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ABSTRACT
Understanding topic hierarchies in text streams and their evolution
patterns over time is very important in many applications. In this pa-
per, we propose an evolutionary multi-branch tree clustering method
for streaming text data. We build evolutionary trees in a Bayesian
online filtering framework. The tree construction is formulated as an
online posterior estimation problem, which considers both the likeli-
hood of the current tree and conditional prior given the previous tree.
We also introduce a constraint model to compute the conditional
prior of a tree in the multi-branch setting. Experiments on real world
news data demonstrate that our algorithm can better incorporate his-
torical tree information and is more efficient and effective than the
traditional evolutionary hierarchical clustering algorithm.

Categories and Subject Descriptors
I.2.6 [Learning]: Knowledge acquisition; G.3 [Probability and
Statistics]: [Time series analysis]

Keywords
Time Series Data, Multi-Branch Tree, Topic Evolution, Visualiza-
tion, Clustering

1. INTRODUCTION
With an increasingly large number of textual documents (e.g.,

news, blogs) published on the Web every day, there is an increasing
need to better understand the topics in a text stream. In many
applications, topics are naturally organized in a hierarchy and the
hierarchy often evolves over time [9]. Consequently, there have been
some initial efforts to model such evolving hierarchies. The state-
of-the-art approach, evolutionary hierarchical clustering [9], aims
to generate evolving binary trees to organize the topics at different
times. However, they may fail to provide interpretable topic results
since most of the topic trees in real world applications are not
binary [8]. It is therefore important to effectively learn an evolving
multi-branch tree representation, providing users a coherent view of
content transitions.
∗S. Liu is the correspondence author.
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In this paper, we define and study the problem of mining evolv-
ing multi-branch topic trees inside a text stream, as well as their
evolution patterns over time. Specifically, we take a news dataset
as an example to illustrate the basic idea. Fig. 1(a) shows part of
the evolving topics and their hierarchical structures extracted from
this dataset. The three labeled topics are “xbox”(A), “windows”(B),
and “sales and earnings”(C) from Jan. 8 to Mar. 11, 2012. We align
the correlated topics across different trees according to their content
similarity. From the alignment edges, we can see the three topics
are quite stable during this time period, with a few splitting/merging
relationships between them over time. With such evolutionary trees
and their visual representation in Fig. 1(a), users can easily ex-
amine: 1) the evolution of multi-branch trees and their content
alignment over time; 2) the topics of interest and their evolving
patterns (e.g., splitting/merging) at different levels of these trees.

To better understand the evolving patterns of user-selected topics,
we leverage a dynamic topic visualization technique, TextFlow [10],
to illustrate the topic merging/splitting patterns. In this visualiza-
tion, a river flow metaphor is adopted to illustrate topic evolution
over time (Fig. 1(b)). Each colored layer represents a topic. The
varying layer height along the horizontal axis represents the number
of documents for the topic at each time point. Like a river flow
in the real world, the topic flow can either be split into several
branches when the corresponding topic splits, or combined with
several other branches into one layer when the corresponding topics
merge together. Fig. 1(b) shows the splitting/merging patterns of
topics “xbox,” “windows,” and “sales and earnings” from Jan. 8
to 28. Topics “windows” and “sales and earnings” merge in the
week of Jan. 15 when Microsoft reported its quarterly revenue.
To discover more information about the merging, we browse the
related news. Some news items report on the “sales and earnings” of
“windows.” For example, one of the articles has the title “Windows
sales slowdown as Microsoft reports Q2 revenue up 5%.” These
two topics split in the next week as the association becomes weaker.
Another interesting pattern is that part of the “windows” topic splits
itself from the main topic in the first week and then joins “xbox” in
the next week. The major reason is that Dave Culter, the father of
Windows NT, shifted his focus to Xbox and was working “to extend
xbox beyond its status as a gaming platform.”

Motivated by this example, we aim to generate a sequence of
coherent multi-branch topic trees. Each tree in the sequence should
be similar to the one at the previous time point (smoothness). It also
needs to well describe the document distribution at that time point
(fitness). However, it is quite challenging to achieve the desired
results. First, it is not trivial to generate evolving multi-branch tree
representations as well as to model their evolution patterns over time.
Although the state-of-the-art multi-branch clustering methods [8,
16] can generate a topic tree with a high fitness value, they cannot
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(a) Ten evolving trees from Jan. 8 to Mar. 17 and the highlighted topics “xbox”(A), “windows”(B) and “sales and earnings”(C)
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(b) Splitting/merging patterns of topics “xbox,” “windows,” and “sales and earnings” (Jan. 8 to Jan. 28) and the transition from the tree
representation to the TextFlow visualization. With this visualization, the evolving splitting/merging relationships are clearly conveyed.

Figure 1: Evolutionary trees and patterns in Bing news data. 66,528 news articles were collected from Bing News using query word
“microsoft.” These articles were gathered from Jan. 8, 2012 to Jul. 21, 2012. We grouped the data by week over the 28-week period.
Accordingly, 28 trees were generated. The average tree depth was 4, the average internal node number was 99, and the average node
number of the first level was 21. Here we select part of the evolving trees from Jan. 8 to Mar. 17.

guarantee the smoothness between topic trees. One way to solve
this problem is to minimize the tree distance difference between two
correlated node pairs at two consecutive time points. This method
can improve the smoothness between trees to some extent. However,
it may fail to reconstruct an optimized tree for the current time point
since the parent-child relationships are lost. Second, online docu-
ments (e.g., news articles) arrive regularly and thus they are usually
large in number. Since the complexity of tree-based algorithms are
non-linear to the data number, it is therefore very time-consuming
to generate a sequence of topic trees that well balances the fitness
of each tree and the smoothness between adjacent trees.

To tackle the above challenges, we propose an algorithm, an evo-
lutionary Bayesian rose tree (EvoBRT), to automatically learn tree
evolutionary patterns. In our work, a Bayesian rose tree (BRT) [8]
is adopted to handle the multi-branch tree construction problem,
as well as to maintain a high fitness for human understanding. To
preserve the smoothness between adjacent trees, we formulate the
evolutionary clustering problem as a Bayesian online filtering al-
gorithm inspired by the method in [5]. A tree prior is introduced
in the BRT learning framework, which is formulated as a Markov
random field (MRF). The key here is to define the energy function
of the MRF model to measure the smoothness cost. A previous
study [19] has shown that a tree can be uniquely defined by a set of
triples and fans. A triple is a sub-tree with three leaf nodes and two
internal nodes (Fig. 3(a)), while a fan is a sub-tree with three leaf
nodes and one internal node (Fig. 3(b)). We argue that, in order to
create a sequence of coherent topic trees, we need to keep as many
sub-trees as possible when generating a new tree. To this end, we
define the smoothness cost as proportional to the number of violated

triples/fans between the adjacent trees. Our experiments show that
the triple- and fan-based measures work better than the evolution-
ary hierarchical clustering algorithm [9] in preserving smoothness
between trees.

The computational complexity of our algorithm is mainly deter-
mined by two parts: the construction of a Bayesian rose tree and
the parametrization of the tree prior given a pre-defined tree. We
leverage our previous work [16] to generate the Bayesian rose tree,
which reduces the complexity from O(n2 log(n)) to O(n log(n)). The
complexity of the tree prior parametrization is mainly caused by
calculating the number of violated triples/fans. Directly computing
the number usually takes Ω(n3) time, which is very time consuming.
To solve this problem, we build a constraint tree from all the triples
and fans. By leveraging this tree index, we reduce the calculation
time to O(n log(n)).

2. RELATED WORK

2.1 Constrained Hierarchical Clustering
In the area of data mining, researchers have developed various

approaches to perform constrained hierarchical clustering. Based on
the constraint type, they can be classified into two categories: pair-
wise approaches and triplewise approaches. Pairwise approaches
incorporate the constraints in the form of must-links and cannot-
links, which indicate that two samples must or cannot be in the same
cluster [11, 18]. Since must-links and cannot-links do not consider
hierarchical information, these methods may fail to characterize the
hierarchical document distribution.
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Triplewise approaches incorporate triple constraints (e.g., two
samples must be combined before the other sample is combined
with either of them) among the data to generate clusters. Existing
methods consider two different ways to use triple constraints, metric-
based approaches and instance-based approaches [4]. Metric-based
approaches learn a distance or similarity metric from the constraints
and then embed the metric in the clustering process [4, 13, 21, 30].
Instance-based approaches follow all triplewise constraints in the
bottom-up merging process and will fail to generate a hierarchy if
one of them is violated [4, 15, 29].

In contrast to the above algorithms, which are designed for build-
ing a static binary tree, our algorithm aims to generate evolving
multi-branch hierarchies. A multi-branch tree contains both triples
and fans, so the existing approaches do not work since they cannot
handle fans. In addition, to model evolving patterns, our algorithm
automatically generates constraints for the tree at time t based on the
tree structure at t−1, while the constraints in constrained hierarchical
clustering are predefined.

2.2 Evolutionary Topic Analysis
Recent efforts in topic analysis have focused on developing ad-

vanced machine learning algorithms to extract evolving topics, such
as dynamic latent Dirichlet allocation and its variations [1, 6], and
hierarchical Dirichlet processes [2, 3, 25, 26, 28]. The evolving
topics may be correlated with others by various relationships over
time. The most intuitive relationships are topic correlation [23] and
common topics [24]. Recently, TextFlow was developed to help
users analyze topic evolution patterns, including topic birth, death,
splitting, and merging, in text data [10, 12]. However, none of the
above methods focus on mining evolving trees.

A previous study has shown that it is very useful for information
understanding and consumption if users are provided with hierar-
chical topic information over time [27]. However, how to efficiently
and effectively mine the hierarchical topics as well as their evolving
patterns has not been solved yet. The most related method to ours is
the evolutionary hierarchical clustering algorithm [9]. It measures
the difference between trees by the average distance between all
node pairs. However the tree distance metric is not sufficient to
reconstruct a tree and measure the smoothness between trees since
the parent-child relationships are lost. In contrast to evolutionary
hierarchical clustering, we introduce two constraints, triples and
fans, into the model to guarantee high smoothness between topic
trees. In addition, we also choose the Bayesian rose tree [8] as our
base representation to discover multi-branch structures in text data
instead of binary tree structures.

3. BACKGROUND
To perform evolutionary hierarchical clustering, we adopt the

static multi-branch tree as the base representation. In this section,
we briefly introduce its definition and construction method.

Given a set of text documents D = {x1, x2, ..., xn}, where each
document is represented as a feature vector x ∈ R|V| and |V| is the
vocabulary size of the corpus, a multi-branch tree either consists of
a single leaf x ∈ D, or consists of a set of sub-trees T1,T2, ...,TnT

whose parent is the root node T . Each sub-tree Ti is also defined in
the same way. Here nT can be larger than two.

To infer the multi-branch tree structure, we follow the Bayesian
rose tree (BRT) [8] approach, which greedily estimates the tree
structure based on probability P(D|T ). Initially, each document
is regarded as an individual tree on its own: Ti = {xi}. Then the
algorithm repeatedly selects two trees Ti and T j and combines them
into a new tree Tm by a join, absorb, or collapse operation (Fig. 2),

… …

Join

…

…

Absorb

… …

Collapse

… …

A

Figure 2: Basic operations of BRT.

aiming to maximize the ratio of probability:

p(Dm|Tm)
p(Di|Ti)p(D j|T j)

, (1)

where p(Dm|Tm) is the likelihood of Dm given the tree Tm, Dm =

Di ∪D j represents all the data under Tm. p(Dm|Tm) is defined as:

p(Dm|Tm) = πTm f (Dm) + (1 − πTm )
∏

Ti∈children(Tm)

p(Di|Ti), (2)

where f (Dm) is the marginal probability of Dm, and children(Tm)
is the child set of Tm. πTm is the prior probability that all the data in
Tm is kept in one cluster. Specifically, it is defined as:

πTm = 1 − (1 − γ)nTm−1, (3)

where nTm is the child number of Tm, and 0 ≤ γ ≤ 1 is the hyper-
parameter to control the partition granularity.

To represent the marginal distribution f (D), we use the DCM
distribution [16, 17]

fDCM(D) =

n∏
i

mi!∏|V|

j x( j)
i !
·

∆(α +
∑

i xi)
∆(α)

, (4)

where mi =
∑|V|

j x( j)
i , and α = (α(1), α(2), . . . , α(|V|))T ∈ R|V| is the

parameter that controls the Dirichlet distribution, which is the prior
of the multinomial distribution of each cluster.

4. EVOLUTIONARY TREE MODELING
In this section, we first introduce the overall procedure of evo-

lutionary tree construction. Then we illustrate the formulation of
constraint modeling and related operations.

4.1 Algorithm Overview
In our model, we assume text data comes in a sequential and

continuous way. At each time t, we have a set of documents, which
is denoted asDt = {xt

1, x
t
2, ..., x

t
nt
}, where nt is the number of docu-

ments coming at that time point. We assume there is an underlying
tree T t that organizes the documents at t. To capture the tree struc-
ture changes behind the data, we formulate the learning procedure
as a Bayesian online filtering process:

p(T t |Dt,T t−1) ∝ p(Dt |T t)p(T t |T t−1). (5)

With this formulation, the new tree T t depends on both the likelihood
of the current data p(Dt |T t) and conditional prior p(T t |T t−1) that
measures the difference between T t and T t−1. Accordingly, our
model considers both the fitness and historical smoothness costs
as in the evolutionary hierarchical clustering algorithm [9]. For
simplicity, here we only use one-step historical smoothness. It is also
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(a) Triple: ab|c (b) Fan: (abc) (c) Tree representation

Figure 3: Tree representation by triples and fans.

easy to incorporate more than one historical tree in the conditional
prior p(T t |Dt,T t−1,T t−2, ...).

Similar to BRT, directly maximizing p(Dt |T t)p(T t |T t−1) is in-
tractable, since there are a super-exponential number of candidate
trees for T t. We then follow the greedy construction method of
BRT [8] to select two sub-trees and one of the three types of combi-
nations (join, absorb, and collapse) to construct a larger (sub-)tree.
The selection aims to maximize the following posterior test ratio:

p(Dt
m|T

t
m)p(T t

m|T
t−1)

p(Dt
i |T

t
i )p(T t

i |T t−1) · p(Dt
j|T

t
j)p(T t

j|T t−1)
, (6)

where T t
i and T t

j are two candidate sub-trees that are considered for
generating T t

m using the three types of combinations, Dt
i and Dt

j are
the corresponding document sets, and Dt

m = Dt
i
⋃

Dt
j.

By defining the energy function, which measures the smoothness
cost of merging T t

i and T t
j given T t−1, as

VT t−1 ({T t
i ,T

t
j} → T t

m), (7)

we can formulate the conditional tree prior in a recursive way:

p(T t
m|T

t−1) = p(T t
m|T

t
i ,T

t
j,T

t−1)p(T t
i |T

t−1)p(T t
j|T

t−1), (8)

where

p(T t
m|T

t
i ,T

t
j,T

t−1) ,
1
Z

exp
(
− λVT t−1 ({T t

i ,T
t
j} → T t

m)
)
, (9)

and λ is the constraint weight that balances the importance of
smoothness and tree likelihood. Inspired by a simpler Markov
random field (MRF) defined on flat clusters in [5], we regard the
conditional prior p(T t |T t−1) as a Gibbs distribution based on a re-
cursively defined MRF. The energy function of the MRF can be
parameterized as a sum of a set of VT t−1 ({T t

i ,T
t
j} → T t

m). With this
parametrization, we rewrite Eq. (6) as:

p(Dt
m|T

t
m)

p(Dt
i |T

t
i )p(Dt

j|T
t
j)
·

1
Z

exp
(
− λVT t−1 ({T t

i ,T
t
j} → T t

m)
)
. (10)

Since the first term corresponds to the BRT algorithm (Eq. (1)),
the key is then to calculate the second term, the smoothness cost
VT t−1 ({T t

i ,T
t
j} → T t

m), which is illustrated in the next sub-section.

4.2 Constraint Modeling
The major goal of the smoothness cost is to preserve as many

common tree structures as possible. To this end, we first introduce
the triple- and fan-based constraints and use them to measure the
cost. Then a constraint tree is built for efficient computation. Finally,
we illustrate how to gradually modify the constraint tree for better
measuring the cost.

4.2.1 Triple, Fan, and Constraint Tree
We first introduce some preliminary definitions that are useful for

subsequent discussions.

Definition 1. A triple (Fig. 3(a)) is a sub-tree with three leaf
nodes and two internal nodes. We denote it as ab|c where a and b
are the two closest leaf nodes and c is the third leaf node.

Definition 2. A fan (Fig. 3(b)) is a sub-tree with three leaf
nodes and one internal node. We denote it as (abc) where a, b, and
c are the three leaf nodes.

Binary trees only contain triples, while multi-branch trees contain
both triples and fans. The example in Fig. 3(c) illustrates the relation-
ship between a multi-branch tree and its corresponding triples/fans.
This tree contains nine triples and one fan.

The following lemma illustrates the relationship between a multi-
branch tree and its related triples/fans, which was proposed by Ng
et al. [19].

Lemma 1. A multi-branch tree T can be uniquely defined by a
set of triples and fans.

This lemma indicates that triples and fans contain all the hierarchical
information of a multi-branch tree. Since a tree can be uniquely re-
constructed by a set of triples and fans, we measure the smoothness
cost by the violated triples/fans between adjacent trees. A tree with
n leaves contains C3

n triples and/or fans. Thus, directly computing
the violation number usually takes O(n3) memory and Ω(n3) time,
which is very time- and memory-consuming. To solve this problem,
we build a tree to organize all the related triples and fans. We call
it a constraint tree.

Definition 3. A constraint tree T̃ t hierarchically organizes the
triples/fans inferred from Dt. It is initialized based on the previ-
ous tree T t−1, and modified as the corresponding triples/fans are
violated.

In the next three sub-sections, we illustrate the constraint tree ini-
tialization and modification.

4.2.2 Constraint Tree Initialization
The basic idea of initializing the constraint tree T̃ t is to map

each document inDt to its most relevant topic in T t−1. For a docu-
ment that does not belong to any topic in T t−1, a new topic is then
generated at t. In our implementation, we propose two alternative
measures to compute the similarity between xt

i andDt−1
m . The first

is based on the cosine similarity between documents:

simcos(xt
i,D

t−1
m ) , cos(xt

i,
∑

xt−1
j ∈D

t−1
m

xt−1
j ). (11)

An alternative measure, the prediction measure, is based on the
conditional probability of xt

i givenDt−1
m [7]:

simpred(xt
i,D

t−1
m ) , log p(xt

i |D
t−1
m ) = log

∫
θ

p(xt
i |θ)p(θ|Dt−1

m )dθ.

(12)
We adopt a greedy method to map the document xt

i to the sub-
trees, which searches T t−1 in a top-down manner. We compare the
similarity value of a parent with those of its children by leveraging
one of the above two similarity measures. If the similarity value of
the parent is larger than any of its children, as well as a pre-defined
threshold s0, we stop the search process and set the parent as the
most relevant topic; otherwise we treat the child with the highest
relevance value as the new parent and repeat the process.

After mapping all the data xt
i inDt to the possible topics in T t−1,

we have a new tree T̃ t, which is the initialization of the constraint
tree. With this initial constraint tree, one way to compute the smooth-
ness cost is as follows: When building a new tree T t, we compute
how many triples and fans are violated when combining two candi-
date sub-trees T k

i and T k
j by leveraging the constraint tree. Although

this method is intuitive, it has one major problem. This is due to
the fact that we ignore conflicting constraints. For example, given a
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constraint tree T̃ t−1 in Fig. 4, if we combine a and d, two types of
constraint states will be introduced. The first type is the violated
constraints. In this example, three triples/fans are violated. Here
we take the triple ab|d as an example. This triple indicates that a
and b should be combined first and then they are combined with d.
However, if a and d are combined first, this triple is violated. The
second type is the conflicting constraints, which are the triples/fans
that cannot co-exist in the constraint tree. Considering fan (abc), if
a and d are combined, (abc) conflicts with the triple bc|d since they
cannot both be in this tree.

Violated 
constraints

Conflicting 
constraints

Merge
        first   

     

                     
           

……               

Figure 4: Two types of constraint states.

Besides the violated constraints, the conflicting constraints also
influence the smoothness cost. However, it is not easy to compute
the cost caused by conflicting constraints since the relationships
between them are complicated. For example, one constraint may
conflict with multiple constraints. Moreover, besides the pairwise
conflicts, there are triplewise and multiple conflicts. As shown in
Fig. 4, if a and d are combined, then (abc), ac|e, and de|b conflict
even though any two of them do not conflict with each other. As a
result, it is hard to measure the corresponding cost even if we list all
the conflicting constraints. To tackle this issue, we introduce two
basic operations, merge and split, to the constraint tree.

4.2.3 Basic Operations and Their Cost
To better measure the cost introduced by conflicting constraints,

we define two basic operations, merge and split. Fig. 5 briefly
illustrates the two operations.

Definition 4. merge: a sub-tree T̃k forwards the data of its own
and its children to its parent T̃l. Then T̃k itself is removed from the
constraint tree.

Definition 5. split: some children of a sub-tree T̃ ′l redirect their
parent to a newly generated child T̃k of T̃ ′l .

…

… … …
MERGE

SPLIT

Figure 5: merge and split operations on the constraint tree.

Next, we illustrate the major reason why these two operations are
enough to remove the conflicts from a constraint tree and make it
consistent. For simplicity, we take a two-level tree as an example
to illustrate the basic idea. As shown in Fig. 2, BRT provides three
types of combinations, a join, an absorb, and a collapse. If sub-
trees Ti and T j are combined with a BRT operation that is different
from the one in the constraint tree, conflicting constraints will be
introduced. The basic idea of avoiding conflicts is to update the con-
straint tree to make it consistent with the current data organization.

For example, assume sub-trees Ti and T j are combined together
by an absorb operation (Fig. 2A). If they appear in the constraint
tree as shown in Fig. 6B, conflicting constraints are introduced. To
solve them, we change the constraint tree into the one in Fig. 6C
using a merge operation. More examples of using the merge/split
operation(s) to modify the constraint tree are shown in Fig. 6, which
demonstrate that the changes between the constraint trees that cor-
respond to the BRT operations can all be handled with the split or
merge operation(s). Consequently, they are enough to maintain a
consistent constraint tree.

…

…

… …

… …

1

21

1

1

2

B

C

MERGE

SPLIT

SPLIT

MERGE

SPLIT

MERGE

Figure 6: Update constraint trees by merge/split.

With merge/split, we can then measure the cost from conflicting
constraints by counting the violated constraints in the two opera-
tions. The calculation method is given by the following theorems.
We take the merge/split operation in Fig. 5 as an example in the
following discussions.

Theorem 1. In a merge operation, only triples may be violated,
and violated triples become fans. The number of violated triples is

Vmerge({T̃k, T̃l} → T̃ ′l ) =
|D̃k |

2 −
∑
|D̃ki|

2

2
(|D̃l| − |D̃k |), (13)

where |D̃k | is the number of leaves in the tree T̃k.

Proof. Given a (sub-)tree T , the number of fans is

|FT | =
∑

Ts∈sub−trees(T )
|children(Ts )|>2

∑
Tsi ,Ts j ,Tsl∈
children(Ts )
Tsi,Ts j,Tsl

|Dsi||Ds j||Dsl|, (14)

where FT is the set of fans in T , and |FT | is the number of fans in
the set.

Since all the triples in T̃ ′l are contained in T̃l, the merge operation
only violates triples and changes them to fans. Thus the cost of the
merge operation is the difference in fan number between T̃l and T̃ ′l .

|FT̃ ′l
| − |FT̃l

| =
|D̃k |

2 −
∑
|D̃ki|

2

2
(|D̃l| − |D̃k |). (15)

Similarly, we can prove the following theorem on the split operation.

Theorem 2. In a split operation, only fans may be violated, and
the violated fans become triples. The number of violated fans is:

Vsplit(T̃ ′l → {T̃k, T̃l}) =
|D̃k |

2 −
∑
|D̃ki|

2

2
(|D̃l| − |D̃k |). (16)
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4.2.4 Constraint Tree Modification and Its Cost
In Sec. 4.2.3, we assume the sub-trees to be combined are adja-

cent to each other. In real applications, however, the two sub-trees
may not be adjacent. In such a case, we first move them to the
closest common ancestor by a sequence of merge operations. Once
they are under the same ancestor, we perform the merge/split oper-
ation(s) to make the related constraint tree consistent. As a result,
the smoothness cost introduced by the conflicts can be calculated
by summing up the violation costs of all merge/split operations:

VT t−1 ({T t
i ,T

t
j} → T t

m) =
∑

o

Vopto , (17)

where opto is a merge operation or a split operation.

5. COMPUTATIONAL COMPLEXITY
The complexity of EvoBRT is determined by three parts: con-

struction of the Bayesian rose tree, constraint tree initialization, and
computation of the violated constraints. The complexity results are
summarized in Table 1.

Several methods have been proposed to implement BRT [16]. In
this paper, we leverage them to build the multi-branch tree. We
use EvoBRT to represent the implementation based on the original
BRT [8], and KNN-EvoBRT and SpillTree-EvoBRT to represent the
ones based on the two approximation algorithms, KNN-BRT and
SpillTree-BRT [16]. For simplicity, we call these two algorithms
the evolutionary approximation algorithms. The related complexity
results are shown in Table 1. Interested readers are referred to [16]
for a detailed analysis.

To build the initial constraint tree T̃ t, we map each document in
Dt to a proper node in T t−1. Since we search for the best node in a
top-down manner, the complexity is O(nCV log n).

The complexity of calculating the violated constraints is mainly
caused by two parts: counting the violated constraints and updating
the posterior test ratios. The first part has O(n2h) time complexity in
EvoBRT, and O(nKh) time complexity in the evolutionary approx-
imation algorithms. Here h is the depth of tree T̃ t, and K is the num-
ber of nearest neighbors. When the constraint tree is modified, some
posterior test ratio values will be changed. Since the posterior test
ratios are stored in a sorted list, the complexity of the second part is
therefore caused by updating this list. The complexity is O(n2h log n)
for EvoBRT and O(nKh log n) for the evolutionary approximation
algorithms. The log n factor is due to updating one value in the
sorted list, while n2h and nKh are the number of maximum updated
values for EvoBRT and the evolutionary approximation algorithms.

Table 1: Time Complexity. CV is the number of non-zero ele-
ments in the vector. The time for initializing T̃ t is O(nCV log n).

Tree Construction Violation Calculation
EvoBRT O(n2CV + n2 log n) O(n2h log n)

KNN-EvoBRT O(n2CV + n2 log K) O(nKh log n)SpillTree-EvoBRT O(ndCV + nd log n log K)

6. EXPERIMENTS
To demonstrate the performance of our algorithm, we have con-

ducted a series of experiments on several real datasets. In this
section, we first introduce the baseline algorithm. Then the effec-
tiveness of our constraint model is demonstrated by using the 20
newsgroups dataset1. Next, we illustrate how our algorithm can
well preserve both fitness (likelihood) and smoothness. Finally, we
show that our EvoBRT algorithm is as efficient as the BRT algo-
rithm and its variations in [16]. The results show that our algorithm
outperforms the baseline in all aspects that we have compared.
1http://qwone.com/ jason/20Newsgroups/

In our experiments, we exploited KNN-EvoBRT (K = 50) due
to its efficiency and relative stable performance [16]. For each
experiment, the rose tree parameters with the highest likelihood
value were selected through a grid search.

6.1 Baseline algorithm
We implemented a baseline algorithm based on the evolutionary

hierarchical clustering algorithm [9]. Since this method focuses on
binary hierarchies, we only compared its constraint model. More
exactly, we incorporated its smoothness function into our framework.
The smoothness is defined as

log pDist(T t |T t−1) , −λE r,s∈leaves(Tt )
r,s

(dT t (r, s) − dT̃ t (r, s))2, (18)

where dT (r, s) is the tree distance between r and s, and λ is the
constraint weight that balances smoothness and tree likelihood.

Here we choose the squared heuristic [9] to maximize the smooth-
ness since it can be easily adapted to the multi-branch scenario. With
this heuristic, the smoothness cost of combining sub-trees T t

i and T t
j

is given by

V(Dist)T t−1 ({T t
i ,T

t
j} → T t

m) , E r∈leaves(Tt
i )

s∈leaves(Tt
j )

(dT t
m

(r, s) − dT̃ t (r, s))2. (19)

The baseline was implemented by substituting VT t−1 ({T t
i ,T

t
j} → T t

m)
in our algorithm with V(Dist)T t−1 ({T t

i ,T
t
j} → T t

m).

6.2 Effectiveness of Constraint Model
The major goal of this experiment is to evaluate: 1) the effective-

ness of the two similarity measures for constraint tree initialization
and check which one is better; 2) the clustering quality of the tree
built by our constraint model.

6.2.1 Experimental settings
In this experiment, we used the 20 newsgroups dataset. This

dataset has a ground-truth hierarchy with two levels of clusters (7
clusters at the first level and 20 clusters at the second level). We
removed the clusters with only one child and got a hierarchy with
4 and 17 clusters at the first and second levels, respectively. In each
trial, we randomly sampled 2,000 documents to form a ground-truth
labeled tree. We treated it as the tree at t − 1. We then sampled
2,000 documents again and mapped them to the ground-truth labeled
tree, which is the initial constraint tree in our model. The second
dataset of 2,000 documents can be sampled such that it has a specific
percentage of overlap with the first dataset. In our experiment, we
considered 5 overlapping ratios that vary from 0 to 1. For each
given overlapping ratio, we sampled the two datasets 5 times and
the results of each ratio were computed by averaging the results of
these 5 trials. The Bayesian rose tree parameter γ was set at 0.1,
and α(i) = 0.01(i = 1, . . . , |V|) (Eq. (4)).

6.2.2 Criteria
We evaluated the tree clustering quality by two criteria: Normal-

ized Mutual Information (NMI) and Cluster Number Error (CNE).
NMI is the most commonly used metric to measure the clustering
quality [22], but may fail in certain instances, especially when the
cluster number difference is large. For example, the ground-truth
contains 50 clusters, each of which consists of 20 data samples. If
the algorithm builds 1,000 clusters, each of which only contain 1
data sample, then the NMI value is 0.75. To solve this problem,
we introduced CNE, which measures the cluster number difference
between the generated tree and the ground-truth tree at each level.
The larger the CNE value, the worse the tree clustering quality. In
our experiments, we evaluated the clustering quality by averaging
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Figure 7: Clustering quality of the constraint trees initialized
by different measures with different overlapping ratios.

the NMI/CNE values at different levels. A clustering result with a
larger NMI value and smaller CNE value has better quality.

6.2.3 Results
First, we evaluated which similarity measure was better for map-

ping documents in constraint tree initialization. We used Cosine to
represent the mapping method with the cosine similarity (Eq. (11)),
and Prediction to represent the mapping method with the predic-
tion measure (Eq. (12)). Fig. 7 shows how the quality of the initial
constraint tree changed with different data overlapping ratios and dif-
ferent measures. The Prediction measure outperformed the Cosine
measure on both criteria. For example, even when the overlapping
ratio was 0, the NMI value was 0.7. We speculate that this may be
due to the fact that the probability-based prediction measure is more
consistent with the tree building probability in our model.

Second, we compared our algorithm with the baseline method to
demonstrate its effectiveness in building high-quality tree clustering
results. In each experiment, we also compared the results with the
overlapping ratios 0, 0.5, and 1. Fig. 8 shows how the tree clustering
quality changed with different constraint weight λ (Eq. (9)) for both
algorithms with different overlapping ratios. As illustrated by the
results, our algorithm is much more effective than the tree distance-
based baseline algorithm. When the data overlapping ratio is 1, we
can reconstruct the ground-truth labeled tree. Even if the overlap-
ping ratio is 0, our algorithm still maintains a larger NMI (0.7) and
smaller CNE (near 0), while the baseline has a smaller NMI (0.5)
and much larger CNE (650). In our algorithm, both NMI and CNE
become better as the constraint weight increases. In the baseline,
the NMI becomes better with the increase of the constraint weight,
while the CNE gets worse with the increase of the constraint weight.

10
−8

10
−6

10
−4

10
−2

10
0

10
2

0

0.2

0.4

0.6

0.8

1

Constraint Weight

N
M

I

 

 

Overlap: 1
Overlap: 0.5
Overlap: 0

(a) Our algorithm, NMI

10
−8

10
−6

10
−4

10
−2

10
0

10
2

−10

0

10

20

30

Constraint Weight

C
N

E

 

 

Overlap: 1
Overlap: 0.5
Overlap: 0

(b) Our algorithm, CNE

10
−15

10
−10

10
−5

10
0

10
5

10
10

0.2

0.3

0.4

0.5

0.6

Constraint Weight

N
M

I

 

 

Overlap: 1
Overlap: 0.5
Overlap: 0

(c) Baseline, NMI

10
−15

10
−10

10
−5

10
0

10
5

10
10

0

200

400

600

800

Constraint Weight

C
N

E

 

 

Overlap: 1
Overlap: 0.5
Overlap: 0

(d) Baseline, CNE

Figure 8: Tree clustering quality comparison.

6.3 Tree Likelihood vs. Smoothness
In this experiment, we aimed to demonstrate that our algorithm

well preserved both fitness and smoothness.

6.3.1 Experimental settings
In this experiment, we used New York Times news articles (from

Jan 2006 to Jun 2007)2. This dataset contains 12,798 articles on
art, style, travel, business, and sports. We grouped the data into
nine segments, each of which contained 2 months of articles. We
randomly sampled 1,000 documents from each time segment. To
eliminate the randomness caused by sampling, we sampled the data
5 times and ran the experiment 5 times. The results were computed
by averaging the results of the 5 trials. Bayesian rose tree parameters
γ and α(i) were set at 0.03 and 0.0005.

6.3.2 Criteria
In our experiment, we used likelihood to measure the fitness of

a tree. We also introduced three metrics to measure the smoothness
between adjacent trees.

Tree Distance Smoothness (SDist): This metric is defined based
on the smoothness cost of the baseline algorithm. It measures the
tree structure difference by aggregating the tree distance difference
between two correlated leaf pairs of the adjacent trees: S Dist =
1
λ

log(pDist(T t |T t−1)), where pDist(T t |T t−1) is defined in Eq. (18).
Tree Order Smoothness (SOrder): This metric is defined based

on the smoothness cost of our algorithm. It is the negative value of
the violated triples/fans compared with the previous tree: S Order =
1
λ

log(p(T t |T t−1)), where p(T t |T t−1) is defined in Eq. (8).
Robinson-Foulds Smoothness (SRF): This metric is based on

the widely used Robinson-Foulds distance metric for phylogenetic
trees [20].

S RF = −[dRF(T t,T t−1(Dt)) + dRF(T t−1,T t(Dt−1))]/2, (20)

where T t−1(Dt) represents the constraint tree built on the given tree
T t−1 and data Dt. Then S RF is defined as the average distance of
(T t,T t−1(Dt)) and (T t−1,T t(Dt−1)). We implemented an improved
version of Robinson-Foulds distance given in [14].

6.3.3 Results
Two 5-depth trees were built by the baseline and our algorithm,

respectively. Fig.9 shows how the smoothness scores changed
with likelihood. We did a grid search of eight constraint weights
for both the baseline and our algorithm. The constraint weights
for the baseline and our algorithm were {1e−25, 1e−20, ..., 1e10} and
{3e−6, 1e−5, ..., 3e−3, 1e−2}. The larger the constraint weight, the
more emphasis was put on the smoothness factor. In each of the
figures, we connected the points in the order of increasing constraint
weights. Based on an analysis of the results, we draw the following
conclusions.

First, our method can generate a much smoother structure than the
baseline while maintaining a larger likelihood. Besides having very
good performance under the metric of S Order, our algorithm also
achieved a comparable performance under the metrics of S Dist and
S RF . This demonstrates that triples and fans contain all the hierar-
chical information of a multi-branch tree and thus the cost function
based on them is very effective at preserving both smoothness and
fitness. The baseline algorithm achieved a reasonable performance
under the metric of S Dist. However, it failed to get a good result
under the metrics of S Order and S RF . This is due to the fact that tree
distance constraints do not consider the hierarchical information
(e.g., parent-child relationships) of a tree.

2http://nytimes.com
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Figure 9: Comparison of smoothness and likelihood with different constraint weights.
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Figure 10: Comparison of smoothness and likelihood at different time points.

Second, the smoothness of our algorithm increases consistently
with the increase of the constraint weight, while the likelihood in-
creases at first and then decreases. This indicates that incorporating
a certain amount of historical information actually helps to increase
fitness. This is because the highly reliable triples/fans are kept in the
current tree and they can help the greedy algorithm find a better solu-
tion. However the baseline does not exhibit a similar pattern. Even
if the constraint weight increases, the smoothness between trees is
not guaranteed. This is because the baseline does not well consider
multi-branch structures and does not handle conflicting constraints.

Next, we found that our algorithm can well preserve both smooth-
ness and likelihood at each time point. The result was the average
values of the eight trails with different constraint weights. As shown
in Fig. 10(b), Fig. 10(c), and Fig. 10(d), our algorithm outperformed
the baseline on smoothness at almost every time point. Furthermore,
the baseline also worked better at preserving smoothness than the
method with no constraint (denoted as “No constraint” in Fig. 10),
which is equivalent to performing BRT at each time point. As for the
likelihood, our algorithm and the baseline were as good as the one
with no constraint (Fig. 10(a)). This demonstrates again that our al-
gorithm can preserve smoothness between trees without sacrificing
the likelihood of each tree.

6.4 Efficiency
In this section, we first demonstrate that our algorithm is more

efficient than the baseline. Then we compare the running time of our
algorithm with different constraint weights. Experimental results

show that KNN-EvoBRT and SpillTree-EvoBRT is as efficient as
KNN-BRT and SpillTree-BRT.

6.4.1 Experimental settings
We randomly sampled 100,000 documents from the New York

Times corpus, and evaluated the efficiency of our model based on
KNN-BRT and SpillTree-BRT. We classified the data into two
groups. The first was used for constructing the constraint trees and
the second was used for building a new tree based on the constraint
tree. The vocabulary size used in this experiment was 665,261.

6.4.2 Results
As shown in Fig. 11(a), our algorithm outperformed the baseline

in terms of efficiency (based on KNN-BRT). Its performance was
also comparable to KNN-BRT. Fig. 11(b) and Fig. 11(c) demon-
strate the running time of KNN-EvoBRT and SpillTree-EvoBRT,
respectively. Here, we also compare the implementations with dif-
ferent constraint weights. The results demonstrate again that the
performance of our algorithm is comparable to that of the two ap-
proximation algorithms of BRT. In this example, when the constraint
weight was small (i.e., 1e-10), our algorithm was similar to the one
with no constraint in terms of efficiency. When the constraint weight
was large, our algorithm was even faster for the corpus with a larger
number of documents. After checking the results with the faster
running time, we found their constraint trees were quite balanced. A
balanced constraint tree leads to a balanced tree structure. Typically,
BRT and its variations can build a balanced tree much faster. Due
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Figure 11: Efficiency comparison: (a) comparison of different methods (KNN); (b) comparison of KNN-EvoBRT (λ = 1e − 10, 1e −
5, 1e0) with KNN-BRT (No constraint); (c) comparison of SpillTree-EvoBRT ((λ = 1e − 10, 1e − 5, 1e0)) with SpillTree-BRT.

to the complexity of our algorithm, it can also handle larger scale
datasets in a reasonable amount of time.

7. CONCLUSIONS
In this paper, we present an evolutionary multi-branch hierarchi-

cal clustering algorithm, EvoBRT, to automatically learn dynamic
tree structures over time. We leverage a Bayesian online filtering
framework to formulate our evolutionary clustering problem. To
build multi-branch trees, we adopt the state-of-the-art multi-branch
tree clustering method, Bayesian rose trees. To preserve tree smooth-
ness over time, we use the conditional prior over tree structures to
keep the information from previous trees. Particularly, we introduce
the concepts of triples and fans, which can uniquely represent a
multi-branch tree. To compute the tree structure differences effi-
ciently, we define a constraint tree from triples and fans, as well as
the corresponding operations to make it consistent over time. Our
experiments show that our algorithm outperforms the traditional
evolutionary hierarchical clustering algorithm both in tree clustering
quality and construction efficiency. The complexity analysis demon-
strates that our algorithm can be applied to large-scale datasets.
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