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ABSTRACT
We consider the problem of adaptively routing a fleet of
cooperative vehicles within a road network in the presence
of uncertain and dynamic congestion conditions. To tackle
this problem, we first propose a Gaussian Process Dynamic
Congestion Model that can effectively characterize both the
dynamics and the uncertainty of congestion conditions. Our
model is efficient and thus facilitates real-time adaptive rout-
ing in the face of uncertainty. Using this congestion model,
we develop an efficient algorithm for non-myopic adaptive
routing to minimize the collective travel time of all vehi-
cles in the system. A key property of our approach is the
ability to efficiently reason about the long-term value of
exploration, which enables collectively balancing the explo-
ration/exploitation trade-off for entire fleets of vehicles. We
validate our approach based on traffic data from two large
Asian cities. We show that our congestion model is effective
in modeling dynamic congestion conditions. We also show
that our routing algorithm generates significantly faster routes
compared to standard baselines, and achieves near-optimal
performance compared to an omniscient routing algorithm.
We also present the results from a preliminary field study,
which showcases the efficacy of our approach.

Categories and Subject Descriptors: H.2.8 Database
applications: Data mining I.2.6 Artificial Intelligence: Learn-
ing - parameter learning

General Terms: Algorithms; Experimentation.

Keywords: Collective routing; Gaussian Process; Dynamic
congestion model.

1. INTRODUCTION
We consider the problem of collectively routing a fleet of

cooperative vehicles, with the goal of minimizing the to-
tal travel time. Such problem settings naturally arise in
contexts such as delivery services and cooperative fleets of
automated self-driving vehicles.
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Figure 1: Example collective routing problem with
uncertainty. Seven vehicles wish to travel from A
(left) to B (right). The bottom road is faster in
expectation, but there is a chance that the top road
is currently faster. A good collective strategy is to
send the first two vehicles down separate roads to
observe which road is currently the faster one.

Intelligently routing vehicles in urban environments is a
challenging problem due to uncertainty in the traffic condi-
tions of the road network. Consider the example depicted
in Figure 1, where seven cooperative vehicles wish to travel
from point A (left side) to point B (right side) using either
the top road or the bottom road. Suppose from historical
measurements that we know the bottom road is faster in
expectation. However, there is a reasonable chance that the
top road is currently faster. A good collective strategy in
this setting would be to send the first two vehicles down
separate roads in order to observe current traffic conditions
on both roads (i.e., vehicles can also be viewed as sensors).
Afterwards, the remaining vehicles can be routed using much
more reliable traffic information.1

Two technical challenges arise from this example. First,
we require a (probabilistic) model that reliably captures the
distribution, or uncertainty, of traffic conditions (e.g., the
model must be able to predict that the top road in Figure 1
is faster 40% of the time). Furthermore, such a model must
be able to (efficiently) predict reliable posterior, or updated,
distributions given real-time observations.

Second, we require routing algorithms that can balance
the exploration/exploitation trade-off underlying all prob-

1Note that our approach does not require vehicles to wait
while the first two vehicles are exploring, but rather au-
tomatically balances the collective exploration/exploitation
trade-off for the entire fleet (see Section 5).
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lems pertaining decision-making under uncertainty – this
issue is typically not explicitly considered in the routing lit-
erature. In Figure 1, the first two vehicles are engaged in
“exploratory” routing so that later vehicles can be routed
more optimally. Exploration is inherently non-myopic since
it often reduces the utility (i.e., increases the travel time) of
the exploring vehicle. As such, effective routing algorithms
must be careful to not over-explore, which requires reason-
ing about the long-term impact of exploration. Our setting
is further complicated due to collectively routing a fleet of
cooperative vehicles, rather than a single vehicle in isolation.

In this paper, we make the following contributions:

• We propose a Gaussian Process Dynamic Congestion
Model (GPDCM), which can model both the uncer-
tainty and the dynamics of traffic conditions.

• We propose an adaptive collective routing algorithm,
called Planning using Canonical Routes (PCR), that
can effectively reason about the long-term value of ex-
ploration for an entire fleet of cooperative vehicles.
The PCR algorithm can efficiently construct long-term
plans that are optimized over the full action space of all
possible routes. The PCR algorithm accomplishes this
task by calculating the long-term value of exploration
only over a small set of “canonical routes” – some of
which are the true optimal routes (see Section 5.1).

• We validate our approach using real traffic data col-
lected from two large Asian cities. We show that our
traffic model effectively captures the dynamics of real-
time traffic conditions.

• We also show that our PCR algorithm dramatically
out-performs conventional baselines, and achieves near-
optimal performance compared to an omniscient rout-
ing algorithm with perfect knowledge of traffic condi-
tions. We also present results from a preliminary field
study showcasing the efficacy of our approach.

2. RELATED WORK
Traffic data analysis: Traffic modeling is a very di-

verse research area, which is primarily due to there being
a large variety of measurement types (e.g., traffic cameras,
GPS traces) as well as modeling goals. Our work is most
closely related to the area of congestion estimation.

Congestion or traffic estimation has been studied using a
variety of mathemetical tools, ranging from flow patterns
[20], to per-individual statistical models [18], to Markov
chain forecasting [29]. The two main types of measurement
data are GPS or low-bandwidth cellular updates which are
associated with individual vehicles [32, 7], and static traffic
cameras which are associated with known location [2].

In contrast to most prior work, our goal is to derive a holis-
tic generative probabilistic model of dynamic traffic condi-
tions. Since our goal is to incorporate such a traffic model
into a real-time routing algorithm, we require our model to
not only accurately capture the distribution of future traf-
fic scenarios (given real-time observations), but also be suf-
ficiently fast to evaluate. For measurement, we use GPS
traces collected from thousands of taxis from two large Asian
cities (see Section 6).

Other work on traffic modeling have studied phenomenon
such as traffic accidents or other outlier activitiy [3, 22] and
evaluating the overall health of a road network design [34].

Adaptive Routing: Although there have been some
work on personalized or adaptive routing based on histori-
cal and real-time traffic conditions, prior work did not model
the benefits of real-time exploration, and thus must resort
to myopic routing [33, 8].

The routing problem we study is an instance of the gen-
eral problem of decision-making under uncertainty. Such
problems are typically cast as partially observable Markov
decision processes (POMDPs) [14], where the world (i.e.,
road congestion conditions) is assumed to behave according
to Markovian dynamics, and actions (i.e., routing) reveal
partial observations regarding the state of the world (i.e.,
local congestion measurements).

We cast our problem as a POMDP with a continuous state
space modeled using a Gaussian Process (GP). In contrast
to previous work on continuous POMDPs (e.g., [10]), we
are focused on solving problems with large structured action
spaces (i.e., all possible routings of the cooperative vehicles).

There are three common types of approaches for solving
discrete POMDPs with large action spaces. The first is to
simplify the problem using canonical or macro actions [11].
After identifying the best plan consisting of macro actions,
the planner can optionally refine at finer granularities. The
second type is to always plan at finer granularities and use
pruning approaches to avoid enumerating the full exponen-
tially large decision tree (e.g., Monte-Carlo tree search [28]).

The third, more generic, type of approach is to sample
from a generative distribution of the POMDP and then find
a good plan that optimizes for this empirical distribution [12,
4, 15, 25].2 The most general approaches are called stochas-
tic planning with recourse [12, 4, 26], which is a very general
framework3 where the goal is to compute a good initial plan
while also allowing adaptive behavior, or recourse, during
operation. Stochastic planning with recourse approaches are
often focused on planning for relatively short time horizons
due to efficiency reasons. Conversely, approaches such as
PEGASUS [25] plan for longer time horizons but typically
optimize over restricted classes of policies.

Our routing algorithm can be viewed as a stochastic plan-
ning approach (over a continuous state space) that utilizes
canonical actions. In contrast to previous work, our ap-
proach optimizes both for the long-term plan and over the
full action space of all possible routes. To control the com-
plexity of long-term planning, we rely on the observation
that typically only a few routes are optimal for any vehi-
cle – we call these the canonical routes (see Section 5.1).
Our approach efficiently trades off between exploration and
exploitation by choosing routes that optimize the combina-
tion of expected travel time (exploitation) and uncertainty
reduction of the canonical routes (exploration to determine
which canonical route is the best) – this bears affinity to al-
gorithms for Gaussian Process bandit optimization [30, 17].

From a combinatorial routing perspective, our work is fo-
cused on a relatively simple setting where each vehicle has
a pre-defined destination. More complicated settings typ-
ically assume that each vehicle is “exchangeable” and can
be routed to any of the target destinations (cf. [9]). This
leads to a challenging combinatorial optimization problem

2It can be shown that a finite number of samples is sufficient
for any planning problem (cf. [15, 25]).
3It can be shown that all MDP planning problems can be
instantiated as a (large) stochastic planning with recourse
problem (cf. Chapter 4 of [13]).
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even without considering uncertainty. We instead focus on
the complementary problem of how best to collectively route
each vehicle to their pre-assigned destination while account-
ing for uncertain traffic conditions.

Another line of related work is motivated from the net-
work packet routing problem [1]. A key difference is that
[1] is focused on the repeated games problem (i.e., gradu-
ally learning about network conditions as more packets are
routed) for a single routing problem at a time, whereas we
seek to solve a single-shot multi-agent routing problem.

3. GAUSSIAN PROCESS PRELIMINARIES
Let R denote our road nework, and Z denote the space

of contexts (e.g., containing information about time of day
or day of week). We wish to model the travel speed of road
segments r ∈ R under varying contexts z ∈ Z. We do so via
a function f : R × Z → <+, that outputs the travel speed
for a given (r, z) pair.

We assume that f is sampled probabilistically from a
Gaussian process prior distribution f ∼ P (f) [27]. A Gaus-
sian process prior is fully specified by its mean function

µ(r, z) = E[f(r, z)]

and its covariance, or kernel, function

k((r, z), (r′, z′)) = E[(f(r, z)− µ(r, z))(f(r′, z′)− µ(r′, z′))]

= cov((r, z), (r′, z′)).

A major computational benefit of Gaussian processes is that
posterior inference can be computed in closed form. Sup-
pose we have collected observations Y = [y1, . . . , yT ]> at
X = [(r1, z1), . . . , (rT , zT )], where each yi ∼ N(f(ri, zi), σ

2)
is corrupted by i.i.d. Gaussian noise. We also define the
deviation of Y from its prior mean as

δY = [y1 − µ(r1, z1), . . . , yT − µ(rT , zT )]>.

Then we can write the posterior distribution given X and Y
also as a Guassian process distribution with mean

µY,X(r, z) = µ(r, z) + k̂Y,X(r, z)>(K̂Y,X + σ2I)−1(δY )> (1)

and covariance kY,X((r, z), (r′, z′)) =

k((r, z), (r′, z′))− k̂Y,X(r, z)>(K̂Y,X + σ2I)−1k̂Y,X(r′, z′), (2)

where

k̂Y,X(r, z) = [k((r1, z1), (r, z)), . . . , k((rT , zT ), (r, z))]> ∈ <T

is a column vector of the kernel values between (r,z) and
every observed location in X, and

K̂Y,X = [k((ri, zi), (rj , zj))]i,j∈[1,...,T ] ∈ <T×T

is the kernel Gram matrix of all observed locations in X.
Note that the posterior variance of f(r, z) is kY,X((r, z), (r, z)).

Essentially, (1) states that the posterior mean µ(r, z|Y,X)
of f(r, z) deviates from its prior mean µ(r, z) according to
how much (and in what direction) the past observations de-
viated from their prior means. If some (r′, z′) ∈ X had high
positive covariance with (r, z), then µ(r, z|Y,X) would shift
along the deviation of the associated observation y′ from its
mean y′−µ(r′, z′). Conversely, if some (r′, z′) ∈ X that had
little covariance with (r, z), then the associated observation
y′ would have little impact on µ(r, z|Y,X).

Similarly, (2) states that the posterior covariance between
(r, z) and (r′, z′) decreases as we gather more observation

that is related to (i.e., has high prior covariance with) (r, z)
and (r′, z′). Thus, the variance of our posterior estimate,
kY,X((r, z), (r, z)), of f(r, z) decreases faster when our past
observations have higher prior covariance with (r, z).

4. GAUSSIAN PROCESS DYNAMIC CON-
GESTION MODELS

For a given road segment r ∈ R and context z ∈ Z,
we wish to model the background distribution of the trav-
eling speed yr,z. Furthermore, we wish to model the ap-
propriate temporal and spatial dependences such that, after
observing recent traveling speeds, we can make more confi-
dent inferences of the traveling speeds of nearby roads in the
near future. We now present the Gaussian Process Dynamic
Congestion Model (GPDCM), which captures such proper-
ties within the Gaussian Process framework. We assume for
simplicity that the observation noise variance σ2 is known.

We essentially assume that road traffic conditions behave
according to Gaussian Process dynamics. In other words,
given the current observations, the posterior GP distribution
should accurately represent the distribution of future traffic
conditions. It remains to define a suitable choice of µ and
k. We do so by estimating µ and k using historical traffic
data S, which we describe in the following.

4.1 Estimating µ

Estimating µ requires assuming regularities about how µ
behaves relative to z. For example, suppose we assume that
temporal regularities can be characterized by time-of-day,
which we denote as τ(z). Then we can estimate µ(r, z) as

µ(r, z) = mean
{
yr,z′ : (yr,z′ ∈ S) ∧

(
τ(z′) = τ(z)

)}
, (3)

where yr,z′ is a historically observed traveling speed on road
r and time-of-day τ(z′) = τ(z). This allows computing the
mean traveling speed on road r at any future time, but re-
stricts us to modeling all days as being sampled from the
same (prior) distribution.4

4.1.1 Temporal Smoothing
Since it is unlikely that historical observations contain

many data points with exactly matching time-of-day con-
texts, we use standard temporal smoothing techniques to
estimate a smoothed version of (3) [21].

We first partition time into intervals (which correspond to
each time step in the routing problem definition). Let τ(t)
now denote the time-of-day interval corresponding to time
step t (e.g., 5:10pm - 5:20pm). For road segment r and time

step t, we define Y
(t)
S (r) as the set of all the reported speeds

matching τ(t) at r in the historical data S, i.e.,

Y
(t)
S (r) = {y|((r, z), y) ∈ S ∧ τ(z) = τ(t)}.

We can now use Y
(t)
S to construct an empirical distribution

of travel times on road r at time step t.
Following [21], we employ temporal smoothing of the em-

pirical cumulative distribution functions (CDF). We can write
this smoothed CDF at road segment r as

H
(t)
S (y|r) = β ·H(t−γ)

S (y|r) + (1− β)(1− CDF(y|Y (t)
S ),

4We can alternatively use a feature representation of the
context φ(z) and a parametric model to estimate µ(r, z).
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where CDF(y|Y(t)
S ) denotes the empirical CDF w.r.t. Y

(t)
S ,

and β and γ control for the degree of smoothing. We refer
to [21] for more details. Afterwards, we can compute the
empirical mean (3) using Hz

S(y|r) via µ(r, z) = Ey∼H [y].

4.2 Estimating k

For simplicity, we assume the covariance kernel can be
decomposed by road and context, i.e.,

k((r, z), (r′, z′)) = k1(r, r′)k2(z, z′). (4)

This decomposition k = k1k2 assumes that all road segments
share the same temporal covariance k2; while somewhat ide-
alistic, this offers a compact and efficient representation.

4.2.1 Estimating Road Covariance k1
Estimating k1(r, r′) is relatively straightforward, as it is

essentially the covariance of the distribution of travel speeds
between two road segments. We can estimate k1 from his-
torical data S as

k1(r, r′) = mean
{

(yr,z − µ(r, z))(yr′,z − µ(r′, z)) :

yr,z, yr′,z ∈ S} .
(5)

Note that, for (5), the two historical observations yr,z and
yr′,z share the exact same context (e.g., were observed at
the exact same time). As such, we also employed temporal
smoothing (see Section 4.1.1) to estimate k1 more reliably.

Intuitively, if two roads r and r′ have high covariance ac-
cording to S, then k(r, r′) will be high. As such, observa-
tions of r′ provide more information about the conditions on
r than another road segment with low covariance with r′.

Note that since the roads in our system form a finite set,
we can precompute the entire road-road kernel matrix.

4.2.2 Estimating Temporal Covariance k2
Estimating k2(z, z′) is slightly more complicated, as it re-

quires us to assume additional regularities about z. For
example, we can assume that k2(z, z′) only depends on the
difference in time |z − z′|, which leads to

k2(z, z′) = mean {(yr,z1 − µ(r, z1))(yr,z2 − µ(r, z2)) :

(yr,z1 , yr,z2 ∈ S) ∧
(
|z1 − z2| = |z − z′|

)}
.

(6)

Here we compute the empirical covariance of traveling speeds
at time distance |z − z′| averaged over every road. As when
estimating k1, we also employ temporal smoothing to esti-
mate k2 more reliably.

Intuitively, the covariance should decrease as the time dif-
ference increases. From the perspective of each yr,z1 , the
distribution of the corresponding yr,z2 should look more like
the background distribution as |z1 − z2| increases.

4.2.3 Other Considerations
Although (5) and (6) correspond to (modulo regularity

assumptions) the “correct” covariance estimates, their non-
parametric form can be expensive to evaluate. Naively, (5)
and (6) requires reprocessing S for each kernel evaluation.
However, one can specify k1 and k2 using other forms as
well. For example, one could use a RBF kernel: k1(r, r′) =
exp

{
−‖r − r′‖2/γ1

}
, where ‖r − r′‖ denotes the distance

between r and r′, and γ1 is a tunable parameter used to fit
the historical data (i.e., to be similar to (5)). One can also
define an analogous kernel model for k2. This definition has
an advantage of being more compact and thus more efficient

than (5) and (6). We defer a more extensive study on the
choice of kernels to future work.

4.3 Posterior Inference
The main purpose of using the GPDCM is to be able to

make tractable probabilistic inferences of future road condi-
tions given real-time observations. After estimating µ and k
from historical data, the posterior distribution is fully spec-
ified via (1) and (2).

Note that the KY,X matrix in (2) grows quadratically in
size w.r.t. the number of observations. This can make infer-
ence very costly as we collect more observations. Intuitively,
we should expect that very old observations do not impact
our model much when trying to predict future conditions
(since the time difference is large, the k2 component from
very old observations should be close to 0). As such, we
should be able to discard old observations from our model
without compromising model accuracy.

5. ADAPTIVE COLLECTIVE ROUTING
We consider the setting whereN cooperative vehicles must

travel from source locations A = {a1, . . . , aN} to destina-
tions B = {b1, . . . , bN}. We desire an adaptive routing pol-
icy that can minimize the total travel time of all vehicles.

Let Planner denote the routing algorithm being employed.
For simplicity, we discretize time into intervals (e.g., every
minute). At time step t the following occurs:

• Receive observations Yt = {y1, . . . , yt−1}

• Receive state of vehicles Lt = {`1, . . . , `N}

• Compute routing Ψt ← Planner(Lt, Yt)

• Execute routing Ψt until next time step

• t← t+ 1

In our setting, each observation yt = {yt,1, . . . , yt,N} cor-
responds to the observed speed of the roads traveled by each
vehicle for that time step t. In this section, we assume that
congestion conditions behave according to a GPDCM.5

We develop our algorithm, called Planning using Canoni-
cal Routes (PCR), in three steps. First, we observe that typ-
ically only a few routes are ever optimal for each vehicle – we
call these the canonical routes. Second, we show how to uti-
lize canonical routes to efficiently model the long-term value
of exploration. Finally, we show how to compute collec-
tive routing plans that balance the exploration/exploitation
tradeoff for an entire fleet of cooperative vehicles. The PCR
algorithm is described in Algorithm 1.

5.1 Canonical Routes
At first glance, computing (near-)optimal routing plans

may seem hopelessly intractable, since the full decision space
for even a single vehicle can be exponentially large. How-
ever, it can often be the case that only a few routes are ever
optimal for a given vehicle’s routing problem. For instance,
given a GPDCM of congestion conditions, one can sample
probable future traffic scenarios. Each such sample gives
complete information of one probable future scenario (cf.
[15, 25]), which allows us to compute the optimal route un-
der that scenario. We call such optimal routes the canonical

5Since we discretize time into intervals, we use the average
travel speed of each road segment for routing.
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Figure 2: Distribution of the number of canonical
routes for each individual vehicle routing problem
(see Section 5.1). On average, there are 3.2 canoni-
cal routes per vehicle.

routes. Depending on the specific conditions, the optimal
canonical route could be much faster than simply routing
according to expected travel time.

Figure 2 shows the distribution of the number of canonical
routes per vehicle.6 We see that the number of canonical
routes is often quite small – about 3.2 on average.

If a routing algorithm knew exactly which of the sampled
scenarios reflects future traffic conditions, then that corre-
sponding canonical route would be the optimal action to
take. But due to uncertainty regarding which scenario actu-
ally reflects future conditions, then it may be beneficial to
perform some “exploratory routing” in order to more confi-
dently identify which canonical route is actually best.

5.2 Value of Exploration
The standard approach for quantifying the value of ex-

ploration is to measure the expected utility gain of future
routing decisions [23]. Given the exponentially many possi-
ble future routing decisions, computing this value of explo-
ration exactly is intractable using naive approaches.

We use two approximations in order to efficiently quantify
the long-term value of exploration. First, we focus explo-
ration only on the canonical routes, rather than all possible
routes. This approximation is motivated by the assumption
that each vehicle should be routed (as closely as possible)
according to the optimal canonical route. Therefore, the
goal of exploration should be to determine which canonical
routes are actually optimal. In addition, focusing on canon-
ical routes is a form of long-term exporation, since canonical
routes are complete paths to the vehicles’ destinations.

We next approximate the value of exploration using vari-
ance reduction.7 For any canonical route ~r∗, the variance
reduction of ~r∗ from running some other route ~r is

δk(~r, ~r∗|X,Y ) = k(~r∗, ~r∗|X,Y )− k(~r∗, ~r∗|X,Y,~r), (7)

where k(~r∗, ~r∗|X,Y ) denotes the variance reduction of ~r∗

under the posterior distribution induced by observations X
and Y , and k(~r∗, ~r∗|X,Y,~r) denotes the variance of ~r∗ under
posterior distribution induced by observations X,Y and ~r.

Estimating (7) exactly is expensive, since the variance of
each road segment in ~r∗ depends on the exact arrival times
at that segment (which depends on previous segments). We

6We computed Figure 2 by sampling from a GPDCM esti-
mated using traffic real data (see Section 6).
7Variance reduction exactly quantifies the value of informa-
tion in some settings (cf. [30, 17]).

Algorithm 1 Planning using Canonical Routes (PCR)

1: input: L, Y , α
2: Define posterior mean ∀(r, z) : µ(r, z|Y )
3: Define posterior cov. ∀(r, z), (r′, z′) : k((r, z), (r′, z′)|Y )

4: Sample K traffic scenarios {f̂k}Kk=1 from posterior using
µ(r, z|Y ) and k((r, z), (r′, z′)|Y ).

5: For each vehicle n, compute all optimal routes {~r∗n,i}Ki=1 from

the K traffic scenarios.
6: Initialize W ← {1, . . . , N}
7: Initialize Ψ← ∅
8: for j = 1, . . . , N do
9: For each vehicle n ∈ W , compute route ~rn that minimizes

C(~rn) = travel-time(~rn)− (α/K)
∑
n′,i δk(~rn, ~r∗n′,i|Y,Ψ)

//see (7)
10: n̂← argminn C(~rn)
11: W ←W \ {n̂}
12: Ψ← Ψ ∪ {~rn̂}
13: end for
14: Return Ψ

instead approximate k(~r∗, ~r∗|X,Y ) using the expected travel
times for each segment in ~r∗. We first write ~r∗ as

~r∗ = 〈(r∗1 , τ∗1 ), . . . , (r∗|~r∗|, τ
∗
|~r∗|)〉,

where τi denotes the expected arrival time at road segment
r∗i . We can then approximate k(~r∗, ~r∗|X,Y ) as

k(~r∗, ~r∗|X,Y ) ≈
|~r∗|∑
i=1

k((r∗i , τ
∗
i ), (r∗i , τ

∗
i )|X,Y,~r∗[1:i−1]),

where ~r∗[1:i−1] denotes the first i−1 road segments of ~r∗. We
can similarly approximate k(~r∗, ~r∗|X,Y,~r) as

|~r∗|∑
i=1

k((r∗i , τ
∗
i ), (r∗i , τ

∗
i )|X,Y,~r∗[1:i−1], ~r≺(r∗i ,τ

∗
i )),

where ~r≺(r∗i ,τ
∗
i ) denotes the segments of ~r with expected

arrival before τ∗i .
In summary, we quantify the long-term value of explo-

ration of any route by how much that route reduces the
variance, or uncertainty, of the travel times of the canonical
routes. If we were routing a vehicle for purely exploratory
purposes, then we would choose a route ~r that maximizes
(7) summed over every canonical route ~r∗ in our set.

5.3 Balancing Exploration vs Exploitation
Our algorithm, called Planning using Canonical Routes

(PCR), is described in Algorithm 1. At each time step t,
the algorithm first computes a set of canonical routes by
sampling from the posterior GPDCM distribution (Lines 4-
5). The algorithm then computes the lowest cost (or highest
utility) route ~rn for each vehicle n (Line 9).8 Cost here is
measured as a weighted combination of expected travel time
of ~rn (under the posterior distribution) and negative average
variance reduction (averaged over all canonical routes for all
vehicles), with the parameter α controlling for the trade-off.

Intuitively, a route with a high travel time might still have
the lowest cost if it greatly reduces the uncertainty of many
canonical routes for many vehicles. Likewise, a route that
does not offer much in terms of variance reduction may still
have the lowest cost if it has (by far) the shortest travel time.

8This can be done using the standard Dijkstra’s shortest
path algorithm using our cost function.
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Figure 3: Recall (or coverage) of the optimal paths
with respect to the number of samples K.

After computing the lowest cost route for each vehicle,
the algorithm greedily commits to the route with the overall
lowest cost (Lines 10-12). This process is repeated until all
vehicles have been committed to a route.

5.3.1 Connection to Submodular Optimization
The reason why we need to recompute the lowest cost

routes each iteration (Lines 8-13) is because the variance re-
duction of canonical routes change after the algorithm has
commited to a route. For instance, if the two best routes
from the current iteration both provide uncertainty reduc-
tion to the same canonical routes, then after the algorithm
commits to one of those routes, the value of exploration for
the other route has decreased dramatically (i.e., it no longer
provides the same variance reduction). This notion of dimin-
ishing returns is often modeled using submodularity [24].

In fact, it is possible to show that Algorithm 1 is optimiz-
ing for a submodular utility function (the negative of the
cost function) under matroid constraints. As such, one can
show that the greedy approach employed by Algorithm 1
has a (1/2)-approximation guarantee relative to the optimal
lowest cost collective routing plan (of a single time step) [6,
31]. We omit the derivation for brevity.

One nice property of submodular function optimization is
that one can employ a lazy variant of the greedy approach to
significantly speed up computation [19]. It is straightfoward
to incorporate this lazy variant into Algorithm 1.

5.3.2 Other Design Decisions
Variance reduction is often an over-estimate of the true

uncertainty reduction. As such, it is often beneficial to
choose α to be small. In our experiments, we use α = 0.1.9

Another design decision is the number of samples K (Line
4 in Algorithm 1). We would like to choose K sufficiently
large so that all true canonical paths (those that are actually
optimal) are covered. Figure 3 shows the recall (or coverage)
of true canonical paths collectively for 50 vehicles. In our
experiments, we choose K = 5000.10

6. EMPIRICAL EVALUATION
We conduct two types of empirical evaluation. First, we

verify whether our Gaussian Process Dynamic Congestion

9One can also tune α using a validation set for better per-
formance.

10We note that since sampling is efficient (due to the GPDCM
allowing sampling in closed form) and routing is efficient
(due to it being a modified Dijkstra’s algorithm), choosing
K = 5000 still allows Algorithm 1 to be run efficiently.

Model can accurately predict the distribution of future traf-
fic scenarios given real-time observations. Second, we verify
how our PCR algorithm compares versus conventional rout-
ing baselines and also versus omniscient routing with perfect
knowledge of congestion conditions.11

We obtained two datasets consisting of GPS traces from
a large number vehicles:

• City 1: We obtained one year (from January 2008
to December 2008) of GPS data from approximately
15,000 taxis in a large Asian city.

• City 2: We obtained one year (from January 2006
to December 2006) of GPS data from approximately
5,600 taxis in a second large Asian city.

6.1 Gaussian Process Validation
We first validate the effectiveness of our Gaussian Process

Dynamic Congestion Model (GPDCM), and verify that it
can accurately predict the distribution of future traffic sce-
narios given real-time observations.

6.1.1 Kolmogorov-Smirnov Test
Since our goal is to evaluate the how well our GPDCM

predicts a distribution of the future, we require a method
a measure of how well a predicted distribution matches the
true or empirical distribution observed in nature (i.e., the
observed distribution of travel speeds). For our evaluations
we use the Kolmogorov-Smirnov test [16], which has a long
tradition in the statistics community.12

The Kolmogorov-Smirnov score quantifies the distance be-
tween any two distributions. In our case, we wish to quan-
tify the distance between the empirical distribution of travel
speeds and the predicted distribution of our GPDCM.

Let Fn denote the empirical cumulative distribution func-
tion for n i.i.d. random variables Xi:

Fx(x) =
1

n

n∑
i=1

IXi≤x (8)

where IXi≤x is an indicator function (i.e., 1 if Xi ≤ x, and
0 otherwise). The Kolmogorov-Smirnov score for a given
cumulative distribution function F (x) and empirical distri-
bution Fn(x) is

Zn = sup
x
|Fn(x)− F (x)| , (9)

which corresponds to the supremum over all absolute dis-
tances between the two distributions. The lower the KS
score, the better the distributional fit. Two identical distri-
butions will have a KS score of 0, and typically a KS score
of less than 0.1 is indicative of a strong distributional fit.

6.1.2 Results
For each city, we fit a GPDCM (µ and k) using six months

of data (from February to June). We then evaluated the
predictive accuracy of our GPDCM (via the KS score) on
held-out data. For each day, we provide the GPDCM with
two hours of observations from 8am-10am. We then measure
the KS score of the GPDCM posterior compared to future

11All of our experiments were conducted using a workstation
with four Intel Core Quad CPUs (Q9550 2.83 GHz) and 32
GB of main memory.

12Other options include the Berk-Jones test, the score test
and their integrated versions [16, 5].
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Figure 4: Showing the macro-averaged KS score
(computing KS score for each day separately) on the
two datasets for months of January and December.

Figure 5: Showing the micro-averaged KS score (by
aggregating all days into a single day) for the two
datasets for the months of January and December.

empirical distributions partitioned into one hour windows
(e.g., [0-1], [1-2], etc., hours into the future).

Figure 4 shows the KS score averaged over multiple days
(i.e., macro-averaged) for both datasets for the months of
January and December (which are the furthest apart months
in both datasets). We observe that the KS score is quite
low for the first three hours, indicating that our GPDCM
predicts accurate near-term traffic distributions. We also
observe that the KS score degrades as the GPDCM predicts
traffic distributions further into future, and eventually de-
cays to the “background” prior KS score.

The performance difference for different cities and months
in Figure 4 can be explained as follows. Since we have more
data from City 1, we should expect a better model fit. Like-
wise, our datasets also contain more data from December,
which explains why our model makes more accurate (from
a distributional point of view) predictions for the month of
December. As such, one can interpret this difference in per-
formance between December and January as being primarily
attributed to data sparsity in the test set.

Figure 5 shows the KS score computed over all days (i.e.,
micro-averaged) for both datasets for the months of January
and December. Because we construct an empirical distribu-
tion by aggregating over all days (e.g., all [10am-11am] time
windows for each day in January), we should expect the KS
score here to be lower than the results in Figure 4 due to
less data sparsity. As we can see, the KS score is indeed
uniformly lower for both datasets and both months.

These results suggest that the GPDCM is an effective
model for predicting the distribution of future traffic con-
ditions given real-time observations. In the following, we
evaluate how our PCR algorithm can utilize a GPDCM to
effectively plan for non-myopic routing under uncertainty.

Figure 6: Travel time versus number vehicles to be
routed. The PCR algorithm performs nearly as well
as the omniscient lower bound.

6.2 Routing Validation
We now validate the effectiveness of our Planning us-

ing Canonical Paths (PCR) algorithm for adaptive collec-
tive routing under uncertainty. We compare our approach
against both conventional baselines (described below) as well
an omniscient lower bound:

• Static Routing: Each vehicle is routed (via Dijk-
stra’s algorithm) according to the GPDCM prior mean.
The routing plan is not adaptively updated as vehicles
collect real-time observations.

• Myopic Routing: Each vehicle is routed (via Di-
jkstra’s algorithm) according to the GPDCM poste-
rior mean. The routing plan changes adaptively in
response to real-time observations, but the value of
exploration is not considered (hence myopic).13

• Omniscient Routing: Each vehicle is routed (via
Dijkstra’s algorithm) according to perfect informa-
tion about future traffic conditions. Omniscient rout-
ing represents a lower bound on the performance of
any routing algorithm in this setting.14

All routing algorithms utilize the same GPDCM for model-
ing travel times.

We run all routing algorithms via simulation using con-
gestion conditions mined from the same day in our historical
data [21],15 and assign each vehicle a source and destination
pair (A,B).

6.2.1 Results
Figure 6 compares the total travel time with respect to the

number of vehicles to be routed. We observe that the PCR
algorithm significantly outperforms both Static and Myopic
routing, and nearly matches the performance of Omniscient
routing. Figure 7 shows a comparison of total travel time
with respect to the routing distance. We again observe that
the PCR algorithm is near-optimal relative to Omniscient
routing. These results suggest that the PCR algorithm is
effective at balancing the exploration/exploitation trade-off
in order to quickly identify the best possible routing paths
for the majority of the vehicles in the system.

13Myopic routing is essentially how conventional adaptive
routing algorithms behave (cf. [33]).

14Omniscient routing is only computable during simulation.
15We compute for each road the“crowdedness”metric in [21].
The crowdedness of a road is essentially the complement
value of the CDF on that road’s speed distribution (i.e.,
crowdedness of 0.9 means the road is at its 10th percentile
traveling speed).
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Figure 7: Travel time versus routing distance. The
PCR algorithm performs nearly as well as the om-
niscient lower bound.

Figure 8: Travel time (min) versus size of historical
data used to estimated µ and k.

6.2.2 Efficiency Study
Although the PCR algorithm described in Algorithm 1 is

already efficient due to relying on efficient subroutines such
as Gaussian Process posterior inference and the Dijkstra’s
shortest path algorithm, one can further trade off routing
performance for computational or storage efficiency (the two
notions of efficiency are often inter-related).

Our use of non-parametric mean µ and kernel k functions
leads to more computationally expensive posterior inference
as the training data S grows. Figure 8 shows how the to-
tal travel time degrades (for 20 vehicles) as the amount of
historical data S (used to estimate µ and k) decreases. We
see that the PCR algorithm is robust to using less reliable
GPDCMs, which can lead to significant computational and
storage savings for relatively small sacrifices in performance.

Another way to trade off performance versus efficiency is
by varying the number of posterior samples K. Figure 9
shows how the total travel time degrades as fewer samples
are used. We observe that the PCR algorithm can tolerate
a small degree of undersampling of traffic scenarios.

6.2.3 Preliminary Field Study
We conducted a preliminary field study using twelve ve-

hicles in City 1. Each routing trial comprises two groups
of six cooperative vehicles, with each vehicle being assigned
identical source and destination locations. The first group
employs a version of Myopic routing, where the drivers are
instructed to route according to their best knowledge and
can communicate with each other. The second group em-
ploys a restricted version of the PCR algorithm, where three
drivers are routed to explore three canonical routes, and the
other three are routed according to updated knowledge.

Table 1 shows the results from five trials. We observe
that PCR routing consistently outperforms Myopic routing,

Figure 9: Travel time versus K.

Table 1: Travel Times (minutes) from Field Study

Trial Myopic PCR Improvement
1 28.0 22.3 25.7%
2 36.2 27.6 31.2%
3 12.7 11.2 13.4%
4 51.0 25.7 42.9%
5 32.5 24.9 30.6%

which lends evidence that the PCR approach can be more
broadly deployed to improve routing performance for larger
fleets of cooperative vehicles. The improvement in Trial 3 is
small, which is due to low congestion during that time.

7. DISCUSSION
Our approach is related to other approaches that first sam-

ple from a POMDP distribution and then optimize for the
resulting empirical distribution [15, 25]. One important the-
oretical question is what number of samples K guarantees
good performance (at least within one iteration). Another
theoretical question is whether one can prove guarantees for
the entire execution of the PCR algorithm. Such analysis
may rely on using variance reduction to bound the perfor-
mance gap between omniscient routing, which is is related to
analysis for Gaussian Process bandit optimization [30, 17].
Two important differences between [30, 17] and our setting
are that (1) variance reduction decays over time (i.e., past
observations have low value) and (2) we must optimize over
a structured action space (i.e., all possible routings), which
significantly complicates the analysis.

From a combinatorial routing perspective, our work is fo-
cused on a relatively simple setting where each vehicle has
a pre-defined destination. It would be interesting to inves-
tigate whether our PCR algorithm can be extended to ac-
commodate more complicated settings, such as having each
vehicle visiting a set of destinations, or assuming “exchange-
ability” so that each vehicle can be routed to any of the
destinations (cf. [9]), or assuming uncertainty in when and
where destination goals arise (such as in a taxi service).

From a game-theoretic perspective, it would be interesting
to consider cases where vehicles were not assumed to coop-
erative, but rather could be incentive to cooperate. One
possibility is to properly price the value of exploration.

8. CONCLUSION
We proposed a Gaussian Process Dynamic Congestion

Model to capture both the dynamics and the uncertainty
of congestion conditions, and the Planning using Canoni-
cal Routes algorithm to balance the exploration/exploitation
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trade-off for entire fleets of vehicles. We conducted extensive
evaluations using GPS traces collected from two large Asian
cities. Our results show that our GPDCM an effectively
predict the distribution of future congestion conditions, and
that our PCR algorithm can achieve near-optimal perfor-
mance relative to omniscient routing. We also conducted
a preliminary field study, where we found our approach to
significantly outperform conventional myopic routing.
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