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ABSTRACT
Composed of several hundreds of processors, the Graphics
Processing Unit (GPU) has become a very interesting plat-
form for computationally demanding tasks on massive data.
A special hierarchy of processors and fast memory units al-
low very powerful and efficient parallelization but also de-
mands novel parallel algorithms. Expectation Maximization
(EM) is a widely used technique for maximum likelihood es-
timation. In this paper, we propose an innovative EM clus-
tering algorithm particularly suited for the GPU platform
on NVIDIA’s Fermi architecture. The central idea of our
algorithm is to allow the parallel threads exchanging their
local information in an asynchronous way and thus updating
their cluster representatives on demand by a technique called
Asynchronous Model Updates (Async-EM). Async-EM en-
ables our algorithm not only to accelerate convergence but
also to reduce the overhead induced by memory bandwidth
limitations and synchronization requirements. We demon-
strate (1) how to reformulate the EM algorithm to be able
to exchange information using Async-EM and (2) how to
exploit the special memory and processor architecture of
a modern GPU in order to share this information among
threads in an optimal way. As a perspective Async-EM is
not limited to EM but can be applied to a variety of algo-
rithms.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining
; I.3.1 [Hardware Architecture]: Graphics processors
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Expectation Maximization; Graphics Processing Unit;
CUDA; Fermi
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1. INTRODUCTION
Leading experts from the data mining community voted

the EM algorithm to be among the top ten algorithms hav-
ing most impact on data mining research [1]. The EM al-
gorithm repeats two operations in a loop: The expectation
operation (E) gradually assigns each sample to the clusters
according to its current likelihood, and the maximization
operation (M) updates the cluster representatives such that
they are optimal for the currently assigned samples. Thus
we can say that EM belongs to the paradigm of alternating
least squares (ALS) algorithms: The E-step determines an
optimal assignment provided that the cluster representatives
are fixed, and the M-step determines an optimal set of clus-
ter representatives under the condition that the sample-to-
cluster assignment is fixed. The classical variant of the EM-
algorithm (called Batch-EM) performs a complete iteration
where the E-operation is executed for every sample. After
this E-phase the cluster representatives are determined in a
separate M-phase. An alternative algorithm called EM with
incremental updates or short Incremental-EM performs the
E-step for a single sample. If the sample changes its cluster
assignment to a sufficiently large degree, the affected cluster
representatives are immediately changed before considering
the next sample. In a non-parallel environment, this modifi-
cation of the algorithm does not cause much computational
overhead. But since the new set of cluster representatives is
usually better than the old set, this algorithm takes consid-
erably fewer iterations until convergence [2].

However, in a massively parallel environment like a GPU
with hundreds of processors, we have to consider that the
update of a cluster representative causes an access to a cen-
tralized data structure. This is undesirable for two reasons:
(1) Global exchange of information is possible only through
the device RAM memory which has a limited bandwidth
and (2) the processes have to be synchronized when con-
currently accessing such global information. This observa-
tion leads us to the idea of Asynchronous Model Updates
(Async-EM). Rather than updating the global cluster rep-
resentatives upon every considerable membership change,
the single processes should collect a certain number of these
updates and update the global cluster representatives often
enough to speed up the convergence but rarely enough to
spare memory bandwidth and avoid synchronization over-
head. We additionally exploit the hierarchical structure of
processors (which are grouped into multiprocessors having
more efficient access to the so-called shared memory), and
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exchange more often the updates of the processes (called
thread group) that run on the same multiprocessor.

Contributions
In this paper, we propose a massively parallel variant of the
EM algorithm suitable for GPU environments. Our main
idea is to make incremental model updates using the expec-
tations obtained in parallel from mini-batches of the whole
data set and to merge all these updates into a global model
update which is used to calculate the expectations in the
next set of parallel mini-batches. To summarize the bene-
fits:

• Fast Convergence. We demonstrate that asynchro-
nous model updates considerably speed up the conver-
gence of the EM algorithm.

• Intelligent usage of memory bandwidth. We
combine the idea of asynchronous model updates with
an efficient algorithm for model consolidation which
exploits the special characteristics of the memory hi-
erarchy of a modern GPU: very fast registers, fast
shared memory allowing for coalescing accesses within
a thread group, and slower global memory.

• Leading to substantial speed-up. Our experiments
demonstrate that the combination of both ideas pro-
vides 720 times speed-up over a single-core CPU imple-
mentation of Batch-EM and still 2 times speed-up over
a state-of-the-art GPU implementation of Batch-EM.

Notations
Clusters are modeled by the Gaussian probability density
function. The conditional probability of an object x given a
cluster C is provided by:

P (x|C) =
1√

(2π)d · |Σ|
· e−

1
2

(x−µ)T ·Σ−1·(x−µ), (1)

with mean µ = (µ1, ..., µd)
T and d× d covariance matrix Σ.

Each cluster is defined by µ, Σ and the weight w which it
has in the overall model. The model C consists of a number
of k such clusters C1, ..., Ck. The overall probability of a
sample x to be generated by the k clusters of the model C
is provided by:

P (x) =
∑

(w,µ,Σ)∈C

w · P (x|(w, µ,Σ)). (2)

The degree (probability) to with which an object x belongs
to a cluster C = (w, µ,Σ) is provided by the Bayes theorem:

P (C|x) = w · P (x|C)/P (x). (3)

In the maximization phase, the model parameters (w, µ,Σ)
of each cluster C are updated according to the formulas:

w= 1
n

∑
x∈D

P (C|x), µ= 1
nw

∑
x∈D

xP (C|x),Σ= 1
nw

∑
x∈D

xxTP (C|x).

(4)

The objective function of the EM algorithm to maximize
the log-likelihood of the data D with respect to the model
parameters C, denoted by LL(D, C) is provided by:

maxLL(D, C) =
∑
x∈D

log(P (x)). (5)

Batch-EM performs a loop until convergence which de-
termines first the cluster memberships P (C|x) of all objects
x ∈ D according to Eq. 3 (E-phase) and after that the model
parameters (w, µ,Σ) according to Eq. 4 (M-phase).

Incremental-EM performs a loop until convergence which
does the following combined EM-operation for each object
x ∈ D: Determine the difference between the current clus-
ter membership P (i)(C|x) and that in the previous iteration

P (i−1)(C|x) and if required update the model parameters
(w, µ,Σ) immediately according to Eq. 4.

The remainder of this paper is organized as follows: Sec-
tion 2 summarizes the related work. Section 3 introduces the
NVIDIA’s Fermi GPU Architecture. Section 4 elaborates
our technique Async-EM and describes the GPU implemen-
tation. Section 5 contains an experimental evaluation and
Section 6 concludes the paper.

2. RELATED WORK
The algorithm Newscast EM [3] specified for the peer-

to-peer scenario avoids a centralized M-step. Approximate
decentralized updates improve parallelism and reduce com-
munication costs. Randomly selected pairs of nodes ex-
change their local parameter estimates and combine them
by weighted averaging.

In [4], the authors propose a technique for estimating
GMMs for multimedia indexing in a peer-to-peer network.
Each node stores a considerable amount of data. In a first
step, each node estimates local parameters by running EM
on its own data. The resulting models are then combined
minimizing the Kullback Leibler Divergence which is imple-
mented by transmitting the model parameters only.

From the area of sensor networks also some variants of
distributed EM algorithms have been proposed [5–7]. The
power supply of sensor nodes is often limited. Algorithms
minimizing communication and computation costs are thus
required. Most related to our work, the approaches [6, 7]
exploit the fact that in EM local information can be col-
lected independently and then be combined for obtaining
the global parameter estimates, but with a different focus:
While [6, 7] focus on reducing the communication costs in
a sensor networks, we additionally focus on asynchronous
model updates as a strategy to speed up convergence.

GPU clusters are organized like CPU clusters. A GPU
cluster node has one or more powerful data parallel comput-
ing GPUs, which are composed of hundreds of lightweight
computing cores. Parallelization is possible by distributing
the work over the computing cores for independent com-
putation of expectation and later computing the model pa-
rameter updates locally or in a centralized way similar to
the P2P computing. The two major challenges we focus on
are the synchronization of cores and the organization of the
communication over the shared and main memory. Some
approaches proposed implementations of the EM algorithm
on GPUs, e.g. [8–10]. In all of these works, the E-Step and
the M-step are separated and split into multiple kernel calls
and all of them are GPU implementations of the classical
Batch-EM algorithm. In our work, we have combined E-
and M- steps into a single kernel call.

To summarize, we can distinguish between approaches
closely following the classical EM paradigm sequentially it-
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erating E- and M-step until convergence and focusing on
certain important goals in a distributed environment, such
as reducing the communication cost in [6,7] or adapting the
algorithm to the SIMD-environment of the GPU [8–10]. To
further reduce communication costs, the classical EM algo-
rithm has been modified by approximate updates [3, 5] or
merging of local models [4].

In this paper, we investigate, if and to which extent the
strategy of asynchronous model updates accelerates the con-
vergence of the EM algorithm. Furthermore, we propose
Async-EM, an efficient algorithm exploiting the memory hi-
erarchy of modern GPUs.

3. FERMI GPU ARCHITECTURE
The Expectation phase of Async-EM is fully paralleliz-

able, because each sample can be associated to each clus-
ter independently. We demonstrate that the calculations in
Maximization phase can be also effectively parallelized using
reduction techniques. The parallel nature of Async-EM at
the data-level motivates us to implement it on the NVIDIA
Fermi Architecture. Detailed information about the Fermi
Architecture can be found in NVIDIA’s web-site and in [11].

The Compute Unified Device Architecture (CUDA) has a
heterogeneous execution model in which the CPU is called
host, whereas the GPU is called device. The developer can
use an extension of the standard programming language C,
called CUDA-C, for application development. CUDA gives
the developer the opportunity of utilizing the computational
elements and the memory of the GPUs. CUDA has two
levels of abstraction for parallel computation: Threads are
organized into thread blocks and thread blocks are organized
into a grid. The code that works for the whole grid is called
kernel. The whole work is divided into manageable sizes by
using thread blocks.

Thread scheduling is handled by the GPU hardware. In
Fermi architecture, the thread block scheduler called the Gi-
gaThread engine assigns thread blocks (maximum 8 thread
blocks) to a multi-threaded SIMD processor called Stream-
ing Multiprocessor (SM). A simplified block diagram of the
SM is shown in Figure 1. Each Fermi SIMD processor
has two SIMD warp schedulers and 32 SIMD lanes called
Streaming Processors (SP) or CUDA cores, 16 load-store
units (LSUs) and 4 special function units (SFUs). Each
floating/integer SIMD instruction can be dispatched to 16
SIMD lanes, therefore it takes 2 clock cycles per warp to
complete a SIMD integer/float instruction. Fermi SM has
two instruction dispatch units, which can dispatch at least 2
instructions per clock cycle, therefore the effective Instruc-
tions Per Clock (IPC) is equal to 32 floating/integer oper-
ations per clock per SM. Similarly, it takes 8 clock cycles
to complete a special instruction per warp in a SFU. Each
SIMD thread running on a SIMD processor has its own pro-
gram counter and scheduled by the warp scheduler. The
warp scheduler can keep track of up to 48 threads of SIMD
instructions. Hence, at most 1536 CUDA threads can be
scheduled on a multi-threaded SIMD processor. A SIMD
instruction is executed for all CUDA threads in the same
warp, therefore all threads in the same warp are implicitly
synchronized. Branch instructions will be serialized, in case
branch divergence occurs inside a warp. Not all threads are
active during execution of divergent branches, which means
idle clock cycles for some of the SIMD lanes and perfor-
mance penalty. Therefore, branch divergence inside warps
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Figure 1: The SIMD warp scheduler has 48 inde-
pendent threads of SIMD instructions with 48 PCs.
Each Instruction Dispatch Unit can issue a SIMD in-
struction to 16 SIMD Lanes or 16 Load/Store Units
(LSUs).

shall be avoided. We have seen that several levels and types
of parallelism are possible using different levels and types of
abstractions. Multiple instructions can be scheduled to dif-
ferent SIMD multiprocessors using multiple data (MIMD).
Multiple threads of SIMD instructions can run on SIMD pro-
cessors. Independent instructions from the same warp can
be scheduled to the SIMD lane pipelines which is called in-
struction level parallelism. All of these different types of par-
allelisms are called Single Instruction Multiple Level (SIMT)
thread model by NVIDIA.

It is important to understand the Fermi memory model
to effectively parallelize EM. The host can read or write to
off-chip DRAM, but not to on-chip memories used only by
the device. Each multi-threaded SIMD processor has its own
on-chip Shared Memory/L1 Cache in total 64 KB used by all
blocks assigned to the SIMD processor. The threads within
a block can use shared memory together by taking care of
synchronization issues. 32 SIMD lanes are fed by in total
32K four byte on-chip registers, which are not shared by the
threads. Hence, if all 1536 threads are active (at 100% occu-
pancy), each thread can have at most 21 registers. A thread
can not have more than 63 registers (achieved at 33% occu-
pancy). Other than this, a thread has its own not shared
section on off-chip RAM which is called the local memory.
Local memory contains the stack frame, spilling registers
and arrays which do not fit into registers. The difference
of this private off-chip RAM section from other RAM sec-
tions is that it is cached into L1. Fermi does not have huge
caches like CPUs or deep pipelines like vector architectures.
Instead, it amortizes the memory latency mainly by using
thread and instruction level parallelism extensively. Caches
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help to decrease memory demand to off chip RAM during
local memory accesses or function calls and improve the ef-
fective memory bandwidth in case of uncoalesced memory
accesses.

4. ASYNCHRONOUS EM ON GPU
The E-operation can be perfectly parallelized on GPUs

as well as on any other parallel architecture by distributing
the samples to different processors. However, when taking a
closer look at Incremental-EM, its strict sequential philoso-
phy becomes obvious: The cluster models (w, µ,Σ) have to
be updated before the cluster membership of the next ob-
ject is determined. Therefore, Incremental-EM is in general
not suitable for this kind of parallelization. To also have
the advantage of faster convergence through more frequent
model updates, our idea is to weaken the strict sequential
policy and to allow parallel processes to perform their E-
operations independently. But rather than waiting until the
E-operations of all objects have been processed, we allow the
processes to collect their private changes locally, to use them
immediately, and to exchange them from time to time in an
asynchronous way. When these local model updates are ex-
changed, the different sets of cluster representatives have
to be merged together, which we call the consolidation. The
rate of the exchange and consolidation can be adapted to the
bandwidth with which the processors are connected and to
the conflict rate of synchronization. CUDA-based GPUs are
composed of a set of streaming multiprocessors (SM) each
of which consists of several processors. In analogy to this
hierarchy, the threads are also grouped into thread-groups.
All threads from one thread group are executed on the same
SM, and can exchange data through the fast shared mem-
ory (cf. Section 3). Threads of different thread groups can
exchange information only through the much slower global
memory. We will show how this hierarchy of processes, pro-
cessors, and memory units can be exploited to share the
cluster models in an optimal way. Figure 2 displays the
algorithm Async-EM in Pseudocode.

4.1 Parameter Representation
First we show how the model parameters can be repre-

sented in a way that facilitates consolidation. Since the vec-
tor µ = (µ1, ..., µd)

T and the covariance matrix Σ = [σi,j ]
are defined by fractions, it is inefficient and numerically un-
stable to directly update these parameters. It is easier to
update the following parameters instead:

W =
∑
x∈D

P (C|x), (6)

Xi =
∑
x∈D

xi · P (C|x), 1 ≤ i ≤ d, (7)

Qi,j =
∑
x∈D

xi · xj · P (C|x), 1 ≤ i, j ≤ d. (8)

Besides, Fermi Architecture uses a new standard implemen-
tation Full IEEE 754-2008 32-bit and 64-bit precision, which
improves the accuracy considerably compared to previous
architectures. Our incremental method is relatively insensi-
tive to numerical inaccuracies, because we do not use batch
update in which numerical errors accumulate quickly with
massive amounts of data. Obviously, the two original pa-
rameters w = W/n and µi = Xi/W can be easily derived
from our new consolidated parameters. But also the more

difficult Σ = [σi,j ] can be efficiently derived as we can see in
the following:

σi,j =

∑
x∈D(xi − µi) · (xj − µj) · P (C|x)∑

x∈D P (C|x)

=
1

W

(∑
x∈D

(xixj − µixj − µjxi + µiµj) · P (C|x)

)

=
Qi,j
W
− XiXj

W 2
.

Since all parameters of a cluster model C = (W,Xi, Qi)
are now defined in terms of a sum, the consolidation sim-
ply reduces to summing up the different local parameter
sets. The computation of the inverse and determinant of
the covariance matrix Σ is facilitated by the Cholesky de-
composition Σ = L · LT where L is a left triangular matrix.
Cholesky decomposition is the least expensive method for
the inversion of a symmetric and positive definite matrix.
It can be empirically shown even for non-parallel versions
of EM clustering [12] that doing Cholesky decomposition
in an asynchronous way clearly improves the overall run-
time provided that the two extremes (decomposing almost
only once per iteration and decomposing almost at every
update) are avoided. The performance curve yields an ex-
tremely wide and stable minimum (bathtub curve) as long as
these extremes are avoided. Therefore, our method performs
Cholesky decomposition at every asynchronous update op-
eration which naturally avoids the inefficient extremes. We
show next how consolidation between different processors of
a streaming multiprocessor and between different multipro-
cessors works.

4.2 Model Consolidation
We decompose the data set into subsequences called super-

chunks and each superchunk into subsequences called chunks.
A chunk is processed by parallel threads in one common
thread group (on the same SM). Each thread is responsible
for one or more samples. First, all threads read the most
current set of cluster models from the global memory to the
shared memory, read the next sample to be clustered from
the global memory to the registers and determine the grad-
ual cluster memberships and the differences of these mem-
berships to the previous iteration. After updating their local
cluster models they might also process further samples.

When the chunk is finished the threads cooperatively con-
solidate their cluster models by a technique called parallel
sum reduction. Then the next chunk is processed, and this
is repeated until no more chunk is associated to the respec-
tive streaming multiprocessor. All streaming multiproces-
sors have associated a set of chunks which they are working
on. The cluster models are exchanged and consolidated in-
side a SM after every chunk, and the fast shared memory is
used for this parallel sum reduction.

After all threads inside the current thread block have pro-
cessed their chunks (which form together a superchunk), a
single thread from each thread block consolidates its own
cluster model with the global model with atomic operations.
For this consolidation, the global memory is used. Since the
global memory has by a factor of 8 times lower memory
bandwidth than the shared memory, the consolidation be-
tween thread blocks should be executed much less frequently
than the consolidation inside a thread block.
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Algorithm Async-EM runs on all of the CPUs in parallel
CPU-Thread 1 only part {
01- Randomly initialize global models W g

cpu, Xi
g
cpu, Qi

g
cpu

resident in the shared memory visible to all CPU-Threads.
}
02- Synchronize CPU-Threads
03- counter:= 1;
repeat

04- Initialize local CPU models W l
cpu, Xi

l
cpu, Qi

l
cpu

using the global model parameters.

05- Copy models to GPU memory W l
gpu, Xi

l
gpu, Qi

l
gpu.

06- Call Async-EM-Par. Kernel running on the GPU,
each CUDA Thread Block responsible for a super-chunk.

07- Copy local updates δW l
gpu, δXi

l
gpu, δQi

l
gpu

back to the CPU memory δW l
cpu, δXi

l
cpu, δQi

l
cpu.

08- Synchronize CPU-Threads.
09- Increment counter.

CPU-Thread 1 only part {
10- Merge local updates δW l

cpu, δXi
l
cpu, δQi

l
cpu from

CPU-Threads in global model W g
cpu, Xi

g
cpu, Qi

g
cpu.}

until counter = Async.EMIter.Limit;
end Algorithm Async-EM

Algorithm Async-EM-Par. GPU Kernel
for each chunk ∈ superchunk in parallel [CUDA Thr. Blk.]

01- Load W l−Thr.Blk
gpu , Xil−Thr.Blkgpu , Qil−Thr.Blkgpu

into the GPU shr.mem. from W l
gpu, Xi

l
gpu, Qi

l
gpu.

for each sample x[1..spt] ∈ chunk in parallel [CUDA Thr.]

for each cluster c ∈ C
02- Cholesky decomposition Σ = [σi,j ] at every

Stepsize.Cholesky.
03- Compute P (x|C), P (x) and P (C|x) (cf. Eq.1-3)

04- if
∑
C∈Cold

P (C|x)−
∑
C∈Cnew

P (C|x) > ε

05- Update W l−Thr.Blk
gpu , Xil−Thr.Blkgpu , Qil−Thr.Blkgpu

in the GPU shr.mem. (cf. Eq. 6 - 8).
GPU-Thread 0 only part in each Thr. Blk. {

06- Atomic update δW l
gpu, δXi

l
gpu, δQi

l
gpu.}

end Async-EM-Par. GPU Kernel

Figure 2: Async-EM and parallel GPU Kernel
Pseudocodes. Async.EMIter.Limit = 100, ε = 0.01,
Stepsize.Cholesky = 1, spt = 4 (samples per thread)
are the optimal algorithm parameters.

The parallel sum reduction, which is shown in Figure
3, is a technique in which the threads cooperatively con-
solidate their cluster models automatically avoiding shared
memory access conflicts. Additionally, the access pattern
is selected in a way that it facilitates efficient access to the
different shared memory banks (the so-called coalesced ac-
cesses). The idea is that every thread knows an address
where a fixed partner thread stores its local cluster models.
The thread consolidates its model with that of the partner
thread. In each step, the number of threads which are still
alive decreases by half until only one thread is left and only
one set C of k cluster models is known.

4.3 Comprehensive Example
Figure 4 gives a comprehensive example and visualizes our

algorithm for a data set of n = 2048 samples. The dataset
is decomposed into two superchunks each of which is de-

to store the own local parameters as shown in the Figure z. As an example, X1..D (or diagonal Q1..D), which has originally 16 clusters and D-dimensions, is not 
fitting to the shared memory. Therefore, in the first step, the local parameters of the first 8 clusters are cached to and updated in the shared memory. A second 
step is necessary to process the remaining 8 clusters. Finally, a single thread from each block consolidates the final local statistics into a single data structure in 
the device memory.     
########################################################################### 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure w: The parallel sum reduction figure (which is explained in paragraph 4.2). Each of the thread is handling a single local parameter. Only half of the 
threads are active at each step. As an example, to consolidate the local statistics for 8 local parameters, 3 steps (log28) are necessary.  
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Figure 3: The Parallel Sum Reduction. Each of the
thread is handling a single local parameter. Only
half of the threads are active at each step. As an
example, to consolidate the local statistics for 8 local
parameters, 3 (= log2 8) steps are necessary.

composed into 8 chunks. We consider here a grid which
is composed of two thread blocks. It is possible that both
thread blocks are running on the same SM consecutively or
they are scheduled to different SMs by the GigaThread en-
gine and run completely in parallel. On each of the thread
blocks, a total of 128 threads run effectively in parallel as-
signing samples to clusters and updating their local cluster
models. After their completion, the 128 threads on each
thread block consolidate their local updates using the par-
allel sum reduction technique on Eq. 6-8 in the fast shared
memory. Then, the 128 threads on each thread block are
dedicated to the samples of the next chunk which are clus-
tered according to the consolidated model. When all chunks
of Superchunk #1 on all thread blocks have been processed,
the thread blocks consolidate their local models using atomic
operations to the global memory. When all superchunks
have been processed in this way, we start again with Super-
chunk #1. Convergence is achieved when there has been
no update in both superchunks. It might also happen that
convergence is achieved after the processing of Superchunk
#1 (if Superchunk #2 has not caused any cluster update in
the previous iteration).

Figure 4: A Single Async-EM Iteration. All local pa-
rameters fit into the shared memory. Global model
parameters updated at the end of the kernel.
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Figure x: Two-GPU extension of the Async-EM iteration.  Each CPU Thread is responsible for Host-to-Device (H2D), Device-to-Host (D2H) memory transactions 
and kernel calls. The master thread (CPU Thread-1) is also responsible to consolidate the final model parameters for the next Async-EM iteration. 
 
MULTI-GPU Extension 
Async-EM can be extended to Multi-GPUs. In this way, the number of iterations on a single GPU, which is necessary to process massive amount of data, is 
decreased. Figure x shows the extension to two GPU case. CPU Thread-1 is responsible to create the memory structures shared by multiple CPU threads. Each 
CPU Thread calls its own GPU kernel and manages its own memory transactions. The data samples in the Super-Chunk#1 (or Super-Chunk #2) are assigned and 
copied to GPU-1 (or GPU-2) device and resident to the device during all of the Async-EM iterations. The master CPU Thread (Thread-1) consolidates the final 
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Figure 5: Two GPUs Extension of the Single Async-
EM Iteration. Each CPU thread is responsible for
host-to-device (H2D), device-to-host (D2H) mem-
ory transactions and kernel calls.

Multi-GPU Extension
We extend the Async-EM to two GPUs as shown in Figure
5. CPU Thread-1 is responsible to create the memory struc-
tures shared by the two CPU threads. Each CPU Thread
calls its own GPU kernel and manages its own GPU mem-
ory transactions. The data samples in the Superchunk #1
(or Superchunk #2) are assigned and copied to GPU-1 (or
GPU-2) and reside in the device during all of the Async-
EM iterations. The master CPU thread (Thread-1) consol-
idates the final global model parameters into the memory
shared by the two CPU threads for the next Async-EM it-
erations. Only consolidated model parameters, which have
much smaller memory size compared to the superchunk data
samples, are transferred to GPUs between Async-EM itera-
tions.

Multi-Stream Extension
The local model parameters together with the Superchunk
#1 (or Superchunk #2) do not fit to GPU memory for ex-
tremely large amount of data samples with high number
of dimensions. If this condition is detected and if there is
no additional GPU is available, the superchunk is divided
into smaller chunks, which can fit into the device mem-
ory and transferred to the GPU part-by-part. Each smaller
chunk transferred to the GPU separately and a kernel call is
performed and the calculated model parameters are trans-
ferred back to the CPU Thread. But, sequential execution
of memory-transactions and kernel calls (H2D-Kernel-D2H)
is expensive and transfer rate on the PCI-Express bus is the
bottleneck. The CUDA Streams are a sequence of GPU op-
erations which are executing in the issue-order and CUDA
operations from different streams can run concurrently or
interleaved in the GPU. In this way, memory accesses are
hidden and up to 2.4 times speed-up is obtained compared
to sequential execution.

Handling Large Number of Clusters or Dimen-
sions
The scenario shown in Figure 4 is optimistic in the sense
that the local model parameters (W,X1..D, Q1..D) are copied
to the shared memory on the device only once and reside
there during all of the iterations of the Async-EM. Since the
shared memory is limited in size, it is not feasible to store the
whole local data on the shared memory for a large number
of clusters or dimensions. If this condition is detected, the
local parameters are copied from global device memory to
shared device memory partially. For this purpose, a separate
location for each thread block is reserved in the global device
memory to store its own local parameters as shown in Figure
6. As an example, X1..D (or diagonal Q1..D), which has
originally 16 clusters, is not fitting to the shared memory.
Therefore, in the first step, the local parameters of the first
8 clusters are cached to the shared memory. A second step
is necessary to process the remaining 8 clusters. Finally,
a single thread from each block consolidates the final local
statistics into a single data structure with atomic operations
both in the global device memory.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure z: Partial loading and updating of the local parameters in case of high number of clusters or dimensions (size of the Q for the diagonal covariance case) 

Handling High number of Clusters or Dimensions: 
The scenario shown in the Figure 2 is optimal in the sense that the local model parameters W, X1..D , Q1..D are copied to user managed cache on the device 
(shared memory) only once and updated there during the iteration of the Async-EM. But, shared memory is very scarce and for large number of clusters or 
dimensions, it is not feasible to store whole local data on the shared memory. If this condition is detected, the local parameters are copied from global device 
memory to shared device memory partially in small chunks. For this purpose, a separate location for each thread block is reserved in the global device memory 
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Figure 6: Partial loading and updating of the local
parameters in case of large number of clusters or
dimensions (Q is diagonal).

5. EXPERIMENTS
Firstly, we compare convergence, modeling error and exe-

cution time performances of the Batch-EM, Incremental-EM
and Async-EM algorithms using synthetic data sets. We
change the underlying characteristics of the data sets, e.g.,
model parameters and the overlapping of the clusters to ob-
serve the impact on the performance values. Following this
point, we compare GPU performance against the CPU per-
formance of the gmdistribution.fit function of the MATLAB
Statistics Toolbox on synthetic data. We demonstrate how
well the performance of the Async-EM is scaling up with an
additional GPU. The execution time performance of GPU
reference implementations of Batch-EM are given in [8–10]
for two types (small and big) of data sets. Therefore, we cre-
ate randomly two synthetic multivariate distributions with
a similar cluster constitution and compare per EM iteration
execution time of the Async-EM.
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After that, we run the reference implementation of [8] on
our GPU to make a hardware independent comparison of
Batch-EM and Async-EM algorithms. We selected [8], be-
cause the source code is available and the authors demon-
strated that [8] outperforms the other reference implementa-
tions. Moreover, [8] can work with non-diagonal covariance
matrices. But, the most important reason is that [8] is more
suitable to work with massive data sets. For example, [9]
uses in M-Step K ×D × N matrix (K: number of clusters,
D: number of dimensions and N: number of samples), which
shall completely fit into GPU memory at once, which is not
always feasible for the data sets used in this paper.

Finally, we report the convergence and the execution time
performances of the Batch-EM and Async-EM GPU algo-
rithms on two real data sets from the UCI machine learn-
ing repository [13]: We use the Statlog (Shuttle) data set
and the Forest Covertype data set; Covertype is one of the
biggest data sets in UCI repository.

We report the results of our Async-EM implementation on
one and two GPU configurations of NVidia GTX480 Fermi
GPUs. The software is developed with CUDA C Toolkit ver-
sion 4.1 and is running on a PC with Intel i7-920 @2.6Ghz,
12GB RAM, Win7-64bit operating system. The CUDA ex-
periments and their results with corresponding kernel and
compiler settings are given in section 5.4.
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Figure 7: The Batch-EM has a λ ≈ 1 and C ≈
0, which signs a super-linear convergence for non-
overlapping clusters. Async-EM and Incremental-
EM are converging sub-linearly where λ ≈ C ≈ 1

5.1 Convergence
Given the sequence of the target value evolution of an it-

erative algorithm as X = {x1, x2, x3,..., x∗} which converges
to x∗, the convergence speed is defined as: limi→∞(xi+1 −
x∗)/(xi − x∗)λ = C where C is a positive constant, i is the
iteration number and λ is the convergence rate. An algo-
rithm has a super-linear convergence if λ = 1 and C = 0
and sub-linear convergence if λ = 1 and C = 1. In case of
1 < λ, we have different kinds of super-linear converges, e.g.
quadratic convergence if λ = 2.

By taking the logarithm of both sides of the equality, we
obtain:

log(xi+1 − x∗) = λ · log(xi − x∗) + log(C) (9)

The convergence rate λ and the positive constant C, in
Eq.9, are calculated from the least squares fit of the like-

lihood function as depicted in Figure 7. Here, the X-Axis
values are determined by the equation log(xi − x∗), where
xi represents the likelihood value at ith iteration and x∗ is
the final converged likelihood value. Similarly Y-axis values
are determined by the equation log(xi+1 − x∗). We observe
in our experiments that the convergence of Batch-EM starts
behaving sub-linearly, if we increase the overlapping of the
clusters.

We analyze firstly the Log-likelihood of different EM al-
gorithms for the randomly created distributions initialized
exactly the same way. The Async-EM algorithm slightly
outperforms Incremental-EM in terms of required number
of samples to be observed before convergence. On the other
hand, the Batch-EM methods requires considerably more
iterations or to observe the same samples several times to
converge. This observation is intuitive, because more fre-
quent updates leads faster convergence, hence the Async-EM
stops earlier. The Incremental-EM has an improved conver-
gence rate as proposed and demonstrated in [14] compared
to Batch-EM, with the guarantee of the convergence to a
local optimum. The Async-EM provides additional stability
by treating the mini-batches (with chunk size) as a single
sample and has the guarantee of convergence similar to the
Incremental-EM. The log-likelihood does not necessarily im-
prove at every Async-EM step.

As the next step, we focus on how fast the desired high
accuracies (or undesired low modeling-error) for the model
parameters can be reached. The EM Algorithms described
in this paper are all unsupervised methods, which means
that they are only targeted to optimize log-likelihood. The
modeling-error metric shows quantitatively the squared er-
ror of current and desired memberships of the data samples.
P (Cdesired|x) can be calculated exactly for synthetic data
by using the model parameters from which the input data
distribution is created. P (Creal|x) is obtained at the end of
the clustering. We repeat our tests several times with differ-
ent initializations and cluster constitutions. The Async-EM
outperforms in majority of the cases both Incremental-EM
and Batch-EM methods in terms of required number of it-
erations to obtain accurate model parameters especially for
clusters with much overlap. The Async-EM is more immune
against being trapped in a local minima. We summarize that
Async-EM combines the best of Batch-EM and Incremental-
EM algorithms. The log-likelihood of Async-EM converges
faster than the Incremental-EM. The estimated model pa-
rameters reach accurate values in a stable manner but much
faster than in Batch-EM.

5.2 Comparison on Synthetic Data
The speed-up values are calculated with respect to gmdis-

tribution.fit function of MATLAB Statistics Toolbox (ver.7.3),
which is very efficiently coded and widely used. Figure 8
shows the speed-up of Async-EM CUDA implementation
with respect to the gmdistribution.fit function for different
data set sizes. The kernel time increases linearly propor-
tional to number of samples as expected, because the com-
putational complexity of EM is O(NKD) for a diagonal co-
variance matrix. The speed-up obtained for 2 Mega (221)
samples with K = D = 8 on a single GTX 480 GPU is ap-
proximately 137 and the kernel execution time is nearly 51
msec. We observe that the Async-EM is scaling well with
an additional GPU for the same problem size as plotted in
Figure 9. The speed-up obtained for 2 Mega-samples with
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Figure 8: Speed-up of the Async-EM running on
a single GPU w.r.t. MATLAB impl. of the Batch-
EM on the CPU (blue Y-axis) and Kernel Execution
Time plot (green Y-axis)

K = D = 8 on two GPUs is approximately 272, which is
nearly double of the single GPU performance. The kernel
execution time is nearly half of the single GPU performance
and is 26 msec.

As the next step, we compare the execution time of our
Async-EM single GPU implementation (marked by ’*’) with
other Batch-EM GPU implementations published previously.
Our Async-EM implementation runs nearly 13 times faster
than [9] for a relatively small data set as shown in Table
1. In addition to that, we obtain nearly 15 times speed-up
for a larger data set compared to [10] as shown in Table 2.
For both of these data sets, [8] performs comparable to our
performance. Therefore, to make a better hardware inde-
pendent comparison, we obtained the source code from the
authors of [8]. We changed only the data reading module of
the code and use the rest of the code as it is. We compile
the code in Release mode and run it on our CPU and GPU
platform with a big synthetic data set. The results are given
in Table 3. We obtain nearly 720 times speed-up compared
to single core CPU implementation. The speed-up com-
pared to GPU implementation of the Batch-EM is nearly 2
times, which is very similar to GTX 260 result given in Table
2. Please note that, the execution times are given as per-
kernel and total execution time of an algorithm depends on
how many times the kernel is called. We observe that the
Async-EM algorithm requires an order of magnitude less

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
6

150

200

250

300

X: 2.097e+006
Y: 271.8

Number of Samples

Speedup w.r.t. CPU and Kernel Time [msec] Graph

S
pe

ed
up

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
6

0

20

40

60

X: 3.277e+004
Y: 0.4672

K
er

ne
l T

im
e 

[m
se

c]

X: 6.554e+004
Y: 0.8413

X: 2.097e+006
Y: 25.74

Figure 9: Two GPUs speed-up of the Async-EM
w.r.t. MATLAB impl. of the Batch-EM on the
CPU. The Async-EM is scaling well with an addi-
tional GPU.

kernel calls compared to Batch-EM GPU implementation
with synthetic data sets.

Table 1: Comparison of the Async-EM with other
Batch-EM GPU implementations for small data set

Method N, K, D Time/Speed-up Ref.
Batch EM 46800, 8, 8 16.2ms/1 [9]
Batch EM 46800, 8, 8 1.6ms/10 [8]
Async-EM 46800, 8, 8 1.26ms/13 *

Table 2: Comparison of the Async-EM with other
Batch-EM GPU implementations for large data set

Method N, K, D Time/Speed-up Ref.

Batch EM 220, 10, 8 450ms/1 [10]

Batch EM 220, 10, 8 62ms/7 [8]

Async-EM 220, 10, 8 30ms/15 *

Table 3: Comparison of the Async-EM with Batch-
EM CPU&GPU implementations of [8] on the setup
used in this paper
Method, Ref Hw. N,K,D Time/Speed-up

Batch EM, [8] i7-920 220, 10, 8 21.6s/1

Batch EM, [8] GTX480 220, 10, 8 61.4ms/352

Async-EM, * GTX480 220, 10, 8 30.0ms/720

5.3 Comparison on Real Data
We use two real data sets from the UCI repository [13] to

compare performance values of the MATLAB CPU Batch-
EM and the GPU Async-EM implementations. We focus
on the performance values: Mean negative log-likelihood per
sample which is minimized in the EM, the number of the EM
iterations until convergence and speed-up values obtained
with a single and two GPUs. We run a preliminarily K-
means clustering with 10% of the randomly selected data
to initialize initial centroids. After that, the result of the
K-means is used to initialize both of the EM algorithms.
We obtain the statistical results given in Table 4 for the
Statlog data set after 100 and for the much larger Covertype
data set after 25 independent runs. The Async-EM has a
slightly better log-Likelihood for Statlog and requires nearly
6 times less iterations to convergence. CPU uses the benefit
of a bigger cache for a small data sets like Statlog, therefore
the speed-up values are relatively lower compared to big
data sets like Covertype. On the other hand, the Batch-EM
has a slightly better log-Likelihood for Covertype data set.
But, Batch-EM also needs nearly 4 times more iterations
to convergence. The speed-up values are nearly 2.5 times
higher than the smaller data set. In summary, we observe
similar performance characteristics as on synthetic data.

5.4 Parallel NSight Experiment Results
All of the experiment results are given for the settings: 128

thread blocks with 128 threads per block, ’-maxregcout=63’,
’-use fast math=Yes’ compiler flags are set and L1/Shr.-
Mem. is configured as (48/16) KB. Occupancy: Achieved
occupancy is 35%. Theoretical occupancy is 42% limitted
by registers per thread (50), which means that five Thread
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Table 4: Comparison of the Async-EM with ’gmdistribution’ implementation of the Statlog(Shuttle) and
Covertype data sets

Method Hw. Dataset N,K,D NLogL,Sigma Iter.,Sigma Speed-up(1/2GPU)
Batch EM,Matlab i7-920 Statlog 58000, 7, 9 21.28, 0.48 82.6, 58.1 1

Async-EM GTX480 Statlog 58000, 7, 9 21.08, 0.41 14.18, 9.42 28.07/49.62

Batch EM,Matlab i7-920 CoverType 581012, 7, 54 −5.67, 0.12 43.2, 14.6 1
Async-EM, GTX480 CoverType 581012, 7, 54 −5.63, 0.09 21.76, 6.43 79.16/125.64

Blocks can be assigned to each SM. Instruction Statis-
tics: The issued and executed instructions are nearly the
same with 0% of instruction serialization. The executed In-
struction Per Clock (IPC) is equal to 1.21 (upper limit is
2). SM are active at least with one warp 96% of the time
and workload is distributed fairly between SMs. Branch
Statistics: There is no divergent branch. Branch and con-
trol flow efficiencies are nearly equal to 100%, which means
that our kernel will not suffer from serialized branch exe-
cution. Issue Efficiency: Our kernel has at least 2 eligi-
ble warps per clock cycle per SM as desired. The consecu-
tive instructions do not have long execution dependency cy-
cles, therefore maximum dependency IPC = 2. Achieved
Flops: All floating point operations are single precision.
Instruction mix is 50% ADD, 30% MUL, 15% Special and
5% Fused MUL/ADD. Achieved floating operations per sec-
ond is nearly equal to 100GFLOPS. Memory Statistics:
There is nearly no-overhead in external/shared/local mem-
ory operations, which means that the kernel operations are
coalesced without shared memory bank conflicts and with
high cache hit ratios (80% L1 hit and 50% L2 hit). Each
memory request is performed in a single transaction.

6. CONCLUSION
We highlighted with our experiments that substantial speed-

up values can be obtained with CUDA Async-EM implemen-
tation over the multi-core Batch-EM CPU implementation.
Moreover, state-of-the-art Batch-EM GPU implementations
are outperformed by our Async-EM GPU implementation in
terms of kernel execution time, required number of iterations
to converge and to obtain accurate models parameters.

We applied distributed EM principles to the GPU Envi-
ronment, which are widely used in P2P computing and sen-
sors networks. We regarded the streaming multiprocessors
(SMs) of the GPU like the nodes of a CPU cluster. Each SM
is working independently on its local data which is stored in
its shared memory. Similarly, the CPU nodes distributed
inside a clusters are working on their own data in their local
memory space. The global model parameters are updated by
each SM independently on the GPU’s global device memory.
Similarly, the nodes of a cluster update the global param-
eters in the shared memory space located on a single node
or on the peer node. We extended our idea by increasing
the abstraction level in our architecture. We have added
another layer on top and let multiple GPUs to communicate
over the shared memory space (i.e. DDRAM on the main
board) and assign a CPU thread to each GPU. In future
work we connect multiple-GPU nodes together with an ad-
ditional layer (e.g. Open MPI) on top of our abstraction
layers and form a multi-GPU cluster. Furthermore, we aim
at transferring these ideas to other alternating least squares
algorithms, to enable e.g. high-performance non-negative
matrix factorization or inference in Bayes nets.
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