
Evaluating the Crowd with Confidence

Manas Joglekar
Stanford University

353 Serra Mall
CA, 94305

manasrj@stanford.edu

Hector Garcia-Molina
Stanford University

353 Serra Mall
CA, 94305

hector@cs.stanford.edu

Aditya Parameswaran
Stanford University

353 Serra Mall
CA, 94305

adityagp@cs.stanford.edu

ABSTRACT
Worker quality control is a crucial aspect of crowdsourcing sys-
tems; typically occupying a large fraction of the time and money
invested on crowdsourcing. In this work, we devise techniques
to generate confidence intervals for worker error rate estimates,
thereby enabling a better evaluation of worker quality. We show
that our techniques generate correct confidence intervals on a range
of real-world datasets, and demonstrate wide applicability by using
them to evict poorly performing workers, and provide confidence
intervals on the accuracy of the answers.

Categories and Subject Descriptors
H.1.0 [Information Systems Applications]: Models and Princi-
ples—General

General Terms
Algorithms, Human Factors, Reliability

Keywords
crowdsourcing, confidence

1. INTRODUCTION
A crowdsourcing system employs human workers to perform

tasks, including data processing tasks such as classification and
clustering. A major issue in any crowdsourcing system is worker
quality: workers can naturally perform some tasks incorrectly, but
there are often workers that incorrectly perform more than their
share. Some of the low quality workers may not have the necessary
abilities for the tasks, some may not have adequate training, and
some may simply be “spammers” that want to make money with-
out attempting tasks diligently. Anecdotal evidence indicates that
the spammer category is especially problematic, since these work-
ers not only do poor work, but they do a lot of it as they try to
maximize their income.

To correct or compensate for poor worker quality, a crowdsourc-
ing system implements some type of worker quality control WQC.
Typically workers have known identities, so that WQC can iden-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
KDD’13, August 11–14, 2013, Chicago, Illinois, USA.
Copyright 2013 ACM 978-1-4503-2174-7/13/08 ...$15.00.

tify the poor workers and then possibly take action against them or
against their results.

In this paper we focus on one of the most important aspects
of WQC: estimating the quality (specifically, error probability) of
workers based on their past work. The estimates can then be used
either to take action against bad workers (e.g., preventing them
from doing future work, paying them less) or for adjusting results
(e.g., “downgrading” results from bad workers).

Although there is substantial work on WQC in crowdsourcing
systems (see related work section), as far as we know we are the
first to estimate worker quality with confidence intervals for these
estimates. To illustrate the importance of confidence intervals, con-
sider two scenarios. In the first scenario, a particular worker W1

has performed 3 tasks, one of them incorrectly. (Assume that in
this case the correct answers are known in advance, i.e., the worker
is performing tasks for evaluation purposes only.) Hence, we can
estimate the probability that W1 makes a mistake is 1/3. In Sce-
nario 2, workerW2 has performed 30 tasks, 10 of them incorrectly.
In this case we get the same error estimate for W2 as for W1, i.e.,
10/30 = 1/3. However, in the second scenario we are much more
confident that worker W2 is making quite a few mistakes. In Sce-
nario 1, perhapsW1 was unlucky or was just distracted, and his/her
one incorrect answer is not representative. If we are going to fire
workers based on these estimates, it is important that we have “suf-
ficient confidence” in our estimates before we take actions. Thus,
we may demand that our 1/3 error estimate has, say, a 90% confi-
dence interval of size 0.05. Given a requirement like this, we will
show how many tasks we must require before making a decision.

Instead of comparing worker results against known correct an-
swers, we focus on schemes that do not require known answers.
These schemes are easier to set up, and require no supervision.
These well known schemes [7, 8] rely on the frequency of disagree-
ment among workers to estimate error probabilities. In this paper
we present a novel way to estimate errors based on disagreements,
and we show that our method is as accurate as the previous meth-
ods and in addition yields the confidence intervals associated with
its estimates.

Determining confidence intervals for a single estimate is a well-
studied problem in statistics, with well-known solutions [32]. How-
ever, in our scenario, the standard solutions do not apply because
we are simultaneously generating confidence intervals for multiple
estimates (in this case, the worker error probabilities for each of
the workers working on the same task) that are dependent on each
other in complex ways.

In this paper, we present a technique that is guaranteed to provide
accurate confidence intervals for worker error estimates under some
simplifying assumptions (e.g., fixed difficulty tasks, fixed worker
error rate during one evaluation period). Even with these assump-
tions, we will show that our technique provides accurate confidence
intervals in practice over real-world datasets that cover a range of

686

crowdsourcing applications, such as peer evaluation, image com-
parisons, and predicate evaluation. In Section 7, we describe gen-
eralizations to our method for other scenarios not captured by our
basic technique, such as multiple task types, varying difficulty and
categorization.
In summary, we make the following contributions in this paper:
• We provide a new disagreement-based technique for estimat-

ing worker quality along with confidence intervals, for three
(Section 3) or more workers (Section 4).
• We show that our techniques provide estimates that are as

good as Expectation-Maximization [7, 8] and better than Ma-
jority based approaches, while in addition providing confi-
dence intervals for those estimates (Section 5).
• We present experimental results based on three different real

data sets, and evaluate the accuracy of our estimates and con-
fidence intervals (Sections 3.1, 4.1).
• We show the usefulness of our confidence estimates by ap-

plying the techniques to:

• Estimate accuracy of answers (Section 6.1)
• Choose between evaluations with multiple workers and

multiple tasks (Section 6.2)
• Choose between workers (Section 6.3)

• Finally, we discuss how to generalize our technique (Sec-
tion 7).

2. MODEL
The crowdsourcing system operates in phases. During one phase,

a set of workers W perform a set of tasks T . Each worker in W
performs all n tasks in T .

In our base case, we consider tasks that have two possible results,
which we will call “Yes” (Y) and “No” (N). The correct outcome
is unknown to the evaluation system and the workers. For now we
assume we have no a-priori knowledge of the fraction of tasks that
have Y as the correct output. (We consider this case in Section 7.)

We assume that a given worker i has an error probability pi. That
is, with probability pi a worker will produce N for a task whose
correct result is Y, or will give Y for an N task. Our goal at the
end of a phase is to provide an estimate p̂i for the pi value of each
worker. Our estimate p̂i will have a confidence interval of half-size
εi and confidence level ci. The interpretation is that if we consider
say 100 phases with similar workers and tasks, in ci percent of them
the true error rate pi will be between p̂i−εi and p̂i+εi.1 When it is
clear what worker we are referring to, we will omit the i subscript
and simply use p, c and ε.

We know that in practice some of these assumptions may not
hold. For example, workers may collude so their error rates may
not be independent. Worker errors may depend of task “difficulty”
or other environmental factors. As mentioned earlier, our assump-
tions can be relaxed, see Section 7. But it is important to study the
base-case solution (with strong assumptions) as it forms the basis
of the generalizations. And as also mentioned earlier, the base-case
solution can still give quite accurate results in many cases (Sec-
tion 3.1, 4.1), even if we do not know whether the assumptions
hold.

At the end of a phase, we compute the error estimates for our
W workers and we take appropriate action, e.g., replacing some of
the workers for the next phase. The focus of this paper is on the
worker evaluations within a single phase. However, in Section 6.3
we discuss how our estimates can be used to make decisions at the

1With a small number of tasks, p̂i may not be exactly at the center
of the interval.

end of a phase, and we show the impact of the decisions across
multiple phases.

3. 3-DIFFERENCES SCHEME
In this scenario we have three workers with unknown error rates

p1, p2 and p3. We are given that these error rates are less than
1/2. (An error rate larger than 1/2 is unlikely as it implies that a
worker is making worse than random choices.) All three workers
do a sequence of n tasks, for which we do not know the correct
result, and our goal is to estimate the worker error rates based on the
differences in their responses. Intuitively, when a worker disagrees
with the majority, it is a sign that the worker may have made a
mistake. (In the following section we consider the case of more
than 3 workers.)

For each i from 1 to n, we define three random variables, Xi,12,
Xi,23 andXi,13, that track the differences among workers in the ith

task. For instance, variable Xi,12 is 1 when workers 1 and 2 agree
on the ith task, and 0 otherwise. Let the means of these random
variables be auxiliary variables q12, q23 and q13. Since Xi,12 is
1 when workers 1 and 2 are both right or both wrong, we have
q12 = p1p2 + (1− p1)(1− p2). We can get similar equations for
q13 and q23. So we have :

q12 = p1p2 + (1− p1)(1− p2) (1)
q23 = p2p3 + (1− p2)(1− p3) (2)
q13 = p1p3 + (1− p1)(1− p3) (3)

Note that since p1, p2, p3 < 1
2

, we have p1 < (1 − p1), p2 <
(1−p2) and p3 < (1−p3). Hence by the rearrangement inequality,
q12, q13, q23 are all greater than 1/2 and are decreasing in p1, p2,
and p3.

LetX12 =
∑n

i=1 Xi,12

n
. LetX23, X13 be defined similarly. Then

each of X12, X23, X13 represents an outcome of a Binomial Ex-
periment, which is a sum of n statistically independent Bernoulli
Trials. Suppose a Binomial Experiment consists of n Bernoulli tri-
als with mean p each, and the outcome of the experiment is a, then
it is known [32] that p can be estimated as p̂ = a

n
. And for any con-

fidence level c, we can find the c-confidence interval for p using the
so-called Wilson Score Interval [34].

BinInterval(p̂, c, n) =
p̂+ 1

2n
z2t ± zt

√
p̂(1−p̂)

n
+

z2t
4n2

1 + 1
n
z2t

(4)

where t = 1−c
2

, and zt gives the tth percentile of the standard
normal distribution. The values of zt are readily available in table
form [4, 32].

The half-size of the interval is:

Binε(p̂, c, n) = ε (Interval Half-Size) =
zt

√
p̂(1−p̂)

n
+

z2t
4n2

1 + 1
n
z2t

(5)
For large n, the Binomial distribution starts to resemble the Nor-

mal distribution, and the terms 1
2n
z2t , z2t

4n2 and 1
n
z2t become negli-

gible compared to the terms they are being added to. In this case,
the end points of our c confidence interval are:

BinInterval′(p̂, c, n) = p̂± zt

√
p̂(1− p̂)

n
(6)

The half-size of the interval is:

Binε′(p̂, c, n) = zt

√
p̂(1− p̂)

n
(7)

So if b12 is the number of times workers 1 and 2 disagree (out
of n tasks), then we can estimate ˆq12 = b12/n. Using Equation 5

687

(or 7), we can estimate the half-size of the c confidence interval for
ˆq12 as ε12 = Binε(q̂, c, n) (or εq ≈ Binε′(q̂, c, n)). The estimates
ˆq23 and ˆq13, and the half-sizes of their intervals ε23 and ε13 can be

found similarly.
The q estimates and our desired p estimates are related via Equa-

tions 1, 2 and 3, where all variables have hats. We can solve the
three equations for p̂1, p̂2 and p̂3:
Lemma 1. The value for p̂1 is

p̂1 =
1

2
−

√
(ˆq12 − 1

2
)(ˆq13 − 1

2
)

2(ˆq23 − 1
2
)

(8)

The values for p̂2 and p̂3 are computed analogously. 2
The proofs for this and the other lemmas in this paper can be

found in the extended technical report [16].
Our next task is to compute confidence intervals for p̂1, p̂2 and

p̂3. This is more complex than getting confidence intervals for the
qs because each confidence interval depends on the intervals of the
three inter-related variables X12, X23 and X13.

To illustrate our solution, first consider a simpler case. Say ran-
dom variable Z = f(X,Y) for some function f and random vari-
ables X and Y . Say f is monotonically increasing in both X and
Y . Furthermore, say x̂ is our estimate for the mean of X , with c
confidence interval with half-size εx. Similarly for Y we have ŷ
and εy (same c). Now consider the interval I from

min = f(x̂− εx, ŷ − εy) to (9)
max = f(x̂+ εx, ŷ + εy). (10)

IfX and Y were independent variables, then we could say that with
probability c2 the true mean of X would be in its interval and the
true mean of Y would be in its interval and thus the true mean of
Z is within I . (Remember that f is increasing.) Hence, we can use
I as the confidence interval for Z, with confidence c2 and half-size
(max−min)/2.

Unfortunately, X and Y may not be independent. Hence, we
can only provide a bound for the confidence of I . In particular,
with probability 1− c the mean of X is not in its interval, and with
probability 1−c the same is true for Y . The probability of the union
of these two events is at most (1−c)+(1−c). Hence the converse
occurs with at least probability 1− ((1− c)+(1− c)) = (2c−1).
That is, the mean of Z will be in I with probability (2c − 1) or
larger. (We assume that 2c is larger than 1.)

If c is close to 1, then I will still have a confidence close to 1.
However, if c has a relatively small value, then our bound is less
useful. For instance, if c = 0.80, our confidence in I is only 0.6.

In Lemma 2 below we show how to compute a confidence bound
for our p estimates for the differences scheme (3 workers). The
derivation is similar to what we have illustrated, except that there
are three variables involved, and composite random variable Z is
increasing on two of its parameters and decreasing on the third.
In Lemma 3 we then show how this bound can be significantly
improved by making two reasonable assumptions.
Lemma 2. Define function f(a, b, c) for parameters a, b and c to
be

f(a, b, c) =
1

2
−

√
(a− 1

2
)(b− 1

2
)

2(c− 1
2
)

Note that p̂1 = f(ˆq12, ˆq13, ˆq23). Assume that confidence inter-
vals for ˆq12, ˆq23 and ˆq13 all have confidence c and c ≥ 2

3
. The

confidence interval for p̂1 ranges from

max1 = f(q12 + ε12, q13 + ε13, q23 − ε23) and
min1 = f(q12 − ε12, q13 − ε13, q23 + ε23),

where ε12, ε23 and ε13 are the half-sizes of the confidence intervals
for the q variables (computed using the large n approximation).
The half-size of the p̂1 interval, ε1 is (max1 −min1)/2. The confi-
dence associated with this interval is at least 3c − 2. The intervals
for p̂2 p̂3 are computed in an analogous fashion. 2

Lemma 3. Consider our three random variables X12, X23 and
X13 with mean estimates ˆq12, ˆq23 and ˆq13, and c confidence inter-
val half-sizes of ε12, ε23 ε13 respectively. Also consider a general
function f(a, b, c). Let us assume that
• X12,X23 andX13 are normally distributed (large n assump-

tion);
• Function f is locally linear near a = ˆq12, b = ˆq23 and c =

ˆq13. That is,

f(a, b, c) ≈ (a− ˆq12)da + (b− ˆq23)db + (c− ˆq13)dc + f(ˆq12, ˆq23, ˆq13),
(11)

where da, db and dc are the slopes.
Then, the interval with endpoints

max1 = f(q12 + ε12, q13 + ε13, q23 − ε23) and
min1 = f(q12 − ε12, q13 − ε13, q23 + ε23)

has confidence c or higher. 2
In our case, we are using the f functions given in Lemma 1 to

get the intervals for p̂1, p̂2 and p̂3. Since these functions are differ-
entiable and we are only interested in values near ˆq12, ˆq23 and ˆq13,
the linearity assumption is reasonable.

Summary: Evaluation with 3 Differences Scheme. Consider
three workers that perform n tasks. First compute auxiliary esti-
mates ˆq12, ˆq23 and ˆq13 using the number of times each worker pair
disagrees. For instance, ˆq12 = b12/n where b12 is the number of
times workers 1 and 2 disagree. Second, compute estimates for the
three worker error rates p̂1, p̂2 and p̂3 using Lemma 1. Third, com-
pute the half-sizes of the three confidence intervals ε1, ε2 and ε3 for
the p estimates using Lemma 3. 2

3.1 Real Data Experiment
In this section we experimentally evaluate our confidence inter-

vals, checking if they are valid, even if we do not know if the as-
sumptions made hold. We use three real datasets to test our tech-
niques : image comparison, predicate evaluation, and peer evalu-
ation. In all these datasets, to estimate the accuracy of our con-
fidence intervals, we use or estimate true answers for each of the
tasks in the dataset. Note that the number of tasks is relatively
small on purpose; one typically wants to evaluate workers after a
small number of tasks, to save time and money.

Data and Setting: In the first scenario, which we call ‘Image Com-
parison’, denoted IC, a worker is asked to compare a pair of sports
photos (each photo showing one athlete) and to indicate if the pho-
tos show the same person (Yes/No answer). The correct response
for each task was known to us in advance. We evaluated the set of
48 tasks using 19 workers on Amazon’s Mechanical Turk [1], ac-
cumulating a total of 48×19 responses. The data is available at [6].

The second dataset, which we call ‘Schools of Thought’, denoted
SOT, is from [29]. A total of 402 workers were given 5 sets of 12
binary tasks each, making 60 tasks total per worker. In each task,
workers were given an image, and asked to filter the image based
on some question, such as ‘Is it an image of the Sky?’, or ‘Is it
an image of a building?’, or ‘Is the image beautiful?’. The correct
response of each task is assumed to be the majority response for the
task.

The third dataset is a MOOC (Massive Open Online Course) [5]
grading dataset from the HCI Course at Stanford in Fall 2012, de-
noted MOOC. Students were asked to grade assignments of their

688

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fr
a
ct

io
n
 o

f
co

rr
e
ct

 i
n

te
rv

a
l
e
st

im
a
te

s

Confidence level

Expected Accuracy
3 workers IC

3 workers MOOC
3 workers SOT

3 workers MOOC Easy
3 workers MOOC Hard

Figure 1: Accuracy of 3 worker differences method in estimat-
ing confidence

peers, providing a rating from 0 to 5. Prior this peer grading pro-
cess, each student was required to grade a fixed set of ‘test’ tasks.
There were 388 such ‘test’ tasks that were evaluated by all workers
(students). Since these ‘test’ tasks were also graded by staff mem-
bers, the correct grade for each of these tasks is known to us. Since
the grade provided is not binary, we interpret a grade from 0 to 2 as
a no (or ‘fail’) and 3 to 5 as a yes (or ‘pass’).

In each of the datasets, we find that some tasks that had high
agreement (100% of the workers returned the same answer), and
some had low agreement (52% of the workers returned the same
answer). Therefore, error probabilities of workers are positively
correlated with each other (as opposed to zero correlation as re-
quired by our model), with all workers committing more errors on
hard tasks. Moreover, we find that the assumption of false posi-
tive and false negative error rate both being equal is also not true
in these datasets. We now want to see how good our 3-differences
confidence interval estimates are for these data sets.

Experiment: We first pick a confidence level c. We then pick a
random set of m = 3 workers, and run the general differences
scheme on their responses (on tasks which all of them have at-
tempted), to get a c-confidence interval for each of their error rates.
We want to check if the worker’s true error rate lies in the our c-
confidence interval. Since we do not have access to the true worker
error rate, we compute the fraction of errors made by each worker
(using the correct responses, known to us), and use that as a proxy
for the true error rate. We repeat this process for 100 random
combinations of m = 3 workers, for every value of confidence
level c ∈ {0.05, 0.1, 0.15, ..., 0.95}. For each confidence level c,
we count the number of times the true error rate lay within our
c-confidence interval, and divide by the number of confidence in-
tervals we computed, and plot this value against c in Figure 1. (The
figure also contains two lines named ‘3 worker MOOC easy’ and
‘3 worker MOOC hard’. They can be ignored for now.)

Note that the solid line y = x in Figure 1 represents the ideal
case. If an outcome is above the line, the predicted error rate was
inside the computed interval more than c percent of the time. Thus,
these points are safe but conservative estimates. If an outcome is
below the y = x line, the confidence interval was too small. The
closer an outcome is to the y = x line, the less imprecise it is.

Our results show that in all cases the outcomes are close to the
y = x line. For the IC and the SOT data sets, our estimates are
always above the y = x line and hence always conservative. For
the MOOC data set, the confidence interval is a bit imprecise but
only for confidences less than 0.7. Since one would expect the
desired confidence level to be above 0.7 to be useful, we believe
this imprecision is not critical.

Of course, if we know more about the tasks and workers, and can
model dependencies, task difficulties, and so on, one can do better.

To illustrate, we jump ahead and use one of the generalizations of
Section 7. In the MOOC scenario, say we postulate that there are
two types of tasks, hard and easy, and that workers perform differ-
ently on each type of task. Say we call tasks ‘easy’ if more than
90% of the workers that attempted them agree on the outcome, and
‘hard’ otherwise. (There are much more sophisticated ways to label
tasks, but this is just an illustration.) We can then evaluate the error
rates of workers for each type of task, using our same 3-differences
approach. The results are shown in Figure 1. The new plots are
labeled ‘3 worker MOOC easy’ and ‘3 worker MOOC hard’. As
the plot shows, the accuracy is now above the y = x line, which
suggests that our technique for handling difficulty works well in
this case.

In summary, in scenarios where we do not have detailed infor-
mation on correlations, biases, task difficulty, etc., our base-case
3-differences scheme seems to provide reasonable confidence in-
tervals. If more information is available or learned, one can extend
our method to take the information into account.

Although we have not shown the actual confidence intervals in
Figure 1, it turns out some of them can be relatively large when one
evaluates them over a small number of tasks. We have addressed
this in Section 6.2.1

4. GENERAL DIFFERENCES SCHEME
Our solution for the differences scheme with 3 workers does not

easily generalize to more than 3 workers. We could define qij val-
ues for every possible pair of workers (analogous to Equations 1
through 3). From these values we can formulate equations for the
worker error rates. If we have j workers, we get j(j − 1)/2 equa-
tions for j desired rates p̂1 through p̂j . However, it is not clear how
we may use all these equations to get the error rates.

Instead, for the j-worker case we use the following strategy. Say
we are evaluating worker 1. Let us call the remaining j−1 workers
the peers. From the peers we form two disjoint sets of workers, S
and T , and treat each of these sets as a “super-worker”. That is,
the result produced by the S super-worker is the majority result of
the S workers, and similarly for the T workers. We then apply the
3-worker solution to workers 1, S and T to get the desired error
estimate p̂1.

The key question is what workers should go into sets S and T . In
the 3-worker solution, the accuracy of p̂1 will improve as the error
rate of S and T decrease (Please refer to the technical report [16]
for additional details on this). Thus, the question is how to obtain
low-error rate S and T super-workers.

To illustrate the issues, say we have j = 7 workers and are
evaluating worker 1. Assume the true error rates for the peers are
p2 = p3 = 0.1 and p4 = p5 = p6 = p7 = 0.4. That is, peers 2
and 3 are good, and the rest are not very good. Say we form S out
of peers 2, 4 and 5. It is straightforward to compute the error rate of
S (the probability that the majority choice is incorrect) to be 0.208.
In this case, we would have been better off simply having worker 2
alone in S! On the other hand, it is easy to construct cases where
the super-worker has a lower rate than its individual members.

Hence, we need a strategy for selecting good S and T sets, i.e.,
ones that have the lowest (or close to lowest) possible error rates.
Keep in mind that the selection procedure will not have access to
the true error rates, as in our example.

We suggest three possible strategies for the S, T selection. (Other
variations are possible.)
• Exhaustive. We can try all possible disjoint S, T possibil-

ities. In practice, we expect j to be relatively small, so we
will not have an inordinate number of cases. (For example,
for j = 5 there are 15 cases to consider.) For each S, T
choice, we estimate p̂1 and its accuracy using the 3-worker

689

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fr
a
ct

io
n
 o

f
co

rr
e
ct

 i
n

te
rv

a
l
e
st

im
a
te

s

Confidence level

Expected Accuracy
7 workers IC

7 workers MOOC
7 workers SOT

Figure 2: Accuracy of multiple worker differences method in
estimating confidence

solution. At the end we choose the p̂1 value with best accu-
racy (smallest half-size of the confidence interval).
• Pruning. First, for each worker we compute a preliminary er-

ror rate by dividing its peers evenly into S and T sets. Then,
to compute the final rate for a worker, we use the exhaustive
method, but only considering peers that have a preliminary
estimate below some threshold.
• Greedy Search. To evaluate worker i, pick a single random

peer for S, and another one for T , and estimate error rates.
Then consider adding each of the remaining peers, one at a
time, to the set that has the largest estimated error. If adding
the peer improves the accuracy for worker i, we add the peer
to the set, otherwise we do not.

Summary: Evaluation with General Differences Scheme. Con-
sider j workers that perform n tasks. To evaluate a workerw, divide
the remaining workers into disjoint sets S and T , and treat each set
as a ‘super-worker’ whose response equals the majority response of
workers from that set. Then proceed as in the 3 worker differences
scheme, using worker w and the two super workers. 2

4.1 Real Data Experiment
We use the same three datasets we used to test the 3 worker dif-

ferences scheme.
Experiment: Figure 2 shows the results for our evaluation of the
general differences scheme. The data sets are as before, and the
axis of the figure are the same as for Figure 1. In this case we use
m = 7 workers instead of three, and we use a greedy heuristic
to find super-workers. In this case we see that all outcomes are
above the y = x line, meaning that all our intervals are correct but
conservative, even though some of our assumptions do not hold.

5. COMPARISON WITH EM AND SIMPLE
MAJORITY

In this section, we compare our basic worker error estimates
against the popular Expectation Maximization algorithm [8, 7],
or EM, for short, and against a simple Majority Heuristic. The
EM algorithm is used to provide estimates of hidden parameters,
given values of observed parameters, such that the estimates are
Maximum-Likelihood. In our setting, the hidden parameters are
the worker error rates, which are unknown, while the observed pa-
rameters are the answers of workers in a given phase. Note, how-
ever, that the EM algorithm provides no confidence intervals for
the hidden parameter estimates, unlike our method. So, for this
comparison, we ignore our confidence intervals.

The EM algorithm uses two steps, computing the expectation
(E), and maximization (M), until convergence. Specifically, the al-
gorithm begins by initializing a random error rate for each worker

Tasks Workers EM Error Our Error Simple Majority Error
200 3 0.0552 0.0553 0.0638
300 3 0.0415 0.0345 0.0626
400 3 0.0355 0.0345 0.0626
500 3 0.0309 0.0299 0.0625
200 5 0.0330 0.0360 0.0344
300 5 0.0264 0.0282 0.0322
400 5 0.0235 0.0251 0.0307
500 5 0.0208 0.0224 0.0303

Table 1: Comparison of our technique with EM
and a random probability for Boolean answers for each task. Then,
in alternate steps, it sets the maximum likelihood error rates for
each worker based on the current answer probabilities, and sets
the maximum likelihood answer probabilities given the worker re-
sponses and current error rates. The algorithm is guaranteed to
converge to a local optimum of Maximum-Likelihood; however, in
most practical settings, the algorithm does converge to the global
optimum.

The Simple Majority Heuristic [11], assumes that the majority
response of workers is always correct, and hence evaluates worker’s
by counting the fraction of times they agreed/disagreed with the
majority.

We tabulate the comparison between our algorithm (without con-
fidence intervals), the EM algorithm, and the Simple Majority Heuris-
tic in Table 1: For this comparison, we focused on a single phase,
while varying the number of tasks (between 200-500), and while
varying the number of workers (3 or 5). We generate task out-
comes by assuming each worker has an error rate equal to 0.2 or
0.3 with probability 1

2
each, independently of other workers. We

then estimated the error rates p̂ for each of the workers for a single
phase using our technique, EM and Simple Majority, (ignoring con-
fidence intervals), and recorded the error |p− p̂|, i.e., how far away
the error rate estimates are from the actual error rate. We recorded
this value across 500 iterations, and then took the average.

As can be seen in the table, the error for EM and our technique is
usually very close, while the error for simple majority is somewhat
larger. For example, for 400 tasks and 3 workers, the average error
for our technique is 0.034, that for EM is 0.035, while average error
for the simple majority heuristic is 0.062. Thus, for all practical
purposes, our technique and EM are equivalent to each other, and
better than simple majority, in providing p̂ estimates. Note that our
technique, unlike the others, provides a wealth of more information
in our confidence interval estimates, allowing us to better judge if
workers are indeed of high quality.

6. USING OUR RESULTS
In this section we present case studies of how our confidence

interval estimates may be used in various ways; while we have
selected some especially important applications, we believe there
may be many other ways this information may be used, some of
which we haven’t even envisioned yet.

6.1 Accuracy of Results
So far we have focused on estimating the error rates of workers.

However, once we have worker error estimates, they can be used to
improve the accuracy of the task results we produce.

For instance, say we have five workers, W1 through W5, that
have executed a particular task. Say workers W1, W2 and W3 all
give the result Y, while workers W4 and W5 say N. Typically we
would take a majority vote of the results, to mask out incorrect
answers. In this case, our final task result would be Y, the majority
vote. However, say that in the current phase we have evaluated the
workers and we obtained that p̂1 = p̂2 = p̂3 = 0.4 and that p̂4 =
p̂5 = 0.1. Intuitively, it seems that we should weight the results
of W4 and W5 more heavily since they are much more accurate,
giving a final result of N.

690

We start by formally defining the variables used. Let random
variable X represent the correct result of a given task, either 1 if
the result is Y or -1 if the result is N. We have j workers and let
random variable Xi represent worker i and xi (lowercase) be the
specific result (1 or -1) given by worker i (1 ≤ i ≤ j). Say we
know exactly the worker error rates pi. (Below we discuss what
happens when we only have estimates p̂i.) Assume further that the
task selectivity is s.

We wish to give a specific result X̂ (either X̂ = 1 or −1) based
on the results given by the workers. The accuracy of our result
is the probability that X = X̂ given the evidence (given the each
Xi = xi). For instance, if we say X̂ = 1 then the accuracy is the
probability that X = 1 given the evidence. Our next lemma tells
us how to compute the accuracy.
Lemma 4. To compute accuracy, we first compute two probabili-
ties:

P1 = Pr[X = 1 ∧X1 = x1 ∧X2 = x2...]

= s

m∏
i=1

(pi)
1−xi

2 (1− pi)
1+xi

2 and

P−1 = Pr[X = −1 ∧X1 = x1 ∧X2 = x2...]

= (1− s)
m∏
i=1

(pi)
1+xi

2 (1− pi)
1−xi

2 .

Then, the accuracy of the task is:
• If X̂ = 1 then Pr[X = 1|X1 = x1 ∧ X2 = x2...] =

P1
P1+P−1

, else

• If X̂ = −1 then Pr[X = −1|X1 = x1 ∧ X2 = x2...] =
P−1

P1+P−1
. 2

If we use a majority vote to compute the final task result X̂ , we
can now say how accurate the answer is. However, our next lemma
tells us how to select X̂ by appropriately weighting the individual
results, to maximize accuracy.

Lemma 5. We wish to give a specific result X̂ (either X̂ = 1
or −1) based on the results given by the workers, such that we
maximize accuracy, i.e., the probability that X = X̂ . To compute
this maximum likelihood result we first compute
• α = log(s

1−s
),

• β =
∑j

i=1 xilog(
1−pi
pi

).

Then, if α+β > 0 the maximum likelihood result X̂ is Y (1), else
it is N (0).

Thus to provide a result with maximum accuracy, we need to give
a weight log(1−pi

pi
) to the answer of worker i, take the weighted

sum, and add the initial bias factor log(s
1−s

), and return the sign of
the result as our guess X̂ . 2

To illustrate the potential improvements that may be achieved by
using Lemma 5, we consider a simple scenario with 9 workers. In
this scenario we have two types of workers: good workers have a
true error rate of 0.1, while bad workers have a rate of 0.3. Figure 3
shows the fraction of incorrect results (1 minus accuracy) for both
a simple majority and a weighted majority (Lemma 5), as the num-
ber of bad workers varies. For instance, if we have 6 bad workers,
the error rate for the combined result drops by about half when the
optimal weighted majority is used (from about 0.02 to about 0.01).
We see that the use of a weighted majority improves accuracy sig-
nificantly, unless most workers are equally good, or unless every
single worker is equally bad.

In practice we do not have the exact worker errors pi but only
their estimates p̂i. To compute accuracy, we can use the estimates

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 1 2 3 4 5 6 7 8 9

Fr
a
ct

io
n
 o

f
w

ro
n
g
 a

n
sw

e
r

e
st

im
a
te

s

Number of bad workers

Simple majority
Weighted majority

Figure 3: Fraction of incorrect results using a simple vs. a
weighted majority

in place of the pi values in Lemma 4, to obtain an estimate of the
accuracy. Thus, for each task we have Â and not the true accuracy
A. Is our estimate for Â any good? If we tell whoever is consuming
the results of our tasks that “we think that” the answer we provide
is correct 95% of the time, how will they know if they can trust that
95% accuracy estimate?

Fortunately, not only do we have error estimates for the workers,
but we also have confidence intervals for those estimates! Thus we
can perform a “worst-case” analysis: For each p̂i we know with c
confidence level that at most the true pi is p̂i+εi. We now estimate
Â′, which is the accuracy we obtain when we use p̂i + εi instead
of pi in Lemma 4. Since Â′ is a differentiable function, and since
larger error rates make accuracy worse (smaller), we can say that
with c confidence, the true accuracy A will be larger than Â′. Note
that once again, we are using the linearity principle of Lemma 3,
i.e., that the majority function for Â′ is locally linear around the
estimates of the values of p̂i.

Returning to our simple example, say our (worst case) accuracy
bound is 95% with 90% confidence. Now we can tell our customer
that over many tasks we will give an incorrect answer in no more
than 14.5% of the cases, since we do not lie within the desired Â′

accuracy with probability 0.1, and if we do lie within the desired
accuracy bound (with probability 0.9), then with probability 0.05
we end up making an error, giving us overall: (1 − 0.9) + 0.9 ×
(1− 0.95) = 0.145.

6.2 Price of Accuracy
In the previous subsection, we provided a technique for provid-

ing a confidence value along with an accuracy bound for the answer
for any given task: we used the larger extreme of the worker error
probabilities p̂i+εi to provide an accuracy bound Â′. Furthermore,
we know that the worker error probabilities pi are all smaller than
p̂i + εi with confidence c. Thus, overall, we get an accuracy bound
of Â′ with confidence value c.

In this section, we first set a lower bound on the desired accuracy,
and we study the impact on the confidence value of varying the
number of tasks or number of workers in a single phase. Note that
increasing the number of tasks will increase the confidence value,
as will increasing the number of workers.

In Figure 4(a), we plot the number of workers required to get
answer accuracy of at least 90% at different confidence levels on
fixing the number of tasks to 500. As predicted, as the confidence
levels increase, the number of workers required increases. In Fig-
ure 4(b), we plot the number of tasks required to get answer ac-
curacy of 90% at different confidence levels on fixing the number
of workers to 3. Once again, as predicted, as the confidence lev-
els increase, the number of tasks required increases. In a sense,

691

 7

 8

 9

 10

 11

 12

 13

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u
m

b
e
r

o
f

w
o
rk

e
rs

 r
e
q
u
ir

e
d

Required confidence level

Cost to get 90% accuracy at different levels of confidence
 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9N
u
m

b
e
r

o
f

q
u
e
st

io
n
s

p
e
r

p
h
a
se

 r
e
q
u
ir

e
d

Required confidence level

Cost to get 90% accuracy at different levels of confidence
 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 5 10 15 20 25 30 35 40 45 50N
u
m

b
e
r

o
f

q
u
e
st

io
n
s

p
e
r

p
h
a
se

 r
e
q
u
ir

e
d

Number of workers

s versus number of workers to get 90% accuracy at 90% confidence

Figure 4: (a) Effect of number of workers on confidence level of answers (b) Effect of number of tasks on confidence level of answers
(c) Tradeoff between number of tasks and number of workers on fixing confidence level of answers

these graphs illustrate the “cost of confidence/accuracy”. That is,
the graphs show us how much we need to “pay”, in terms of more
workers or more tasks to achieve our goal.

Lastly, in Figure 4(c), we plot the dependence of the number of
workers on the number of tasks when we fix the confidence level to
90%, and the answer accuracy of at least 90%. In other words, we
fix the number of workers, and increase the number of tasks until
we get the desired confidence and accuracy levels. We may use this
plot to find the optimal tradeoff between the number of tasks (nd)
and number of workers (w). Let us say we wanted to ensure the
confidence level and answer accuracy of a single task to be both
greater than 90%. Then, to ensure this accuracy level, we can use
various combinations of nd and w with the total cost for a phase
being nd × w. For w = 11 in the figure, we find that nd ≈ 450,
while forw = 15, nd ≈ 250. We find that the optimal combination
of nd and w occurs around w = 25, where nd ≈ 130, for a total
number of task instances of nd × w = 3250.

6.2.1 Why Confidence Intervals?
Figures 4(a), 4(b) seem to indicate that getting small confidence

intervals, for high levels of confidence, requires a large number
of tasks and workers. For smaller amounts of data, the interval
sizes can be relatively large. This is partly because schemes based
on worker differences (as opposed to gold standard tasks) usually
require more data to get the same-sized confidence intervals. So
the reader may wonder, how useful are these intervals if they can
be large for a modest number of tasks or workers?

First, simply ignoring the intervals (as is commonly done) is not
a good idea even if the intervals are large. (Recall the proverbial os-
trich hiding its head underground.) Large intervals give us a warn-
ing that our estimates may be incorrect, and it is best to take that
into account. For instance, in Section 6.3 we will see that it is good
to take into account uncertainty when evicting workers. (When we
evict workers with uncertain error estimates, it is better to be con-
servative than overly aggressive.) We can also heed the warning
by evaluating workers over more tasks, changing our evaluation
scheme (to say using a gold standard), or by having more workers
repeat each task. Whether we can afford more tasks or workers
is an orthogonal issue that can only be discussed rationally with
knowledge of confidence intervals.

Second, note that computing confidence intervals is “free.” That
is, knowing the confidence intervals does not require additional
work beyond what is already being done to evaluate workers and
to perform tasks.

Third, also note that even wide confidence intervals can be useful
if we are trying to distinguish between classes of workers that have
quite different rates. For instance, if we are trying to detect spam-
mers (rates close to 0.5) from good workers (say with rates below
0.05), then coarse intervals can easily differentiate the workers.

6.3 Multiple Phases
As discussed in the introduction, we may also use our error esti-

mates to periodically evict poorly-performing workers. Prior work
[24, 11] has used heuristics to eliminate poorly performing work-

ers, but here, armed with our toolbox of evaluation techniques, we
may use precise estimates of worker errors to truly judge if a worker
is good or bad.

Specifically, at the end of every phase, we choose to evict some
workers based on how well they performed in that phase, and re-
place them with other workers. A straightforward technique is to
simply use our estimate of the error rate of the worker (p̂), and reject
workers whose error rates fall above an appropriately set threshold
t. We call this technique the normal eviction technique.

Instead, we may use our confidence interval estimates to only
evict workers who are truly poor. That is, we may use p̂i − ε as
an estimate of the lowerbound of the error rate of a worker. If the
lowerbound is still higher than an appropriately set threshold t with
confidence c, we can be confident that the worker is indeed poor
and can then evict him/her. We call this technique the conservative
eviction technique. Note that ε varies for each worker, i.e., for some
workers we can be more precise about their error, and for other less
so. Thus, conservative eviction sets an error threshold that varies
by worker, taking into account our precision.

Since some workers may be retained across phases, we estimate
error rates across multiple phases. That is, we compute the average
rate over all phases a worker has been involved in, and then apply
the threshold. (There are other options for averaging but are not
considered here.)

To illustrate our techniques, consider a scenario where a newly
hired worker will have error rate 0.3 with probability 0.3, 0.2 with
probability 0.4, and 0.1 with probability 0.3. Note that identifying
and evicting poor workers in such a scenario is especially important
since the error rates of the good and bad workers are very different.

Our goal is to compare normal and conservative eviction on two
metrics: (a) how poor our workers are at the end of each phase,
and (b) how many good workers do we mistakenly evict. Our first
metric prefers techniques that select for good workers, while the
second metric prefers techniques that are not overly aggressive.
Note that mistakenly evicting good workers can result in a poor
reputation for the requester in the crowdsourcing marketplace, and
can have detrimental effect on quality in the long run (since good
workers will refuse to work with the requester). Note also that the
two aspects are interrelated, e.g., aggressive eviction may improve
quality, but may evict many good workers.

To evaluate these aspects, we use a simple accuracy cost function
C = c1 + αc2: The value c1 evaluates how bad the workers are
at the end—we assign a cost of 1 for ending up with a worker with
error rate 0.2, and a cost of 3 for a worker with error rate 0.3 (and
a cost of 0 for a worker with error rate 0.1). The value c2 evaluates
how many good workers do we mistakenly evict—we assign a cost
of 5 for each worker with error rate 0.1 evicted at the end of a phase,
and a cost of 0 if we evict workers with error rates 0.2 or 0.3. The
parameter α > 0 is a multiplier that allows us to weight c1 and c2
relative to each other. Note that these costs are merely illustrative:
in a real application, we may use different functions for c1 and c2,
and different αs.

In our experiment, we evaluate C for both techniques at the end
of every phase, and then take the average across phases. We fix the

692

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

A
cc

u
ra

cy
 C

o
st

Confidence Level

Normal Eviction
Conservative Eviction

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

A
cc

u
ra

cy
 C

o
st

Confidence Level

Normal Eviction
Conservative Eviction

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

A
cc

u
ra

cy
 C

o
st

Confidence Level

Normal Eviction
Conservative Eviction

Figure 5: (a) Accuracy Cost vs. Threshold of Conservative and Normal Eviction for α = 1 (b) Accuracy Cost vs. Threshold of
Conservative and Normal Eviction for α = 5 (c) Accuracy Cost vs. Threshold of Conservative and Normal Eviction for α = 1

5

number of phases k at 30, with the number of tasks in each phase n
being 25. (Similar results were obtained for k = 50, 75, 100, with
nk fixed.)

In Figure 5(a), we depict the average accuracy cost C (where
α = 1) in log scale as a function of threshold t, for both eviction
techniques, and for 35% confidence intervals (Similar behavior is
observed for 50% and 75% intervals.) Note that we consider neg-
ative threshold values, even though error probabilities can only be
positive. Our techniques can yield negative estimates, e.g., p̂i − ε
can be negative. We find that it is more effective not to cut off these
values at 0, since the magnitude still conveys some useful infor-
mation (e.g., we would rather evict a worker with lowerbound -0.2
than one with a bound of -0.1).

As can be seen in the figure, the average cost of conservative
eviction is typically lower than normal eviction across all thresh-
olds (except for a small region between 0.2 and 0.3 where the dif-
ference is not much). Moreover, we find that on both sides of 0,
i.e., from 0 → 0.4 and from 0 → −0.4, the accuracy cost grows
much slower for the conservative technique than the normal tech-
nique. The slower growth implies that conservative is less sensitive
to the threshold choice than normal. Thus, even though at their op-
timal thresholds both techniques perform roughly equally, if we are
unable to set the threshold precisely, conservative will do better.

To study the impact of α on performance, we repeated the ex-
periment with α = 5 and α = 1

5
, depicted in Figures 5(b) and 5(c)

respectively. We note similar behavior for both plots. For large
α, the curve is almost monotonically decreasing—the trough is al-
most not visible, unlike α = 1 or 1

5
—this behavior is not surprising

given that if we put too large a penalty on evicting good workers,
then the best strategy is to simply not evict any workers. Also, for
both figures, we find that conservative eviction has lower cost than
normal eviction for almost every threshold (except for α = 1

5
be-

tween 0.17 and 0.35, where the difference is not very large). Just
as in Figure 5(a), the accuracy cost growth of conservative eviction
is slower than normal eviction on both sides of the origin—thus
even if we happen to not choose the optimal threshold, conserva-
tive eviction will ensure that we end up not paying as much of a
price in terms of accuracy cost.)

To summarize, our confidence interval estimates provide a useful
basis to evaluate and maintain worker quality across phases, while
simultaneously ensuring good quality and few evictions of good
workers.

7. EXTENDING OUR TECHNIQUES
Our base methods assume a relatively simple model, where task

outputs are binary, and worker error rates are not dependent on task
difficulty or type. We also assume that task selectivity is unknown.
If we have more information, we can obtain more refined confi-
dence intervals by extending our base mechanism. Here we briefly
discuss four such extensions. Other more sophisticated extensions
are possible, but not covered here due to space limitations.
Selectivity: In some cases, the task selectivity s may be known be-
forehand. That is, we may know in advance that with probability
s the result of given task is Y, and with probability (1 − s) it is

N. In this case, we can construct a ‘’worker’ who always responds
with ‘yes’ if s > 0.5 and no if s < 0.5. This worker will have an
error rate of min(s, 1− s). By considering this worker along with
two or more additional workers, we can use the 3 worker or mul-
tiple worker differences scheme, to get error rates for the workers.
The differences method gives more precise results when more data
is available [16], and so using selectivity can improve our worker
evaluation by providing us with the responses of an extra ‘worker’.
Non-binary tasks: Some tasks may have non-binary outcomes.
For example, if the task is to identify the background color in a
photograph, we may have outcomes red, blue, green, and yellow.
However, non-binary tasks can be reduced to multiple binary tasks,
which can then be analyzed by our methods. To illustrate, say the
output of a task is one of k categories. If k is a power of two,
then we can express the category as a log(k) length binary string,
and convert the task to log(k) binary tasks of the form : Is the
ith bit of the category 1? For example, for the four colors red,
blue, green and yellow, we can map (for our analysis) each worker
answer to two answers for the questions ‘Is the background either
red or green?’ and ‘Is the background either yellow or green?’. If k
is not a power of two, we can add more categories until it becomes
a power of two. In our example, if the picture backgrounds were
all red, green or blue, we can still add another category yellow.
The workers will never reply yellow, but our methods can still be
applied to the results.
Multiple Task Types: Typical crowdsourcing marketplaces have
tasks of various types, for example, translation (language centric),
identifying people in images (knowledge centric), or debugging
code (programming centric). A worker may have a different ap-
titude level for each task type, and hence a different error rate, vio-
lating our assumption of a single error rate. To account for multiple
task types, we can apply our method to tasks of only one type at a
time, and find a worker’s error rate separately for each task type.
Varying Task Difficulty: Tasks in a set may have varying difficul-
ties, and the error rate of a worker may be higher for more difficult
tasks. If we can identify difficulty level of tasks beforehand, then
we can treat tasks of different difficulty level the way we treated
tasks of different type. If we don’t know difficulty levels before-
hand, we can try to deduce them by looking at the strength of the
majority of worker responses. For instance, a majority close to
100% would indicate an easy task, while majority close to 50%
would indicate a hard one. We illustrated in Figure 1 the use of this
technique, and the improvements it yields.

8. RELATED WORK
The prior work related to ours can be placed in four categories;

we describe each of them in turn:
Crowd Algorithms: There has been a lot of recent work on find-
ing crowdsourcing analogs of standard data processing algorithms,
such as filtering [21], sorting and joins [14, 19], deduplication and
clustering [3, 23, 31] and categorization [22, 26]. Most of these
algorithms assume a simple model of human errors (i.e., that all
human beings are alike.) All these algorithms would benefit from a

693

“prefiltering” or “evaluation” phase where humans with low accu-
racy not employed for tasks.

Statistics and EM: Expectation Maximization, or EM [7, 8] has
been studied and used in the statistics and machine learning com-
munity for several decades now, with many textbooks and surveys
on the topic [15, 20, 30]. Expectation Maximization provides max-
imum likelihood estimates for hidden model parameters based on
a sequence of steps that converge to a locally optimal solution. We
compare our approach against Expectation Maximization in Sec-
tion 5. However, EM, unlike our technique, does not provide con-
fidence intervals for error rate estimates.

There is a variant of the EM algorithm called multiple impu-
tation [27], which can be used to derive a distribution of hidden
model parameters. In our case, we derive confidence intervals for
hidden model parameters. Unlike our method which provide cor-
rect guarantees, multiple imputation is heuristic in nature.

We use many fundamental concepts from statistics and probabil-
ity [32, 4], including the Wilson score interval.

Worker Error Estimation: The work most closely related to ours
is that of simultaneous estimation of answers to tasks and errors
of workers (typically using the EM algorithm). There have been a
number of papers studying increasingly expressive models for this
problem, including difficulty of tasks and worker expertise [9, 13],
adversarial behavior [25], and online evaluation of workers [33,
24, 18]. While our worker error model and task model are simpler,
we provide confidence interval guarantees along with error rates,
allowing users of our technique to have more fine-grained informa-
tion to evaluate workers.

There has also been some work on selecting which items to get
evaluated by which workers in order to reduce overall error rate [17,
28, 11]. While [11] uses heuristic confidence intervals in their
algorithm, but does not provide confidence guarantees, the other
papers do not provide confidence intervals of any kind.

Applications: There are a number of applications that crowdsourc-
ing has been successfully used for, including sentiment analysis [12],
identifying spam [10], determining search relevance [2], transla-
tion [35]. All these applications would benefit from a prefilter-
ing phase where the workers are evaluated and the poor workers
(judged based on average behavior as well as confidence intervals)
can be barred from further work.

9. CONCLUSION
In this paper, we presented a technique for determining confi-

dence intervals in addition to worker error rates. Confidence inter-
vals provide the equivalent of “guarantees” in the setting where we
need to determine worker errors, and thus are useful when we need
to precisely determine the range in which worker errors may lie. We
showed that our confidence intervals are relatively accurate even in
scenarios where our assumptions do not hold, and we discussed
extensions for scenarios where the assumptions are markedly dif-
ferent.

10. REFERENCES
[1] Mechanical Turk. http://mturk.com.
[2] Omar Alonso, Daniel E. Rose, and Benjamin Stewart.

Crowdsourcing for relevance evaluation. SIGIR Forum, 42, 2008.
[3] K. Bellare, S. Iyengar, A. Parameswaran, and V. Rastogi. Active

sampling for entity matching. In KDD, 2012.
[4] George Casella and Roger Berger. Statistical Inference. Duxbury

Resource Center, 2001.
[5] Steve Cooper and Mehran Sahami. Reflections on stanford’s moocs.

Communications of the ACM, 56(2):28–30, 2013.
[6] Image Comparison Dataset.

http://www.stanford.edu/∼manasrj/ic_data.tar.gz.

[7] A. P. Dawid and A. M. Skene. Maximum likelihood estimation of
observer error-rates using the em algorithm. Applied Statistics,
28(1):20–28, 1979.

[8] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood
from incomplete data via the em algorithm. JOURNAL OF THE
ROYAL STATISTICAL SOCIETY, SERIES B, 39(1):1–38, 1977.

[9] J. Whitehill et al. Whose vote should count more: Optimal integration
of labels from labelers of unknown expertise. In NIPS. 2009.

[10] M. Motoyama et al. Recaptchas : Understanding captcha-solving
services in an economic context. In USENIX Security Symposium ’10.

[11] P. Donmez et al. Efficiently learning the accuracy of labeling sources
for selective sampling. In KDD, 2009.

[12] R. Snow et al. Cheap and fast—but is it good?: evaluating non-expert
annotations for natural language tasks. In EMNLP, 2008.

[13] V. Raykar et al. Supervised learning from multiple experts: whom to
trust when everyone lies a bit. In ICML, 2009.

[14] S. Guo, A. Parameswaran, and H. Garcia-Molina. So Who Won?
Dynamic Max Discovery with the Crowd. In SIGMOD, 2012.

[15] Maya R. Gupta and Yihua Chen. Theory and use of the em algorithm.
Found. Trends Signal Process., 4(3):223–296, March 2011.

[16] Manas Joglekar, Hector Garcia-Molina, and Aditya Parameswaran.
Infolab technical report, 2012. http://ilpubs.stanford.edu:8090/1051/.

[17] David R. Karger, Sewoong Oh, and Devavrat Shah. Budget-optimal
task allocation for reliable crowdsourcing systems. CoRR,
abs/1110.3564, 2011.

[18] Xuan Liu, Meiyu Lu, Beng Chin Ooi, Yanyan Shen, Sai Wu, and
Meihui Zhang. Cdas: a crowdsourcing data analytics system. Proc.
VLDB Endow., 5(10):1040–1051, June 2012.

[19] A. Marcus, E. Wu, D. Karger, S. Madden, and R. Miller.
Human-powered sorts and joins. In VLDB, 2012.

[20] Geoffrey J. McLachlan and Thriyambakam Krishnan. The EM
Algorithm and Extensions (Wiley Series in Probability and Statistics).
Wiley-Interscience, 2 edition, March 2008.

[21] A. Parameswaran, H. Garcia-Molina, H. Park, N. Polyzotis,
A. Ramesh, and J. Widom. Crowdscreen: Algorithms for filtering
data with humans. In SIGMOD, 2012.

[22] A. Parameswaran, A. Das Sarma, H. Garcia-Molina, N. Polyzotis,
and J. Widom. Human-assisted graph search: it’s okay to ask
questions. In VLDB, 2011.

[23] R. Gomes et al. Crowdclustering. In NIPS, 2011.
[24] A. Ramesh, A. Parameswaran, H. Garcia-Molina, and N. Polyzotis.

Identifying reliable workers swiftly. Infolab technical report,
Stanford University, 2012.

[25] Vikas C. Raykar and Shipeng Yu. Eliminating spammers and ranking
annotators for crowdsourced labeling tasks. Journal of Machine
Learning Research, 13:491–518, 2012.

[26] Flavio P. Ribeiro, Dinei A. F. Florêncio, and Vitor H. Nascimento.
Crowdsourcing subjective image quality evaluation. In ICIP, 2011.

[27] D. B. Rubin. Multiple Imputation for Nonresponse in Surveys. Wiley,
1987.

[28] V. S. Sheng, F. Provost, and P. Ipeirotis. Get another label?
improving data quality and data mining using multiple, noisy
labelers. In SIGKDD, pages 614–622, 2008.

[29] Yuandong Tian and Jun Zhu. Learning from crowds in the presence
of schools of thought. In KDD, 2012.

[30] B. Walczak and D.L. Massart. Dealing with missing data: Part ii.
Chemometrics and Intelligent Laboratory Systems, 58(1):29 – 42,
2001.

[31] J. Wang, T. Kraska, M. Franklin, and J. Feng. Crowder:
Crowdsourcing entity resolution. In VLDB, 2012.

[32] Larry Wasserman. All of Statistics. Springer, 2003.
[33] P. Welinder and P. Perona. Online crowdsourcing: rating annotators

and obtaining cost-effective labels. In CVPR, 2010.
[34] Edwin B. Wilson. Probable inference, the law of succession, and

statistical inference. Journal of the American Statistical Association,
22(158):209–212, 1927.

[35] O. Zaidan and C. Callison-Burch. Feasibility of human-in-the-loop
minimum error rate training. In EMNLP, 2009.

694

