoothRank 

ListNet 

AdaRank-MAP 

AdaRank-NDCG 

SVMMAP 

RankSVM 

RankBoost 

0.5 

0.55 

0.6 

0.65 

0.7 

0.75 

0.8 

0.85 

@1 @2 @3 @4 @5 @6 @7 @8 @9 @10 

N
D

C
G

 

m 

HP2004 
DirectRank 

SmoothRank 

ListNet 

AdaRank-MAP 

AdaRank-NDCG 

SVMMAP 

RankSVM 

RankBoost 

0.41 

0.46 

0.51 

0.56 

0.61 

0.66 

0.71 

0.76 

0.81 

@1 @2 @3 @4 @5 @6 @7 @8 @9 @10 

N
D

C
G

 

m 

NP2004 
DirectRank 

SmoothRank 

ListNet 

AdaRank-MAP 

AdaRank-NDCG 

SVMMAP 

RankSVM 

RankBoost 

0.29 

0.34 

0.39 

0.44 

0.49 

@1 @2 @3 @4 @5 @6 @7 @8 @9 @10 

N
D

C
G

 

m 

TD2004 
DirectRank 

SmoothRank 

ListNet 

AdaRank-MAP 

AdaRank-NDCG 

SVMMAP 

RankSVM 

RankBoost 

0.4 

0.42 

0.44 

0.46 

0.48 

0.5 

0.52 

0.54 

0.56 

@1 @2 @3 @4 @5 @6 @7 @8 @9 @10 

N
D

C
G

 

m 

OHSUMED 
DirectRank 

SmoothRank 

ListNet 

AdaRank-MAP 

AdaRank-NDCG 

SVMMAP 

RankSVM 

RankBoost 

0.66 

0.68 

0.7 

0.72 

0.74 

0.76 

0.78 

0.8 

0.82 

0.84 

@1 @2 @3 @4 @5 @6 @7 @8 @9 @10 

N
D

C
G

 

m 

HP2003 
DirectRank 

SmoothRank 

ListNet 

AdaRank-MAP 

AdaRank-NDCG 

SVMMAP 

RankSVM 

RankBoost 

0.53 

0.58 

0.63 

0.68 

0.73 

0.78 

@1 @2 @3 @4 @5 @6 @7 @8 @9 @10 

N
D

C
G

 

m 

NP2003 
DirectRank 

SmoothRank 

ListNet 

AdaRank-MAP 

AdaRank-NDCG 

SVMMAP 

RankSVM 

RankBoost 

0.38 

0.4 

0.42 

0.44 

0.46 

0.48 

0.5 

@1 @2 @3 @4 @5 @6 @7 @8 @9 @10 mean 

N
D

C
G

 

m 

MQ2007 

DirectRank 

ListNet 

AdaRank-NDCG 

AdaRank-MAP 

RankSVM 

RankBoost 

0.21 

0.26 

0.31 

0.36 

0.41 

0.46 

0.51 

@1 @2 @3 @4 @5 @6 @7 @8 @9 @10 mean 

N
D

C
G

 

m 

MQ2008 

DirectRank 

ListNet 

AdaRank-NDCG 

AdaRank-MAP 

RankSVM 

RankBoost 

Figure 2: The experimental results in terms of NDCG for Letor 3.0 and 4.0

DR LR SG AR CA RB CRC

train .762 – .741 .728 .750 .734 .762

valid .757 – .738 .723 .744 .730 .755

test .760 .757 .739 .729 .745 .732 .761

Table 6: NDCG@10 on Yahoo dataset for DirectRank(DR),

LambdaRank(LR), SmoothGrad (SG), AdaRank (AR), Co-

ordinate Ascent (CA), RankBoost (RB) and consistent-

RankCosine (CRC)

Microsoft DR SG AR CA CRC

train .467 .460 .368 .462 .451
valid .465 .455 .365 .460 .439
test .459 .450 .365 .457 .437

Table 7: Average NDCG@10 on Microsoft datasets for Di-

rectRank (DR), SmoothGrad (SG), AdaRank (AR), Coordi-

nate Ascent (CA), consistent-RankCosine(CRC)

the consistency for those methods with surrogate objectives,
so an algorithm whose optimized objective is the exact rank-
ing measure is more likely to yield a better performance.
As explained in Section 2.1, the NDCG value is usually

truncated by the top-τ documents. Therefore, the pro-
posed algorithm performs especially efficiently on optimizing
NDCG, where the number of jumping points is very small.
Here we also examine the performance of DirectRank on ex-
pected reciprocal rank (ERR) and mean average precision
(MAP), in which documents are usually not truncated by a
certain level. However, as shown in section 2.5, when there
are too many jumping points, DirectRank will be slower
than a simple brute force search. We have two choices to
adapt DirectRank to optimize ERR and MAP. (1) We re-
place Algorithm 2 with the brute force search. Table 8 indi-
cates a competitive performance compared to LambdaRank
and better performance than other baselines on Yahoo Data.
Particularly, this work shared the coordinate ascent frame-
work with [23], in which it fails to find the exact optimum in
each coordinate iteration. This difference might be indicated

DR DR@10 LR AR CA RB

ERR .454 .452 .456 .430 .444 .424

MAP .853 .850 – .841 .849 .848

Table 8: ERR and MAP on Yahoo Challenge test data. Di-

rectRank(DR), DirectRank which optimizes ERR/MAP@10

(DR@10), LambdaRank(LR), AdaRank (AR), Coordinate

Ascent (CA), RankBoost (RB)

@1 @10

MT .7084 .7768

LM .7167 .7791

DirectRank .7199 .7810

Table 9: NDCG scores of tree models on Yahoo Challenge,

including MART (MT), LambdaMART (LM).

from the performance of DirecRank (DR) and coordinate as-
cent (CA) in Table 8. (2) In order to speed this up, we can
also approximate ERR and MAP with a truncation (eg. 10),
for which we observe a performance moderately better than
coordinate ascent (CA) on Yahoo data.

3.2 Experiments with Regression Trees
As tree-based models generally outperform linear models,

we compare our system with two state-of-the-art systems,
MART and LambdaMART on two large datasets. The max-
imum number of trees is set to 1000. In Yahoo data, the
number of leaf nodes is set to 10, and more leaves do not
contribute to the final performance significantly with respect
to the official measure NDCG@10. On Microsoft 30K web
data, we adjust the number of leaf nodes as 10, 30 and 50.

Since our DirectRank is constructed based on MART, the
consistent improvements in two large datasets verify our mo-
tivation. Wu et al. [43] did a similar trial and received
no improvement; we conjecture one of the reasons may be
that the regression trees in MART are less prone to overfit
data than trees in LambdaMART, because we observe that
LambdaMART does boost objective measures quite quickly.
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@1 @10

MT LM DR MT LM DR

10 .4582 .4602 .4894 .4887 .4943 .4985

30 .4823 .4830 .4917 .4994 .4997 .5055

50 .4744 .4883 .4911 .5022 .5006 .5061

Table 10: NDCG score of tree models on Microsoft 30K

web data with varying number of leaf nodes, including

MART(MT), LambdaMART (LM), DirectRank (DR).

DR SM AR LN RB
TD2003 .453 .427 .313 .438 .395
TD2004 .415 .366 .337 .354 .407
HP2003 .916 .848 .813 .847 .914
MQ2007 .446 – .409 .420 .442

Table 11: Training NDCG@5 of DirectRank (DR),

SmoothRank (SR), AdaRank (AR), ListNet (LN) and Rank-

Boost (RB) on different datasets.

Also, DirectRank shows significant superiority to NDCG@1
over Microsoft 30K web data, especially when the number of
leaf nodes is quite small, and in other cases (Table 9 2 and
10) DirectRank still performs slightly better. We find the
average number of documents per query is greatly different
in the two datasets, about 23 in Yahoo dataset and 72 in
Microsoft data. Since MART treats all documents equally,
more documents may in some sense have a negative influence
on the objective NDCG@1; thus, it would be more likely
to acquire improvement by adopting an accurate objective.
When the number of leaf nodes increases, the two baselines
improve significantly in NDCG@1, while our DirectRank is
more stable and effective in performance. Moreover, even
for a small number of leaf nodes, DirectRank works very
well. Finally, MART in [36] gets a higher performance by
using a complete binary tree with different depths, and all
tree-based algorithms here are implemented in a fair manner
by restricting the maximum number of leaf nodes.

3.3 Analysis of Experimental Results
In this section, we use linear models as an example to

analyze DirectRank from the aspects of running efficiency
and stability. We first show that as the document size of
each query increases, the total number of jumping points
does not increase to the same extent. For example, in the
two datasets illustrated by Table 12, each query has about
1000 documents. If we fix the truncation level at 5, and
increase the document size from 50 to 1000, the average
jumping points per query mildly increase, and converge after
the document size is larger than 500. This indicates that a
large amount of documents will never appear in the top 5
list, and do not affect the value of NDCG@5.
Illustrated by Table 6, 7 and 11, DirectRank often achieves

better training NDCG than other baselines using convex sur-
rogates on both small- and large-scale datasets, which sug-
gests a local optimum of direct measure is not necessarily
worse than the global optimum of convex surrogates. This
point is also suggested by McAllester et al. [22]. However,
in the LETOR dataset, in order to prevent overfitting, we
choose parameters using cross validation data. In the larger

2
LambdaMART does not outperform 0.786, officially released by

Yahoo Challenge, maybe because the latter concatenates five training

sets subsampled at 70% with original training data, while this paper

uses the entire training dataset.

Avg. J. P. m = 50 100 200 500 1000
HP2003 44.20 50.42 53.74 64.60 66.32
HP2004 40.76 52.05 59.18 63.09 65.11

Table 12: Average jumping point (J.P.) number per query

with different m. The coordinate is the first feature in the

four datasets. The truncation level is 5.

DR SG AR CA RB CRC
Hours 3.3 0.3 11.8 45.3 24.5 5 days

Table 13: Runtime on Yahoo Challenge data for DirectRank

(DR), SmoothGrad (SG), AdaRank (AR), Coordinate Ascent

(CA), RankBoost (RB) and consistent-RankCosine( CRC)

datasets, the algorithms in comparison show a consistent
performance on both training and testing data.

We implement DirectRank with C++ and run on a single
core with a 2.5GHz Opteron. It takes about 10 minutes for
a single round, which enumerates all 519 features. As shown
in Table 13, given a random starting point, DirectRank con-
verges after around 20 rounds and takes 3.3 hours. Smooth-
Grad [20] is the fastest, but it does not perform as well as
DirectRank in large datasets.

Also, we examine the influence brought by different start-
ing points. We run our program for 100 random initial
points on the two large datasets, and obtain the standard
deviation of NDCG@10, 0.756±0.0023 on Yahoo data, and
0.457±0.0026 on Microsoft data. It shows that our algo-
rithm might not be that sensitive to the initial point, when
the data is large enough.

4. CONCLUSION AND FUTUREWORK
In this paper, we propose a novel line search algorithm

DirectRank in the coordinate ascent framework to exactly
optimize non-smooth ranking measures. In contrast to other
listwise methods, DirectRank can exactly optimize any rank-
ing measures instead of resorting to upper bounds or approx-
imations. DirectRank offers several advantages: efficiency
in training, convergence/consistency guarantees, and high
accuracy in ranking. Combined with regression-trees, Di-
rectRank proves more powerful. Experiments on small- and
large-scale datasets show DirectRank generally outperforms
several state-of-the-art baseline systems.

The current algorithm allows only one parameter for op-
timization per iteration. We are considering combining the
Powell algorithm with our line search to realize a fast multi-
dimensional optimization. When taking regression trees as
weak learners, it is interesting to compare the stage-wise

and leveraging strategies, the latter generating all regression
trees first and then leveraging their weights. We are also
exploring the possibility that the regression trees are con-
structed by optimizing ranking measures directly, instead of
borrowing from an extra regression model. Finally, since it
is now understood that no algorithm that learns a scoring
function using a convex surrogate can be consistent with
respect to ERR and MAP [7], we will further study the con-
sistency of DirectRank on those measures.
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