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ABSTRACT
Active search is an increasingly important learning problem
in which we use a limited budget of label queries to dis-
cover as many members of a certain class as possible. Nu-
merous real-world applications may be approached in this
manner, including fraud detection, product recommenda-
tion, and drug discovery. Active search has model learning
and exploration/exploitation features similar to those en-
countered in active learning and bandit problems, but algo-
rithms for those problems do not fit active search.

Previous work on the active search problem [5] showed
that the optimal algorithm requires a lookahead evaluation
of expected utility that is exponential in the number of selec-
tions to be made and proposed a truncated lookahead heuris-
tic. Inspired by the success of myopic methods for active
learning and bandit problems, we propose a myopic method
for active search on graphs. We suggest selecting points by
maximizing a score considering the potential impact of se-
lecting a node, meant to emulate lookahead while avoiding
exponential search. We test the proposed algorithm empir-
ically on real-world graphs and show that it outperforms
popular approaches for active learning and bandit problems
as well as truncated lookahead of a few steps.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]; H.2.8 [Database
Applications]: Data mining

General Terms
Algorithms

Keywords
Active Learning, Graph Search

1. INTRODUCTION
Many learning applications consider a large amount of un-

labeled data for which we would like to obtain labels, but it
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is too expensive to collect them all. These applications have
led to increasing interest in active learning algorithms that
choose data points for labeling with the goal of optimizing
a criterion based on the accuracy of the model learned from
the chosen points. A typical algorithm builds a model from
the labels already collected and iteratively uses it to select
the next point for labeling that is expected to most improve
the model.

In this paper, we focus instead on the active search prob-
lem [5], where we seek points belonging to a certain positive
class. Although we will still build a predictive model from
the selected points, and may choose points to improve our
model’s accuracy, we will ultimately be evaluated only by
how many positives we find among our queried points. Many
real-world applications are active search problems, including
drug discovery (where “effective drugs” are the sought class)
and product recommendation (where “purchased products”
are the sought class). In these examples, an accurate model
is only useful if we can use it to locate more members of the
desired class. We get no credit for model accuracy itself or
correctly predicted labels themselves.

Although active search applications appear with many dif-
ferent types of data, here we restrict our attention to graphs,
where the graph structure is known but labels on nodes are
expensive to collect. There are many interesting applica-
tions of active search in graphs. In a marketing application,
targeting a given individual might be quite expensive, but a
social network might be available to infer the tastes of as-of-
yet uncontacted users. A company might analyze a network
of financial transactions in order to discover fraudsters, but
investigating a particular selected entity is expensive. An
academic or analyst might like to find papers on a particu-
lar subject in a citation graph without having to read too
many of them.

One might expect typical active-learning algorithms to
be appropriate for active search as well because they can
produce a good model that can be used to find positives.
However, in active search a good algorithm must trade off
the need to exploit (use the current model to collect posi-
tives) against the need to explore (develop a better model
to more accurately guess the positives in future selections).
A traditional active learning method would focus entirely
on exploring and only collect positives by accident. There-
fore, strategies of a different nature are required. The explo-
ration/exploitation feature of the problem might lead one to
consider bandit algorithms for this task. This seems promis-
ing except that in active search an algorithm can not repeat-
edly make the same choice to collect more reward. Once it
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finds a positive, it must move on and look somewhere else
for another one.

As is typical with active learning and bandit-style prob-
lems, the optimal active learning solution, in general, re-
quires an intractable lookahead search over an exponential
number of possible future queries and label outcomes. An
algorithm based on evaluating the expected utility over a
truncated lookahead has been proposed, and good empirical
results have been obtained by using a smart pruning strategy
that, in some cases, reduces the cost by orders of magnitude
and makes longer lookaheads possible [5]. In the same work,
it was proven that arbitrarily better performance can occur
with even one further step of lookahead. In empirical ex-
amples, it seems that much better performance is available
from looking ahead much further than is possible even with
smart pruning.

Many successful algorithms for active learning and ban-
dit problems do a myopic or 1-step evaluation of a well-
crafted surrogate objective rather than directly optimizing
expected utility. Inspired by their successes, we propose
such a method for active search in graphs. We use a soft-
label model for graphs, which attaches a “pseudonode” to
each original node that holds the observed labels. For our
surrogate objective, we propose the probability of a positive
(the exploitation) plus a measure of impact based on the
number of additional positives likely to be identified (the
exploration). Both the model and the impact factor can be
efficiently computed using incremental updates to the model
matrices. We compare our method to uncertainty sampling,
a modified UCB algorithm, and a previously proposed model
for graphs. On three real-world graph datasets, our method
outperforms all the others.

2. RELATED WORK
There has been much research in the area of semi-supervised

learning, where the setting is the learning algorithm re-
ceives both a labeled training set and a set of unlabeled
test points, and the objective is to predict the labels of the
test points. Semi-supervised learning algorithms leverage
the structure of unlabeled data during training to improve
learning performance. Most of these works have been fo-
cused on achieving good classification with partially labeled
data. In [10], the authors propose a Markov random walk
based algorithm to classify unlabeled points using the infor-
mation of labeled ones as well as the graph structure. The
authors adopt two techniques, maximum likelihood with EM
and maximum margin subject to constraints, to estimate the
unknown parameters that indicate the distribution of each
data point over the class labels. In [11], the authors propose
a semi-supervised label learning method which is based on
the Gaussian random field model. The mean field is char-
acterized by a harmonic function, and can be efficiently ob-
tained by matrix computation or belief propagation. In [6],
the authors adopt a relational active learning model to im-
prove both model estimation and prediction after acquiring
a node’s label. They propose a model which combines a
network-based certainty score with semi-supervised ensem-
ble learning, as well as relational resampling to utilize both
the local relational dependency and sufficient global vari-
ance. In [2], the authors analyze the stability of several
transductive regression algorithms, where the problem set-
ting is similar to that in semi-supervised learning. There
also has been some work on efficient semi-supervised learn-

ing, such as [3]. In this work the authors try to apply semi-
supervised learning on 80 million images gathered from the
Internet, with “clean labels” manually obtained on a small
fraction. The authors have been able to obtain highly effi-
cient approximations for semi-supervised learning that are
linear in the number of images, compared to traditional
methods that scale polynomially with the number of images.

Active graph search involves an exploration and exploita-
tion dilemma, where the Upper Confidence Bound (UCB)
algorithm [1, 9, 4] is a popular method of addressing this is-
sue. The basic idea of UCB in multiarmed bandit problems
is to sum the current estimate about the reward of each arm
and the uncertainty about that arm. Choosing arms with
a high expectation corresponds to exploitation and choos-
ing those with high uncertainty corresponds to exploration.
UCB is appealing because it comes with regret bounds but
the setting is too confined to be used in the active search
problem. UCB intends to repeatedly select good arms while
the active graph search problem does not allow repeated se-
lections. In [8], the authors propose contextual bandits with
similarity information. We could use the graph structure to
provide such information. However, this would not change
the fundamental problem with bandit approaches for active
search, which is that we will never select the same node more
than once.

There is a more subtle issue as well. Ideally, the explo-
ration component of an algorithm would optimize some mea-
sure of information gained from a label. In a traditional
independent-arm bandit problem, this is easily replaced by
the uncertainty for a particular arm because the informa-
tion gain is confined to that arm. When a Gaussian pro-
cess model is used in a bandit problem [9], information is
spread throughout the model. Because of the symmetric
and homogenous properties of typical kernels, the informa-
tion gain for sampling at a point can again be substituted
with the current model uncertainty at that point. Typical
graph models offer no such easy way out. The potential
information to be gained by choosing a hub can be much
larger than that of choosing a disconnected singleton even if
the latter is much more uncertain. This property motivates
the impact factor in our proposed method.

3. APPROACH

3.1 Problem Description
Here we formally define a binary graph active search prob-

lem. We are given a finite set of n nodes, indexed {1, ..., n},
which have an unknown set of labels Y = {y1, ..., yn} where
yi ∈ {0, 1} and we want to identify the nodes for which yi =
1. We are given a corresponding weight matrix W = [wij ],
where wij indicates the strength of the relationship between
yi and yj . Initially all nodes belong to the unlabeled set,
U . At each iteration we choose a node i, find out yi, and
move node i to the labeled set, L. Our performance after k
iterations is the sum of the yi in L.

3.2 Models
We begin by considering models for predicting the un-

known values of Y . In [11], the authors propose a harmonic
function f to represent their predictions, which minimizes
the energy function E(f) = 1

2

∑
i,j wij(f(i) − f(j))2. By

setting the derivative to zero we can get f = D−1Wf , where
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D is the diagonal matrix with entry Dii representing the de-
gree of node i, i.e., Dii =

∑
j wij . Separating the labeled

points fl and the unlabeled values fu, and also the corre-
sponding W matrix and D matrix, we get a more explicit
form of f for unlabeled points:

fu = (Duu −Wuu)−1Wulfl

In practice we do not need to do the expensive matrix inver-
sion. We can approximate fu by iteratively multiplying an
initial value f by the matrix D−1W and update only those
entries in fu until convergence.

Each entry fi in the harmonic function is an indicator of
the probability that a random walk starting from node i will
hit a label 1 before it hits a label 0. However, this model
has some problems, especially for active search. Suppose we
first discover the hub node i of a star structure with label
yi = 0, which is connected to many nodes with label yj = 1
in its immediate neighborhood Ni (node j ∈ Ni if wij > 0).
Discovering any number of nodes with label yj = 1 in Ni
will never increase any remaining element of fu from Ni
since a random walk will always stop at the 0 label of node
i. Figure 1 shows an example of this hub-blocking problem,
where target nodes (with y = 1) are shaded solid.

Figure 1: An example showing an original graph
(Left) and the soft-label graph (Right)

3.2.1 The Soft-Label Model
In the original formulation of the harmonic function model

[11], the resulting fi = P (yi = 1|L) indicates the probability
that a random walk starting from node i will hit a label 1 be-
fore it hits a label 0. Hence hitting a label 0 will effectively
end the random walk and assign a label 0 to the starting
node i, which is the main cause of the hub-blocking problem
mentioned above. We can resolve this issue by changing the
stopping criteria to be indeterministic, i.e., we add a proba-
bility η to the random walk, such that when it hits a labeled
node, it stops with probability η, and with probability 1− η
it ignores the label and continues the random walk. More
specifically, we attach a pseudo node to each labeled original
node i to hold its label, and use the edge weight between the
pseudo node and the original node to adjust η.

The harmonic function and the soft-label model can both
take advantage of the structure information in the graph,
but they utilize labeled information in different ways. Given
a certain query node, the harmonic function is only able to
use the labeled information from those nodes that have a
path to this query node, and this path is not allowed to have
any other labeled nodes on it (otherwise the labeled nodes
would already have blocked the path). While the soft-label
model can effectively utilize the labeled information from all
the nodes in the graph, with the advantage that the closer
labeled nodes have higher influence on the query node than
the labeled nodes farther away.

Leaving f as the estimate of the original nodes associated
with a label 1 and letting xl represent the labeled pseudo

nodes (with entry 0 for unlabeled nodes), we get:

f = D−1
∗
[
W Dl

] [ f
xl

]
where W is the original weight matrix, and Dl is an n × n
diagonal matrix with

Dl(ii) =

{ η
1−η

∑
j wij i ∈ L

0 i ∈ U

which indicates that there is a transition probability η from
a labeled node i to its labeled pseudo node. D∗ is also a
diagonal matrix with D∗(ii) =

∑
j wij +Dl(ii) = 1

1−η
∑
j wij

for i ∈ L, acting as a row normalizing factor.

3.2.2 Incorporating Prior Information
It is often useful to include prior information on labels

and we can attach a pseudo node to the unlabeled original
nodes for this purpose. We set the pseudo node label to
be the value of the prior. The weight of the attached edge
represents the strength of the prior. We set the weight of
node i to be ω0Dii, where ω0 is the strength, and Dii is
the degree of node i. By a similar derivation as above and
absorbing the row normalizing factor we get:

f =
[
A D′

] [ f
x

]
⇒ f = (I −A)−1D′x (1)

where

Aij =

{
(1− η)(D−1W )ij i ∈ L

1
1+ω0

(D−1W )ij i ∈ U

D′ii =

{
η i ∈ L
ω0

1+ω0
i ∈ U

Here x is a predetermined vector with labels in the entries
corresponding to labeled nodes, and a value π for the prior
in the entries corresponding to unlabeled ones. f will be a
vector we want to compute, with fi indicating P (yi = 1|L)
for all the nodes, but we only care about those entries i with
i ∈ U .

A similar model would be the Cortes model [2], which is a
generalization of the Gaussian Mean Fields model [11]. This
model also has a kind of“softening”and we could plug it into
our method, but we prefer the way the priors in our model
give a smooth transition of values going away from labeled
nodes.

Adding a prior in the model has several advantages. First
it enables the model to distinguish between nodes not con-
nected to any labeled nodes and nodes that are connected to
0-label nodes. Second, it localizes the active search, which
means we would rather first search the closest neighborhood
of a node with label 1. Imagine a large connected component
in the graph that has only one labeled node which is pos-
itive. Using either the harmonic function or the soft-label
model will result in the same f score for every node left in
this component. After adding a prior we can get relatively
higher scores in the neighborhood of this positive node, and
the scores gradually decrease for the nodes farther away from
it.

3.3 Selection Criterion
We propose a selection criterion with the following form:

score
(t)
i = f

(t)
i + α× IM

(t)
i (2)
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where f
(t)
i indicates the model’s prediction for node i after

seeing t labels, IM
(t)
i is the expected impact on future pos-

itives found by choosing node i now, and α is a parameter
trading off exploration and exploitation. At each iteration,
we evaluate scorei for all unlabeled nodes i, and choose the
node with the highest score.

There are many possibilities for defining IM. The entropy
in fi would be an obvious choice, however that does a poor
job of capturing how much effect node i has on the rest
of the graph and especially how much it will increase the
number of positives we find in the future after observing yi.
We can consider

∑
i∈U fi as an indication of the number of

positives we will find in the future. Therefore, we propose to
explicitly condition on the expected value of yi and measure
its potential to increase values of f in the unlabeled part of
the graph. We propose:

IM
(t)
i = P (y

(t)
i = 1|L(t))δ(P (y))

where

δ(P (y)) =
∑

j∈{U(t)\i}
[P (y

(t+1)
j = 1|y(t)i = 1, L(t))

−P (y
(t)
j = 1|L(t))]

Using f vector as before with each entry fi representing
P (yi = 1|L), we have an equivalent form:

IM
(t)
i = fi

∑
j∈{U\i}

(f ′j − fj) (3)

where f is the original prediction for each node and f ′ is the
prediction conditioned on adding node i to the training set
with label yi = 1.

Note that we do not condition on seeing yi = 0. Intuitively
you might want to set up the impact criterion to marginal-
ize over the unknown outcome. However, doing that would
correspond to estimating the change in expected number of
positives in this neighborhood under the assumption that
your policy will continue choosing nodes in this neighbor-
hood even if it sees a negative outcome. Of course this is
not the policy we will follow. If a negative is observed, the
policy will move to some other part of the graph. By doing
it the way we propose we are representing both the unknown
outcome and the decision that will follow (i.e. to continue
choosing nodes in this neighborhood or not).

This impact factor is clearly heuristic and computing the
true future expected increase in positives chosen is just as
computationally intractable as implementing the full opti-
mal policy. However, this definition of IM is able to tractably
imitate a full look ahead by computing the full impact over
all the nodes in the graph through the model. An example
is enlightening. Imagine a graph of many separate compo-
nents, each of which is a clique of widely varying size. A
smart exploration algorithm would take samples from the
cliques in descending order of their sizes. Observe that a
truncated lookahead of k steps is only able to distinguish
the value between cliques of size less than k. All cliques
of size k or greater will look equal to the truncated look
ahead algorithm. Such an algorithm will explore somewhat
randomly until there are only cliques of size smaller than k
left and suffer poor performance as a result. Our proposed
IM, however, will exactly give all the nodes scores in propor-
tion to their clique’s size and it will make good exploration
choices from the beginning.

3.4 Computational Issues
Evaluation of the selection criterion requires repeated con-

ditioning on single new label observations, which would re-
quire O(n3) time if we apply eq. 1 naively. Here we show
two methods to make this computationally more efficient.

3.4.1 Efficient matrix inverse updates
We can reduce the computation by following the efficient

update procedure suggested in [12]. When we add only one
label to the graph, only one row of matrix A and only one
entry in the diagonal matrix D′ will be affected. Denote the
original matrix inverse as ∆−1 = (I − A)−1, and the new
inverse after one row is changed as (∆′)−1 = (I −A′)−1.

According to the matrix inversion lemma, the new inver-
sion (∆′)−1 is given by:

(∆′)−1 = (∆ + (1− r)ee>A)−1

= ∆−1 − ∆−1[(1− r)ee>A]∆−1

1 + (1− r)e>A∆−1e

= ∆−1 −
(1− r)∆−1

(:,i)A(i,:)∆
−1

1 + (1− r)A(i,:)∆
−1
(:,i)

(4)

where e is a column vector with all entries 0 except the ith
entry set to 1. Here we use (i, :) to represent the ith row of
the matrix, (:, i) to represent the ith column, and r denotes
(1 + ω0)(1− η). If we precompute ∆−1, each time we add a
label in the graph, it takes O(n2) to get the new inversion
(∆′)−1, where n is the number of nodes in the graph. We
can also efficiently update f after querying node i, when
we get its label I(yi = 1). To update f , we first have the
following equations (denote s = ηI(yi = 1)− ω0π

1+ω0
):{

f = (I −A)−1D′x
f ′ = (I −A′)−1(se+D′x)

Hence we can update f by:

f ′ = (I −A′)−1(se+D′x)

= (∆−1 −
(1− r)∆−1

(:,i)A(i,:)∆
−1

1 + (1− r)A(i,:)∆
−1
(:,i)

)(se+D′x)

= f +
s− (1− r)(fi −

ω0π

1 + ω0
)

1 + (1− r)A(i,:)∆
−1
(:,i)

∆−1
(:,i) (5)

Using facts like f = ∆−1D′x, fi = A(i,:)f + ω0π
1+ω0

, and

A(i,:)∆
−1
(:,i) is a 1 × 1 scalar so we can change the order of

multiplications. Note here the denominator only multiplies
the ith row of matrix A and the ith column of matrix ∆−1,
which only takes O(n). Then the equation only involves a
column vector ∆−1

(:,i) multiplied by a constant and addition

of column vectors, which also takes O(n). Similarly, we can
compute the impact factor efficiently after assigning a target
label to each node we want to query, where the overall cost
equals to querying all O(n) unlabeled examples, which is still
O(n2). The complete algorithm is shown in Algorithm 1. In
order to make the computation less expensive, [3] may offer
an even faster alternative, but it is only an approximation
to the Cortes model [2].

3.4.2 Efficient updates using label propagation
When the graph is very large, even the efficient updates

of sec. 3.4.1 may not help because computing the original
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Algorithm 1 Active Search on Graphs

Input: ω0, η, π, precomputed ∆−1, budget.
Initialize the graph with one target and set its index
to bestInd, initialize all entries in f (0) with π. Up-
date labeled set L(0) = {bestInd} and unlabeled set

U (0) = {1, · · · , n} \ L(0), t = 1.
repeat

Recompute f (t) using Eq. 5, where i = bestInd;
Recompute the new inversion (∆(t))−1 using Eq. 4,
where i = bestInd;
Compute f ′ for each index i ∈ U (t) using Eq. 5 with
(∆(t))−1;
Compute the impact factor using Eq. 3 with f ′;
Select j with the highest score using Eq. 2 with f (t)

and the impact factor;
Query j and set bestInd = j, update L(t+1) = L(t) ∪ j,
U (t+1) = U (t) \ j, t← t+ 1;

until number of query equals to the budget

inverse and/or storing the updated inverses is not realistic.
For those cases, we propose label propagation techniques to
compute the proposed methods in an accurate manner.

First under the soft-label model with prior information,
the result is achieved by: f = [A D′][f x]> = P [f x]>, which
gives f = (I −A)−1D′x. Instead of doing matrix inversion,
we can initialize vector f with all zeros and multiply the
matrix P iteratively to vector [f x]>, and only update the
entries in f until convergence.

To compute the impact, we need some approximation, and
there are two ways of achieving that. Suppose node i is the
node that we attach a pseudo label to, and we focus on the
tth iteration.

The first approach is to recompute f ′ after adding a node
with label 1. As before we have: f ′ = P ′[f ′ x′]>, where
x′ is obtained by changing x’s ith entry from π to 1, P ′ is
obtained by changing one row of matrix P = [A D′], D′ii is
changed from ω0

1+ω0
to η, and the ith row of A is changed

from 1
1+ω0

D−1
ii W(i,:) to (1−η)D−1

ii W(i,:). Since only one row

in P is changed, if we initialize f ′ with the existing value
of f (t), f ′ will converge to the correct value after a small
number of iterations of re-multiplying [f (t) x′]> by P ′.

The second approach is cheaper but less accurate. The
idea is to compute the impact on its immediately connected
neighbors after assigning an unlabeled node with label 1. In
the first step, given the change of one row in P , we have: f

(t)
i =

1

1 + ω0
D−1
ii W(i,:)f

(t) +
ω0π

1 + ω0

f ′i = (1− η)D−1
ii W(i,:)f

(t) + η

which results in

f ′i = (f
(t)
i −

ω0π

1 + ω0
)(1 + ω0)(1− η) + η

In the second step, this change will propagate to node i’s
immediate neighbors. We can compute this change by:

IM
(t)
i =

∑
j∈{U(t)\i}

P ′ji(f
′
i − f

(t)
i )

To be more accurate we may compute the impact prop-
agated not only to the immediate neighbors, but also to
neighbors within two hops or even more.

3.5 Algorithm parameters
The jump-to-label probability η depends on how we think

each unlabeled node relates to the labeled nodes nearby. If
we set η = 1 then the soft-label model without prior will
degenerate to the harmonic function model [11]. Varying η
is in some sense similar to varying the parameter k in a KNN
model. If we are confident that the label of each unlabeled
node should just depend on the nearest labeled node, then
it is reasonable to use a larger η. However, if we would
like to consider more nearby labels, we use a smaller η. In
our experiments we set η = 0.5 and did not vary it. An
alternative would be to use cross validation on a separate
graph to find a good value.

In our experiments we found that the values of ω0 and π
do not affect the results much. However, the existence of ω0

is crucial because without this parameter, matrix (I − A)
can be non-invertible. The value of α has a large impact on
performance because it controls the exploration/exploitation
tradeoff. In our experiments we show results for a wide range
of values. In the future work we discuss ideas for setting this
parameter automatically.

4. EXPERIMENTAL RESULTS
Data. We demonstrate our approach on three real-world

datasets.
The first dataset is a citation network with 14,117 nodes

(papers) and 42,019 edges from citeseer, consisting of papers
from the top 10 venues in Computer Science. The corre-
sponding weight matrix has entry 1 if there is a citation link
between two papers (undirected). The 1844 NIPS papers
are labeled as targets.

The second dataset consists of 5271 webpages related to
Programming Languages from Wikipedia. The correspond-
ing weight matrix has entry 1 if the two webpages i and j
are linked together (also undirected). For each webpage we
precompute its topic vector using the software available at
[7]. We label webpages with topic “object oriented program-
ming” and related terms ”object type class objects types
classes method code languages programming”, etc. We set
the threshold to be 0.4 to get a reasonable number of targets
(202).

The third dataset is a graph built from 5000 concepts in
the dbpedia1 ontology marked as “populated places”. Each
concept is a node in the graph and is backed by a Wikipedia
page. We added an undirected edge between two places
if one of their corresponding Wikipedia pages links to the
other. The dbpedia ontology further divides populated places
into “administrative regions”, “countries”, , “cities”, “towns”
and “villages”; these five labels serve as class labels. 725
nodes labeled as “administrative regions” are chosen as our
targets.

Random subsets of the graphs are shown in fig. 2. The
three graphs show quite different structures and distribu-
tions of positive nodes. The citation graph has many small
connected components, and the positive nodes are present in
different connected components. The wikipedia graph has
large hubs and cliques, and the positive nodes are mainly
concentrated in one large component. The populated-place
graph, however, is in between these extremes. It has large
hubs and cliques, but also many small connected compo-
nents, and the positives are also present in many different

1www.dbpedia.org
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Figure 2: A random subset of the citation network (left), the wikipedia (middle), and the populated-place
graph (right) with target nodes shaded solid in red. Each graph demonstrates a different structure and
different distribution of positive nodes, which makes the active search task qualitatively different.

connected components. This makes the active search task
qualitatively different on the three graphs.

Baselines. We compare our approach with several base-
lines.

1. Uncertainty Sampling. We use our proposed f func-
tion as an indicator of P (yi = 1|L). Under uncertainty
sampling we query the node with f value closest to 0.5.

2. Modified Upper Confidence Bound. UCB is not a nat-
ural fit but we modify UCB1 proposed in [1]. We as-
sume that at first each node has been ’pulled’ once and
the prior is the information we get. We use our pro-
posed f as the current estimation xj , and count the
number of queried neighbors of node j as nj .

3. 2-step lookahead from [5]. Longer look aheads are too
expensive to carry out.

4. Harmonic Function. We compute the fu for unlabeled
nodes as proposed in [11] and select the highest fu as
our next query.

Experimental Setting. We perform 10 random tri-
als of all methods using a single randomly chosen positive
node to initialize each trial. We record the number of pos-
itives found as a function of iteration number and aver-
age over the 10 trials. We set η = 0.5 for both datasets,
π is set to the true prior proportion of positives, and ω0

is set to 1/n, where n is the number of nodes. We test
α = {0, 10−1, 10−2, 10−3, 10−4}.

Results. Figure 3 shows the performance of our proposed
model (with its best value of α) compared with the baselines
on the three datasets. On all three datasets our proposed
method is consistently better than all other baseline meth-
ods. The closest competitor is the harmonic function on
the citation and wiki dataset, while on the populated-place
dataset, the 2-step lookahead method is the second best
one. Our experiments show that the difference between our
method and the closest competitor is statistically significant
(p < 0.05 in a paired t-test) after roughly 1300 iterations in
the citeseer data, 200 iterations in the wikipedia data, and
10 iterations in the populated-place data.

We also notice uncertainty sampling doing as well as sec-
ond best in some places. This is because it is built on our
soft-label model and the number of positives is very small.

Therefore, it imitates our proposed method with α = 0 (the
score falls below 0.5 after a certain number of iterations,
hence picking the node with score closest to 0.5 is equiva-
lent to picking the node with the highest score).

On the citation network, the gain of our proposed algo-
rithm is quite substantial, with only 133 positives missed
compared to 328 for the next nearest competitor, a 2.5-fold
reduction. We have analyzed individual runs and observed
that our method will effectively choose nodes in larger com-
ponents and more connected portions of the graph first,
which corresponds to a larger future gain. We also observe
that our method effectively resolves the hub-blocking prob-
lem (Sec. 3.2), which results in a better performance com-
pared to the harmonic function.

The gain on the wiki data is smaller, though we again have
the best performance. We select this dataset because it is a
different type of graph, which consists of a large connected
component with large hubs containing most of the positives
and some small components (mostly negative). The only
opportunity for better performance comes while exploiting
the large connected component, which is why we see signif-
icantly better performance at iteration 300. After that, all
algorithms will complete the large component and be forced
to search the small ones at random, hence the curves come
together.

On the populated-place dataset, the gain of our proposed
algorithm is even more substantial. We notice a large gain
from the very beginning, and also through all the iterations
till the end. When there are many small connected compo-
nents with positive nodes in them, it is easier to discover
those positive nodes first, hence harmonic function tends
to exploit this information and repeat the procedure of ex-
hausting the small components at first. However, our algo-
rithm is more efficient at discovering the targets in the large
component at the very beginning, thus causing a large ini-
tial deviation and higher future gain. Then our algorithm
will only turn to other places when it finds enough nega-
tives in this large component. This means our algorithm
can effectively explore the graph from the more “positive”
parts/clusters, to the less “positive” ones.

The right figures in Figure 3 show the more detailed re-
sults of carrying out paired t-tests among some of the com-
petitive methods. We use the harmonic function as the base-
line for comparison. The y-axis represents the difference
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Figure 3: (Left) Total positives remaining by Proposed Model vs. Harmonic Function, Uncertainty Sampling,
Upper Confidence Bound, Random Sampling, 2-step lookahead on the citation network (top), wikipedia
dataset (middle), populated-place dataset (bottom). (Right) Difference in the number of positives found by
(1) Proposed model with different α >= 0 vs. (2) Harmonic Function (plotted as the zero line).
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Table 1: Positives remaining (percentage) along with the number of iterations by our proposed method, four
baselines and random sampling in the citation network, wikipedia dataset, and the populated-place dataset.
The results are the averages and standard errors from 10 random trials.

Dataset Citation Network
Iterations 100 300 500 1000 2000 3000 5000
Proposed 97.5 ± 0.0 90.6 ± 0.0 81.9 ± 0.0 66.3 ± 0.0 44.3 ± 0.0 28.3 ± 0.0 7.2 ± 0.0
Harmonic 96.6 ± 0.2 89.9 ± 0.7 84.1 ± 1.1 71.7 ± 2.3 47.7 ± 0.9 32.1 ± 0.1 21.3 ± 0.1
2-step 96.7 ± 0.2 89.6 ± 0.1 83.2 ± 0.2 68.8 ± 0.1 45.9 ± 0.1 34.7 ± 0.1 21.9 ± 0.1
Uncertainty 96.9 ± 0.2 91.5 ± 0.6 87.0 ± 0.8 74.9 ± 0.9 54.4 ± 0.7 35.4 ± 0.6 17.8 ± 0.2
UCB 96.9 ± 0.2 90.9 ± 0.7 85.3 ± 0.9 74.8 ± 1.1 63.0 ± 0.3 59.7 ± 0.6 56.0 ± 0.5
Random 99.2 ± 0.0 97.8 ± 0.1 96.3 ± 0.1 92.7 ± 0.1 85.7 ± 0.2 78.6 ± 0.2 64.5 ± 0.2

Dataset Wiki Dataset Populated Places
Iterations 100 300 500 1000 100 300 500 1000 3000
Proposed 74.4 ± 1.0 29.6 ± 1.0 15.4 ± 0.0 10.4 ± 0.0 89.0 ± 0.0 68.1 ± 0.0 51.8 ± 0.1 38.1 ± 0.0 10.3 ± 0.0
Harmonic 74.7 ± 1.0 41.4 ± 1.0 16.3 ± 0.0 11.4 ± 0.0 94.3 ± 1.3 85.7 ± 2.1 77.3 ± 2.4 62.8 ± 2.9 14.5 ± 0.8
2-step 79.3 ± 0.9 42.7 ± 0.4 23.4 ± 0.2 12.8 ± 0.0 92.9 ± 0.0 79.1 ± 0.0 67.3 ± 0.0 42.2 ± 0.0 9.9 ± 0.0
Uncertainty 74.4 ± 1.0 33.6 ± 1.0 15.3 ± 0.0 10.3 ± 0.0 94.6 ± 1.1 88.2 ± 1.2 80.5 ± 1.0 64.3 ± 1.3 27.9 ± 2.7
UCB 81.4 ± 1.0 67.9 ± 0.0 65.0 ± 0.0 61.6 ± 0.0 95.8 ± 1.0 84.7 ± 1.6 76.5 ± 1.3 70.2 ± 1.1 58.8 ± 0.7
Random 97.7 ± 0.0 94.2 ± 0.0 90.6 ± 1.0 81.1 ± 1.0 97.8 ± 0.1 93.5 ± 0.3 90.0 ± 0.3 80.3 ± 0.3 40.0 ± 0.4

in the number of targets found by our model with varying
α = {0, 10−1, 10−2, 10−3, 10−4}, compared to the harmonic
function.

Table 1 further show the percentage of positives missed
by our proposed method and baselines quantitively, with
respect to the number of iterations (queries).

5. CONCLUSIONS AND FUTURE WORK DIS-
CUSSION

In this paper, we present a soft-label model for graphs
that extends previous random walk style models and give
efficient methods of conditioning these models. We propose
an impact factor to be used as a criterion for node selection.
The impact factor plays the role of encouraging exploration,
which is often done in other settings using entropy, uncer-
tainty, or variance. We point out that those concepts are not
suitable for active search however, and show empirically that
we achieve better performance using our proposed method.

Setting α remains an unresolved issue. An automated
method might consider a budget, B, of remaining choices to
be made and set it accordingly. A reasonable setting might
be α ∼ (B − |L|)/B, where |L| is the size of labeled set. In
this way, as the size of the labeled set increases, α will au-
tomatically decrease, corresponding to the natural strategy
that in the beginning we want to explore more as we have
more budget, and later we want to focus on exploitation.

Alternatively, we might follow the form of the UCB algo-
rithms and determine an adaptive value of α that allows us
to derive regret bounds. However, doing so may be challeng-
ing given the fact that UCB methods are based on repeated
pulls on“best arms”, while active search does not allow same
node selection.
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