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ABSTRACT
The problem of identifying the optimal location for a new retail
store has been the focus of past research, especially in the field of
land economy, due to its importance in the success of a business.
Traditional approaches to the problem have factored in demograph-
ics, revenue and aggregated human flow statistics from nearby or
remote areas. However, the acquisition of relevant data is usually
expensive. With the growth of location-based social networks, fine
grained data describing user mobility and popularity of places has
recently become attainable.

In this paper we study the predictive power of various machine
learning features on the popularity of retail stores in the city through
the use of a dataset collected from Foursquare in New York. The
features we mine are based on two general signals: geographic,
where features are formulated according to the types and density
of nearby places, and user mobility, which includes transitions be-
tween venues or the incoming flow of mobile users from distant
areas. Our evaluation suggests that the best performing features are
common across the three different commercial chains considered in
the analysis, although variations may exist too, as explained by het-
erogeneities in the way retail facilities attract users. We also show
that performance improves significantly when combining multiple
features in supervised learning algorithms, suggesting that the retail
success of a business may depend on multiple factors.

Categories and Subject Descriptors
H.2.8 [Database applications]: Data mining
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1. INTRODUCTION
The geographical placement of a retail store or a new business

has been of prime importance from the establishment of the first
urban settlements in ancient times to today’s modern trading and
commercial ecosystems in cities. Open a new coffee shop in one
street corner and it may thrive with hundreds of customers. Open
it a few hundred meters down the road and it may close in a matter
of months.

In this paper we take advantage of the new layers of information
offered through check-in data in Foursquare to frame the problem
of optimal retail store placement in the context of location-based
social networks. That is, given a set of candidate areas in the city
to open a store, our aim is to identify the most promising ones in
terms of their prospect to attract a large number of check-ins (i.e,
become popular). We formulate this problem as a data mining task,
where, by extracting a set of features, we seek to exploit them to
assess the retail quality of a geographic area. In more detail, our
contributions are:
Spatial and mobility analysis of retail store popularity. We con-
duct an analysis of the popularity of Foursquare venues: these fol-
low a power-law distribution, which indicates the existence of very
heterogeneous check-in patterns across places. Focusing on the
venues of three retail stores chains we explore how their popularity
is shaped by spatial and human mobility factors. We find that 50%
of user movements originate from nearby venues within 200 to 300
meters, and 90% of movements occur within 1km. This suggests
a strong local bias in the attraction of customer crowds. Moreover,
the geographic placement of retail stores with respect to different
venue types is non-random: there is, in general, a higher likelihood
of observing a store near a transportation hub or a touristic spot
(museum, hostel, etc.), compared to a randomly picked Foursquare
venue type. We subsequently extend this analysis by considering
the movements between retail chains and other places in proxim-
ity, discovering that co-location does not necessarily imply higher
probability of movement between two types of venues. This high-
lights how a deeper insight into human mobility patterns captured
through location-based services in the city can improve the perfor-
mance of static prediction frameworks on local business analytics.
Mining features in location-based services for the retail assess-
ment of a geographic area. Driven by the findings reported above
we mine Foursquare user check-ins so as to capture a variety of
signals that may be informative about the retail quality of a ge-
ographic area. The data mining features we choose belong to two
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well-defined classes: geographic and mobility. The geographic fea-
tures encode spatial information about the properties of Foursquare
venues in an area. This includes information about the existence
of certain types of settlements (coffee shop, nightclub, etc.) in an
area or its density. Moreover, we factor the competitiveness of an
area by examining the influence of the presence of competitor busi-
ness venues on the popularity of a retail facility. The set of mobility
features we devise involves the measurement of the popularity of
an area in terms of number of check-ins: for instance, we model
transition probabilities from nearby venues to the target store or the
attraction of crowds from remote locations.
Individual feature and supervised learning evaluation. Finally,
we assess the performance of the features mined in the previous
step in terms of their ability to predict high rankings for the most
popular geographic spots individually, and combined in a super-
vised learning framework. Feature performance can vary across
different retail chains as there are observed idiosyncrasies in the
ways customer crowds are attracted at those. In principle, however,
features accounting for the degree of competition in an area or those
that model the spatial structure of an area, based on the existence
of certain venue types, perform best in the ranking task. From the
class of mobility features, the best predictors are those that rank
areas based on their attraction of users from distant locations and
those which consider the transition quality of an area by means
of venue types. When the features are combined using supervised
learning models we observe a clear improvement in performance
with the optimal retail spot being constantly ranked in the top-5%
of the prediction list in one over two cases. In addition, the su-
pervised learning algorithms benefit marginally, yet steadily, when
we employ mobility features in comparison to using those which
encode solely the static geographic properties of an area.

We envisage that similar approaches can influence research in
urban mining where a variety of applications may benefit, includ-
ing the provision of better services for businesses and citizens or
predictions of house price evolution, development indices of ur-
ban areas and location-based marketing. While Foursquare offers
business accounts where shops can register themselves and obtain
basic analytics such as the times of the week their business is be-
coming more or less popular, or the demographics of the users that
check in to them [1], data mining approaches that exploit the rich
spatio-temporal datasets sourced from these services can consider-
ably boost their business model by offering new commercial op-
portunities to their users beyond their principal application scope
so far that has been location-based activity recommendations [4].

2. DATASET ANALYSIS
In this section we provide essential details about the Foursquare

check-in dataset and subsequently we elaborate on the analysis of
venue and retail store popularity in the service. Particularly, we
concentrate on the three most popular retail chains in the New
York area and study their spatial and mobile interactions with other
Foursquare venues and the mobility patterns of the users that visit
them.

Data Collection
Foursquare was launched in 2009 and it has quickly become the
most popular location-based service, with more than 35 million
users as of January 2013 [2]. Per-user Foursquare check-in data is
not directly accessible, however, users can opt to share their check-
ins publicly on Twitter. We thus were able to crawl for publicly-
available check-ins via Twitter’s streaming API1. Note that we can
1https://dev.twitter.com/docs/streaming-api

Chain Name Check-Ins Places 〈cp〉
Starbucks 210, 174 186 1129.97

Dunkin’ Donuts 26, 955 104 259.18
McDonald’s 15, 014 66 227.48

Table 1: Summary of Chain Statistics: Total number of check-ins
as observed through Foursquare’s Venue API2 at the time of data
collection, number of places and average number of check-ins per
place (〈cp〉)

only access those check-ins that users explicitly chose to share on
Twitter, although users have the possibility to set this option as de-
fault. In the present work we use a dataset of check-ins and venue
information in city of New York and the surrounding area. New
York is the city where the service was launched, and due to this
fact the adoption of the service in the area is significantly larger
than in any other place in the world. Numerically speaking, we
consider the square region of 10× 10 km around the geographical
center of New York (Manhattan Area, Coordinates: 40◦ 45’50”N
73◦ 58’48”W), featuring 37, 442 geo-tagged venues, 46, 855 users
and 620, 932 check-ins collected in a period of 5 months (May 27th
to November 2nd 2010). We note that according to our estimates
this sample accounts for approximately 25% of all check-ins col-
lected by Foursquare in the aforementioned region and time frame.

Figure 1: Spatial distribution of the three store chains in the New
York area.

Analysis of Retail Store Popularity
Over the dataset just described we have analyzed the popularity of
the different places present. By popularity of a place we mean the
total number of check-ins we have observed in this venue. Fig-
ure 2 illustrates the Complementary Cumulative Distribution Func-
tion (CCDF) of check-ins per venue in the dataset, considering all
places in New York. The functional form of the distribution resem-
bles a power-law and the check-in frequency spans a large number
of orders of magnitude.

From this point on we concentrate on the analysis of venues’
popularity for individual store chains. We have observed consid-
2https://developer.foursquare.com/docs/
venues/venues
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erable discrepancies between the check-in patterns across differ-
ent chains. In Table 1 we show basic statistics for the three chain
stores we have elected based on their number of venues in New
York. Starbucks is the chain with the highest number of venues,
186. Dunkin’ Donuts and McDonald’s follow with 104 and 66
stores, respectively. In Figure 1, we present a visualization of the
spatial distribution of the stores for the three retail chains we an-
alyze. The mean number of check-ins per place at Starbucks is
equal to 1129.97, almost five times larger than the rest. Similarly,
the CCDF of check-in volume for Starbucks restaurants, as shown
in Figure 2, features a significantly longer tail than in the other two
cases. Among other reasons, that could be attributed to the fact that
visitors of a coffee shop stay there longer and thus are more likely
to check-in. On the other hand, fast food chains may attract oppor-
tunistic visits just to pick up food. Addressing the problem thus for
each chain separately can help us alleviate the biases that may be
introduced by check-in variations across place types in Foursquare.
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Figure 2: Complementary Cumulative Distribution Function
(CCDF) of check-ins per place for all venues in the dataset (left)
and for the three considered store chains (right).

Spatial Interactions between Business Activities
Previous work aiming to assess the retail quality of places based
on a dataset with similar spatial characteristics was proposed by
Jensen in [10]. The author studied the spatial interactions between
different place categories in the city of Lyon, France. The pro-
posed metric computes the frequency of co-location for different
dyads of place types, for instance, coffee shops close to railway
stations, restaurants close to shopping centers, and compares the
results to the corresponding expectation when settlements are dis-
tributed uniformly at random in the city. If the measured frequency
is higher than the expected value, it is proposed that the categories
tend to attract each other. If it is lower the two place types repel
each other. The resulting inter-type coefficients are then exploited
to assess the retail quality of an area for a given place type.

Provided with the rich spectrum of place types (e.g., coffee shop,
fast food restaurant, train station etc.) that Foursquare venues can
be semantically annotated with, we compute the inter-category at-
traction coefficients for 248 different venue categories (we discuss
the details of the computation in Section 3). The results of the Top
10 attractors for each chain with the corresponding inter-category
coefficients are shown in Table 2. We observe that Starbucks and
McDonald’s restaurants are often placed near Train Stations with
frequency 11.80 (for Starbucks) and 3.08 (for McDonald’s) times
higher than expected in the scenario when venues are distributed
randomly in the city. This can be intuitively explained by the aspi-
ration to benefit from the massive flows of people generated around
transportation hubs. These crowds may seek food and refreshment
opportunities as they travel. Another common attractor for the two

Starbucks Dunkin’ Donuts McDonalds
Train Station 11.80 Hostel 5.02 Flower Shop 5.87
Light Rail 8.60 Gas Station 3.05 Office Supplies 3.16
Stadium 7.25 Automotive Shop 2.66 Train Station 3.08
Airport 6.24 Flower Shop 2.36 Theater 2.84
Museum 5.10 Post Office 2.19 Light Rail 2.32
Convention Center 4.93 Flea Market 1.84 Gift Shop 2.26
Hostel 4.82 School 1.72 Subway Station 2.21
Corporate Office 4.57 Drug Store 1.70 Department Store 2.17
Hotel 4.13 Subway Station 1.67 Bank / Financial 1.92
Bank / Financial 4.09 Bike shop 1.64 Drug Store 1.89

Table 2: Top 10 most attractive categories for each chain as defined
by Jensen’s inter-category coefficients with the corresponding val-
ues of the coefficients

chains are Corporate Offices, as these are good sources of regu-
lar clients. Similarly, the two coffee shop chains, Starbucks and
Dunkin’ Donuts, are often placed around Museums and Hostels are
a source of tourist crowds. Less frequently, but, still considerably
more often than expected at random, Dunkin’ Donuts can be found
next to Gas Stations.

Exploiting Mobility Data for Retail Analysis
Motivated by Jensen’s approach [10] discussed above we extend
the analysis of the retail quality of urban areas by also consider-
ing the fine grained information on human movements available in
Foursquare. We will see how location-based social networks pro-
vide a unique opportunity to assess a geographic area not only by
considering static spatial information, but also the dynamics of the
movements of mobile users. In more detail, we study users’ tran-
sitions between places inferred from their consecutive check-ins in
different venues. As we show below, the aggregated transition data
can be effectively exploited to analyze the flows of the users to-
wards the place of interest and generally in the surrounding neigh-
borhood. In Figure 3 we plot the Cumulative Distribution Function
(CDF) of incoming transition distances, i.e., distances that users
travel from other venues in the dataset towards the three chains
under analysis. As we observe in the plots, the vast majority of
the incoming transitions, i.e., 80 − 90%, are done from within a
radius of less than 1km and 50% of transitions from 200-300m.
This result suggests that the customers of Starbucks coffee shops,
Dunkin’ Donuts and McDonald’s restaurants usually come from
local places. On the other hand the analysis of user transitions can
also characterize interactions between Foursquare venues located at
the different corners of the city: this information is not captured by
the place co-location approach discussed in the previous paragraph.
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Figure 3: The Cumulative Distribution Function (CDF) of the tran-
sition distances towards the shops of the three chains under analy-
sis.
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Starbucks Dunkin’ Donuts McDonalds
Hostel 17.44 Convention Center 8.18 Parks & Outdoor 15.76
Flea Market / Fair 7.28 Laundry 5.51 Sculpture 6.10
Sculpture 6.80 Post Office 3.22 School 4.84
Drug Store 4.96 Mall 2.20 Light Rail 3.94
Train Station 4.79 Playground 1.49 Bus Station 3.40
Bank / Financial 4.32 Drug Store 1.43 Post Office 2.70
Post Office 4.01 Subway Station 1.30 Plaza / Square 2.20
Technopark 3.76 Bank / Financial 1.26 Bank / Financial 2.18
Admin. Building 3.64 School 1.18 Airport 2.09
Convention Center 3.39 Gas Station 1.09 Theater 1.87

Table 3: Categories with the highest transition ratio ρ towards the
three chains under analysis.

We further measure the probability of transitions between differ-
ent types of venues to determine the main donors of users towards
the three chains under analysis (we discuss the details in Section 3).
The transition ratio ρ is defined as the ratio between the transition
probability of a given pair of venue categories over the random
transition probability between any pair of categories. The Top-10
place categories with the highest transition ratio towards the three
chains under analysis are presented in Table 3. Numerous similar-
ities are observed with respect to the inter-category attractiveness
presented in Table 2. The main attractors that we have identified by
measuring the frequency of pairwise category co-location are often
the main sources of customers. Thus, Hostels, Train Stations and
Financial Centers, which had one of the highest attractiveness coef-
ficients towards Starbucks restaurants, have also the highest transi-
tional ratio towards them, i.e., 17.44 (for Hostels), 4.79 (for Train
Stations) and 4.32 (for Financial Centers) times higher than in a
random scenario. The same observation holds for the attractive-
ness towards Schools and Subway Stations, in the case of Dunkin’
Donuts. However, a deviation between the two measurements is
also possible. The fact that a place type tends to be co-located with
another may not necessarily mean that movement occurs across
the two types of places. Thus, considering information about user
flows between venues can provide additional value to tackle the op-
timal retail store placement problem as will also become apparent
during evaluation in Sections 4 and 5.

3. OPTIMAL RETAIL STORE PLACEMENT
IN LOCATION-BASED SERVICES

In this section we formalize the problem of optimal retail store
placement in the context of location-based social networks. Our
goal is to identify the best area amongst a candidate set of potential
areas for a new store to be opened. After formulating the prob-
lem, we define and discuss the features we have mined from the
Foursquare dataset to predict the best geographic spots by ranking
geographic areas according to the predicted retail quality.

Problem Formulation
Formally, by considering the existence of a candidate set of areas
L in which a commercial enterprise is interested in placing their
business, we wish to identify the optimal area l ∈ L, such that a
newly open store in l will potentially attract the largest number of
visits. An area l is encoded by its latitude and longitude coordinates
and a radius r, as depicted in Figure 4. We have experimented with
different values for the radius r and have selected it to be equal
to 200 meters as this has yielded the best experimental results, i.e.,
the highest prediction performance across independent experiments
with various values of r, and it is also in agreement with what the
urban planning community considers as the optimal neighborhood
size [16]. The ranking of places according to their popularity is
then estimated using the features mined by incorporating the char-

acteristics of the area nearby (features are described next). For each
feature we compute a score χ̂l for every candidate area l: the top
ranked area in terms of that score will be the optimal area for the
new store placement. Our main assumption in the formulation of
this task is that the number of empirically observed check-ins by
Foursquare users can be used as a proxy for the relative popularity
of a place.

Figure 4: Area of radius r = 200 meters around a Starbucks coffee
shop in New York. Black dots correspond to nearby Foursquare
venues.

Prediction Features
We now introduce the features we have mined from the Foursquare
dataset in the city of New York. Each feature returns a numeric
score χ̂l that corresponds to a quality assessment of the area for the
optimal retail store placement problem. We have categorized the
extracted features into two broad categories: place-geographic fea-
tures which integrate information about the types and spatial inter-
action between the places, and user mobility features which exploit
knowledge about user movements and transitions between places.

Geographic Features
This class refers to features that describe the environment around
the place under prediction as encoded through the spatial distri-
bution of Foursquare venues. More specifically, we measure the
density, heterogeneity and competitiveness of the surrounding area
by analyzing the set {p ∈ P : dist(p, l) < r} of places that lie in
a disk of radius r around location l. The function dist denotes the
geographic distance between two places and P the set of venues in
New York.

Density: By measuring the number of neighbors around the place
we assess to what extent the popularity of a place depends on the
density of other places in the same area. Formally:

χ̂l(r) = |{p ∈ P : dist(p, l) < r}|

We note that given that the radius r is the same, the density of can-
didate geographic areas depends only on the number of places they
include. We denote the number of neighbors of a place within a
radius r with N(l, r). Intuitively, a denser area could imply higher
likelihood for an opportunistic visit to a retail facility.

Neighbors Entropy: To assess the influence of the spatial het-
erogeneity of the area on the popularity of a place, we apply the
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entropy measure from information theory [7] to the frequency of
place types in the area. We denote the number of place neigh-
bors of type γ with Nγ(l, r). The entropy defines how many bits
are required to encode the corresponding vector of type counters
{Nγ(l, r) : γ ∈ Γ}, where Γ is a set of all types, and is higher the
more heterogeneous the area is:

χ̂l(r) = −
∑
γ∈Γ

Nγ(l, r)

N(l, r)
× log

Nγ(l, r)

N(l, r)

In general, an area with high entropy values is expected to be di-
verse in terms of types of places, whereas the least entropic areas
would imply that the number of check-ins is biased towards a spe-
cific category, for instance Home if the area is residential.

Competitiveness: We devise a feature to factor in the competi-
tiveness of the surrounding area. Given the type of the place under
prediction γl (for example Coffee Shop for Starbucks), we measure
the proportion of neighboring places of the same type γl with re-
spect to the total number of nearby places. We then rank areas in
reverse order, assuming that the least competitive area is the most
promising one:

χ̂l(r) = −Nγl(l, r)
N(l, r)

It is worth noting however that competition in the context of retail
stores and marketing can have either a positive or a negative effect.
One would expect that, for instance, placing a bar in an area pop-
ulated by nightlife spots would be rewarded as there is already an
ecosystem of related services and a crowd of people being attracted
to that area. However, being surrounded by competitors may also
mean that existing customers will be shared.

Quality by Jensen: To consider spatial interactions between dif-
ferent place categories, as we anticipated in Section 2, we exploit
the metrics defined by Jensen et al. in [10]. To this end, we use
the inter-category coefficients described in the previous section to
weight the desirability of the places observed in the area around
the object, i.e., the more the places that attract the object exist in
the area, the better the quality of the location. More formally, we
define the quality of location for venue of type γl as:

χ̂l(r) =
∑
γp∈Γ

log(κγp→γl)× (Nγp(l, r)−Nγp(l, r))

where Nγ(l, r) denotes how many venues of type γp are observed
on average around the places of type γl, Γ is the set of place types,
and κγl→γp are the inter-type attractiveness coefficients. To com-
pute the latter, we analyze how frequently places of type γl are
observed around γp on average, and normalize that value with the
expectation for a random scenario. Formally we get:

κγp→γl =
N −Nγp
Nγp ×Nγl

∑
p

Nγl(p, r)

N(p, r)−Nγp(p, r)

where N , Nγl and Nγp denote the total number of places consid-
ered in the analysis and the number of places for types γl and γp
respectively. Similarly, the intra-categories coefficient κγl→γl are
computed between the places of the same type, thus, assessing to
which extent the places tend to group into spatial clusters, e.g., fi-
nancial centres at Wall Street.

Mobility Features
In this section we show how information about the check-in pat-
terns of Foursquare users can be exploited to assess the retail qual-

ity of an area. Our goal is to identify to what extent information
crowdsourced from mobile users can improve geographic business
analytics and what are the benefits with respect to information ex-
ploiting only static spatial information about venues such as the
features presented above. We shall consider characteristics that
measure the general popularity of the area and features that exploit
transitions amongst venues.

Area Popularity: To assess the influence of the overall popularity
of the area on the popularity of individual places we measure the
total number of check-ins empirically observed among the neigh-
boring places in the area:

χ̂l(r) = |{(m, t) ∈ C : dist(m, l) < r}|

where tuple (m, t) denotes a check-in recorded in place m ∈ P at
time t, and C is a set of all check-ins in the dataset.

Transition Density: Assuming that increased mobility between
places in the area can increase the number of random visitors to-
wards the target place, we measure the density of transitions be-
tween the venues inside the area. Formally, by denoting as T the
total set of consecutive check-in transitions between places and as
a tuple, (m,n) ∈ T , the places m ∈ P and n ∈ P involved in two
consecutive check-ins, we have:

χ̂l(r) = |{(m,n) ∈ T : dist(m, l) < r ∧ dist(n, l) < r}|

Incoming Flow: We also define a feature to account for the in-
coming flow of external user traffic towards the area of the place
in question. We consider transitions between places denoted by a
tuple, (m,n) ∈ T , such that first place m is located outside and
second place n inside the area under prediction. Formally:

χ̂l(r) = |{(m,n) ∈ T : dist(m, l) > r ∧ dist(n, l) < r}|

One would expect that an area that is a good attractor of remote
users would be a promising one for establishing a new retail facil-
ity.

Transition Quality: Another aspect of location attractiveness comes
from the potential number of local customers that the place might
attract from the area. We measure the probability of transitions
between all other types of venues and venues of the same type as
the venue itself. The resulting probabilities allow us to weight the
nearby places as potential sources of customers to the place under
prediction. More formally:

χ̂l(r) =
∑

{p∈P :dist(p,l)<r}

σγp→γl × Cp

where Cp is the number of check-ins at a place p and σγp→γl is a
probability of transitions between two categories γp and γl, defined
as the average percentage of all check-ins to place p of category γp
that are followed by transitions to places of category γl:

σγp→γl = E[
|{(m,n) ∈ T : m = p ∧ γn = γl}|

Cp
]

ργp→γl = σγp→γl
N −Nγp
Nγp ×Nγl

Having defined the two classes of geographic and mobility fea-
tures, covering a diverse set of signals that can be exploited in
location-based services, we evaluate their performance in the next
sections aiming to understand what sources of information form the
best predictors of the popularity of a retail chain unit.
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4. FEATURE EVALUATION
As discussed, a primary aim of this paper is to identify the most

important information signals that can be mined from location-
based services, in order to forecast the area where a retail store may
attract the maximum number of check-ins. To this end, we evaluate
the performance of the individual prediction features introduced in
the previous section. We first describe the methodology and the
metrics we employ; then we compare the performance of each in-
dividual feature across these metrics.
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Figure 5: The Accuracy@X% scores of the individual feature pre-
dictions for Starbucks, Dunkin’ Donuts and McDonalds.

Methodology and Metrics
Given a specific retailer brand like the three we are considering in
this paper, we analyze a set of prediction areas L for a new store.
For each feature and area l ∈ L we compute χl as defined in the
previous section and then rank the locations based on this. As a
result we obtain a ranked list of locations R = (l1, l2, ..., l|L|) and
denote with rank(li) the position of location li inR. We also com-
pute the ranked list R of locations based on the actual popularity
(number of check-ins) of the stores in those locations and denote
with rank(l) the position of location l in R. Given the two lists
ranking locations in terms of predicted and ground truth values, we
formally define the metrics we use to assess the quality of predic-
tions achieved by the different features.

NDCG for top-K location ranking: Firstly, we aim to measure
the extent to which the top-k locations in the list of actual popu-
larity R are highly ranked in the predicted list R. To this end, we
adopt the NDCG@k (Normalized Discounted Cumulative Gain)
metric frequently used in the performance evaluation of informa-
tion retrieval systems [9]. The metric assesses the cumulative gain
achieved by placing the most relevant instances in the top-k of the
prediction list as formally defined by the Discounted Cumulative
Gain measure:

DCG@k =

k∑
i=1

2rel(li) − 1

log2 (i+ 1)
(1)

where rel(li) is the score relevance of an instance at position i in
the predicted ranking R. The result is then normalized by the DCG

Feature Starbucks Dun.Don. McDon.
Geographic Features

Density 0.60 0.79 0.73
Entropy 0.65 0.60 0.69

Competitiveness 0.70 0.68 0.78
Jensen Quality 0.54 0.81 0.72

Mobility Features
Area Popularity 0.54 0.77 0.78

Transition Density 0.62 0.79 0.78
Incoming Flow 0.60 0.75 0.79

Transition Quality 0.66 0.81 0.73
Random Baseline

0.48 0.51 0.53

Table 4: The Average NDCG@10 results of the individual feature
predictions for each of the three chains.

of the ideal prediction (iDCG), when the instances are sorted by
the relevance with the most relevant in the first position. The re-
sulting scores, thus, lie in the range from 0 < NDCG@k ≤ 1. As
a relevance score for an instance li we use its relative position in
the actual ranking R, i.e., rel(li) = |L|−rank(li)+1

|L| . The rel(li)
score is equal to 1 when the area is ranked first in terms of check-
ins and it linearly decreases to 0 as the rank goes down the list. As
a baseline for comparison, we use the expected value of NDCG@k
for a random ranker which is achieved by randomly permuting the
instances in the testing set.

Assessing the best prediction: Considering now the application
scenario where the best geographic area for a new business has to
be discovered, for instance by a geo-analytics team, we would like
to compare the different ranking strategies in terms of their ability
to yield high quality top locations. To this end, we measure the
fraction of times that the optimal location in the predicted list R is
at the top-X% of the the actual popularity list R which represents
our ground truth. We refer to this metric as Accuracy@X% and we
note that we have used the % instead of absolute list size values
(i.e., top-K) to allow for comparison across different chains.

Geographic Cross Validation: We use a random sub-sampling
method [15] to select subsets of geographic areas for validation. In
each experiment (repeated here 1000 times) we randomly sample
33% of the total areas associated with the stores of the brand we
analyze, obtaining L candidate areas for prediction. The rest of
the areas are subsequently used to form our training set on which
features (or supervised learning algorithms as we see in Section 5)
will be trained. We assume that the stores (and the correspond-
ing check-ins) in the test set areas L do not yet exist and our goal
is to forecast the popularity ranking of the stores, if they were to
be opened there. We note that the same assumption is used to de-
fine the features in the training and test sets. The mean NDCG@k
scores are measured by averaging across all testing sets.

Individual Feature Performance
NDCG Top-K location ranking: In Table 4, we present the results
obtained for the NDCG@10 metric for all features across the three
chains. In all cases we observe a significant improvement with
respect to the random baseline, yet there are features which per-
form considerably better than others. In particular, with regards to
the geographic class of features, the Jensen Quality does best with
NDCG@10 = 0.81 for Dunkin’ Donuts, whereas Competitiveness
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is the top feature for Starbucks and McDonald’s scoring 0.70 and
0.78 respectively. Interestingly, as suggested by the Competitive-
ness feature, the lack of competitor venues in an area can have a
positive influence in attracting customers. A potential interpreta-
tion of this observation is that an urban area, for instance a neigh-
borhood, is expected to provide a number of services to its local
residents. A retail facility can benefit by being the main provider at
an area whereas, in contrast, its customer share is expected to drop
as more and more competitors are opening nearby.

When considering the class of mobility features, Transition Qual-
ity does best in the cases of Starbucks and Dunkin’ Donuts with an
NDCG@10 score of 0.66 and 0.81. This signifies that knowledge
about the types of places that can initiate large customer flows to
a target business can be useful to the placement of a new shop. In
the case of McDonald’s, however, the most effective feature is In-
coming Flow which has achieved an NDCG@10 score of 0.81. A
careful inspection of Figure 3 suggests that this may be due to the
fact that McDonald’s tend to attract customers from remote loca-
tions with higher probability than the other chains. In the case of
McDonald’s the probability of attracting a Foursquare user from a
distance beyond 200 meters is almost 0.65, when the value drops
to 0.50 and 0.45 for Starbucks and Dunkin’ Donuts respectively.

Another observation which stands out is that in the case of Dunkin’
Donuts, Jensen Quality and Transition Quality achieve the same
performance (NDCG=0.81), better than the rest of the features.
This is a case where geographic and mobility features agree in per-
formance revealing that spatial structure alone is sufficiently corre-
lated with the mobility of users in the area. A comparison between
Tables 2 and 3 shows that the rankings of the different types of
places across the three chains agree more for Dunkin’ Donuts com-
pared to Starbucks and McDonald’s, where larger deviations may
signify a large discrepancy between the geographic and mobility
properties of an area.

Assessing the best prediction: We now evaluate the individual
feature predictors in terms of the Accuracy@X% metric. As de-
fined above, this metric considers the top predicted location l ∈ L
and measures how high it is ranked in the list of actual rankings
R. For small list fractions 5% the relative performance of the var-
ious features is qualitatively similar to the NDCG metric. While
the ranking in the performance of different features persists across
different list X% values, it is worth mentioning that Competitive-
ness tends to rise faster than other features reaching a score of
Accuracy@15% higher than 70%, outperforming the winning (in
terms of NDCG) Incoming Flow for McDonald’s and Jensen Qual-
ity for Dunkin’ Donuts. The results in terms of Accuracy@X%
are much lower in the case of Starbucks. An explanation of the
drop in performance (also observed for NDCG) for Starbucks may
relate to their high density in the city: as shown in Table 1 (and
hinted by observing Figure 1), the number of Starbucks stores is
almost two times higher than McDonald’s and Dunkin’ Donuts in
the same 100km2 area around Manhattan. Thus, the potential geo-
graphic overlap of the areas covered by two Starbucks picked ran-
domly is higher and, therefore, while the underlying features may
be very similar their corresponding popularity may differ. To pro-
vide a numerical indication of this issue we note that the probabil-
ity of encountering a store of the same chain within 100 meters was
35% for Starbucks, whereas only 11% and 7% for McDonald’s and
Dunkin’ Donuts, respectively.

5. SUPERVISED LEARNING APPROACH
In this section we combine features in a supervised learning frame-

work. Our aim is to exploit the union of individual features in or-

Algorithm Starbucks Dun.Don. McDon.
Geographic Features

Lin. Regression 0.73 0.80 0.78
M5 Dec. Trees 0.72 0.80 0.78

SVR 0.73 0.81 0.81
RankNet 0.72 0.81 0.79

All Features
Lin. Regression 0.76 0.82 0.82
M5 Dec. Trees 0.77 0.82 0.82

SVR 0.77 0.83 0.84
RankNet 0.77 0.81 0.83

Random Baseline
0.48 0.51 0.53

Table 5: The best Average NDCG@10 results of the supervised
learning algorithms applied to combinations of features grouped
into two classes: combinations of geographic features only and
combinations of both mobility and geographic features.

der to improve predictions, testing if the popularity of places in
Location-based Social Networks can be better predicted by consid-
ering a composition of signals. We use different supervised models
to learn how feature vectors x can be associated with the check-
in scores y of the areas under prediction. Two different ranking
methodologies are employed which we explain in the following
paragraphs.

Supervised Regression for Ranking: The three algorithms we ex-
ploit here are Support Vector Regression [8], M5 decision trees [20]
and Linear Regression with regularization. The latter case assumes
that the output score y is a linear combination of the input features
x with the weights w being calculated from the training data. The
goal of the prediction algorithm is to minimize the error between
actual and predicted outputs:

min
w
‖xTw − y‖2 + γ‖w‖2 (2)

where γ is the regularization parameter set here equal to 10−8.
We have used the corresponding implementations that are publicly
available through the WEKA machine learning framework [21].
By training the supervised learning algorithms to obtain regression
scores and, subsequently, rank the candidate geographic areas, we
are essentially reducing the regression problem to a ranking one.

Supervised Learning to Rank: Additionally, we consider a pair-
wise learning-to-rank approach, RankNet [6], that learns the order-
ing relation between a pair of venues based on their features. Given
a pair of venues A and B, characterized by features xA and xB,
RankNet identifies if venue A has to be ranked higher than B. The
models assume a ranking function H(x) : <|x| → < such that the
rank order of instances is specified by the real values of H . Specif-
ically, H(xA) > H(xB) assumes that venue A has to be ranked
higher than venue B. As the ground truth in this model we em-
ploy a linear ranking R of test set venues according to the number
of their check-ins. We finally note that in the RankNet algorithm
the ranking function H(x) is modeled as a neural network and we
use a publicly available implementation of the algorithm from the
RankLib library3. Overall, the testing and evaluation of the su-
pervised algorithms is conducted using the exact methodology we
have used for the evaluation of individual features, and all features
have been normalized before training.

3http://people.cs.umass.edu/~vdang/ranklib.
html
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Results We now present the results of supervised learning using
the algorithms described above. We measure the performance of
the algorithms trained separately on different combinations of ge-
ographic features and then combining them with mobility features.
We aim to assess the extent to which the fusion of the features
yields better results than the prediction based on individual features
and secondly, to what extent adding mobility features improves pre-
dictability based only on geographical information. The supervised
models based on the grouping of geographic features offer a slight
increase (0.02-0.03) in NDCG@10 performance in comparison to
individual feature prediction in two out of three cases: McDon-
ald’s and Starbucks. However, adding mobility features to the su-
pervised models considerably improves the prediction results (Ta-
ble 5) across all chains. For example when using supervised learn-
ing in the case of Starbucks an NDCG@10 score of 0.77 is reached
an improvement in the performance of Transition Quality, our best
single feature prediction, by 10%. In the Dunkin’ Donuts and Mc-
Donald’s cases the best NDCG@10 in supervised learning reaches
0.83 and 0.84 in comparison to the best single feature performance
that achieves 0.81 and 0.79, respectively. The improvement in per-
formance when supervised learning is applied is more clearly indi-
cated when taking into account the Accuracy@X% measurement.
The top predicted geographic location for Starbucks, as shown in
Figure 6, is positioned with an accuracy of 67% and 76% amongst
the Top-10% and the Top-15% in the list R of the most popular
places. When considering the Top-20% most popular places, ac-
curacy goes over the mark of 80% across all considered chains,
reaching a maximum of 93% in the case of Dunkin’ Donuts. These
results significantly outperform the best individual features predic-
tions which are 58% for Starbucks, 75% and 81% for McDonald’s
and Dunkin’ Donuts respectively.
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Figure 6: The Accuracy@X% results of the best performing com-
bination of features for the three store chains.

Overall, the combination of geographic and mobility features
in a supervised learning algorithm yields better results than the
single feature predictions. Moreover, when considering mobility
features in addition to the geographic features we have observed
large improvements, highlighting that information about the check-
in movements of Foursquare users adds value to the prediction.
Across different prediction techniques, we have observed that the
optimal performance is achieved for the predictions based on the
Support Vector Regression algorithm.

6. IMPLICATIONS
The analysis and evaluation presented in the previous sections

highlight how the new generation of location-based services can

play a significant role in the commercial evolution of the web. The
rich spatio-temporal datasets sourced from services like Foursquare
can provide access to new layers of data bringing us one step to-
wards the integration of local businesses in the economic model of
social networking platforms. As we have seen in our experiments,
knowledge on the semantics of geo-tagged venues can provide ef-
fective data representations to model the commercial value of urban
areas allowing us to measure the influence of competitive retail fa-
cilities nearby or the presence of types of venues that can generate
a large flow of customers for a target business.

The fact that different features may prove more or less effec-
tive across chains signifies that the problem of optimal retail store
placement is not trivial. Different types of businesses can demon-
strate significant variations in the ways they become attractors to
their respective customer crowds. As empirically studied in Sec-
tion 2 the spatial properties and the patterns of customer movement
can be chain specific, in spite of the fact that common patterns of at-
traction are also observed. As we have shown, supervised learning
classifiers can exploit a number of data mining features and seam-
lessly alleviate the biases due to heterogeneities in the way retail fa-
cilities attract users. Moreover, the combination of geographic and
mobility features in the majority of cases has yielded superior per-
formance suggesting that the dynamics of human movement matter
in understanding the retail quality of an area.

Besides, is especially clear in the case of Starbucks, noise can
impede the prediction task. One factor that has contributed to this
is the fact that very proximate retail facilities of the same chain
will have by definition very similar feature values, although, at the
same time, their popularity may vary significantly. Other factors
such as local architecture and planning idiosyncrasies of an area
can effect the flow of customers towards a place. Especially, in ex-
tremely dense cities, like New York, two venues can have similar
latitude and longitude coordinates but one of them may be placed
at the corner of a high street and the other at the top of a skyscraper
nearby. Along these lines, we are planning to extend our work to
include more cities and chains. Informal experiments we have con-
ducted suggest the existence of large heterogeneities in the spatial
properties of different cities, but also a strong biases in the amount
of user check-ins from area to area. Therefore, the development
of techniques that deal with these issues is a challenging task with
potentially high value for location-based services and urban data
mining in general.

7. RELATED WORK
The retail store placement problem has, in recent decades, at-

tracted researchers from a broad spectrum of disciplines. Land
economy community research has concentrated on spatial interac-
tion models, which are based on the assumptions that the intensity
of interaction between two locations decreases with their distance
and that the usability of a location increases with the intensity of
use and the proximity of complementary arranged locations [3, 5,
12]. It was shown, however, that the applicability of these models is
limited to agglomerations, such as big shopping centres, and their
predictive accuracy decreases when smaller, specialized stores are
considered. With respect to previous work in the general area, in
this paper we examined how the problem can be framed in terms
information signals mined from location-based services. As we
have seen, the richness of information provided in these services
could help us to study the retail quality of an area in a fine grained
manner: various types of geographic, semantic and mobility infor-
mation not only can complement traditional techniques, but also
form the basis for a new generation of business analytics driven by
services such as Foursquare.
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The present paper has been largely inspired by Jensen’s seminal
work [10, 11] on the identification of the appropriate geographic
positioning of retail stores. Jensen’s approach uses a spatial net-
work based formulation of the problem, where nodes are 55 differ-
ent types of retail stores and weighted signed links are defined to
model the attraction and repulsion of entities in the network. Subse-
quently, a retail quality index is devised which has been used to em-
pirically assess the positioning of stores in the city of Lyon, France.
Another approach based on the analysis of the spatial distribution
of commercial activities was proposed by Porta et al. in [17, 18].
The authors investigate the relationship between street centrality
and retail store density in the cities of Bologna and Barcelona re-
spectively, verifying how the former acquires a significant role in
the formation of urban structure and land usage. We extend the re-
sults of these works by adding to the analysis features mined from
the human mobility traces and effectively show that the combina-
tion of the geographic and mobility features provides better insights
on the quality of an area as a potential spot to open a new retail fa-
cility. To our knowledge this is also one of the first efforts to tackle
the problem exploiting machine learning algorithms. These tech-
niques may prove crucial in doing similar analyses in the future, as
they have been devised to operate in settings where large amounts
of dynamic data are available.

Finally, from a data mining perspective, we could classify our
work in the area of urban mining, which studies the extraction of
knowledge from spatial or geographic datasets and aims to improve
services and intelligence in the city. In [19], Quercia et al. mine cel-
lular data of user movements in the city of Boston to recommend
social events. In [13] the authors analyze the movement of pas-
sengers of the London metro and provide insights into the financial
spending of transport users, and in [14] the relationship between
social deprivation on citizen mobility is investigated. In [22] the
authors attempt to infer the functions of different regions in the city
by analyzing spatial distribution of commercial activities and hu-
man mobility traces in the city of Beijing. The present paper is
well aligned with this stream of work and extends the applicability
of the urban mobility mining methods to the field of retail analytics.

8. CONCLUSION
In this paper we tackled the problem of optimal retail store place-

ment in the context of location-based social networks. We col-
lected human mobility data from the leading location-based ser-
vice, Foursquare, and analyzed it to understand how the popularity
of three retail store chains in New York is shaped, in terms of num-
ber of check-ins.

We developed and evaluated a diverse set of data mining fea-
tures, modeling spatial and semantic information about places and
patterns of user movements in the surrounding area. We evalu-
ated each feature separately and found that, among those exploiting
place semantics, the presence of user attractors (i.e., train station or
airport) as well as retail stores of the same type to the target chain
(i.e. coffee shop or restaurant) encoding the local commercial com-
petition of an area, are the strongest indicators of popularity. How-
ever, additional improvement in the prediction performance may
be achieved by assessing potential flows of users that a place may
attract from other venues nearby or far away locations. We further
combined different features in a set of supervised learning algo-
rithms and showed that the popularity of places can be better ex-
plained by the fusion of geographic and mobility features. We plan
to extend our work to the comparison of the impact of features in
different cities and in new types of places and retail chains.
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