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ABSTRACT
An important problem in the non-contractual marketing
domain is discovering the customer lifetime and assessing
the impact of customer’s characteristic variables on the life-
time. Unfortunately, the conventional hierarchical Bayes
model cannot discern the impact of customer’s character-
istic variables for each customer. To overcome this problem,
we present a new survival model using a non-parametric
Bayes paradigm with MCMC. The assumption of a conven-
tional model, logarithm of purchase rate and dropout rate
with linear regression, is extended to include our assumption
of the Dirichlet Process Mixture of regression. The exten-
sion assumes that each customer belongs probabilistically
to different mixtures of regression, thereby permitting us to
estimate a different impact of customer characteristic vari-
ables for each customer. Our model creates several customer
groups to mirror the structure of the target data set.

The effectiveness of our proposal is confirmed by a com-
parison involving a real e-commerce transaction dataset and
an artificial dataset; it generally achieves higher predictive
performance. In addition, we show that preselecting the
actual number of customer groups does not always lead to
higher predictive performance.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining ; G.3 [Mathematics of Computing]: Prob-
ability and Statistic—Survival Analysis, Probabilistic Algo-
rithms
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1. INTRODUCTION
The concepts of customer relationship management (CRM)

have been recently gaining wide attention in business and
academia [1][2]. This approach focuses on allocating re-
sources to support business activities in order to gain a
competitive advantage. CRM focuses on managing the rela-
tionship between a company and its current and prospective
customers. A good relationship with the customer leads to
higher customer value.

Estimating customer lifetime and the impact of the cus-
tomer’s characteristic variables on profitable lifetime is an
important goal in CRM marketing. Historically, survival
analysis has usually been carried out by applying statistical
models.

In the non-contractual marketing domain, we cannot ob-
serve the customer’s dropout, e.g. e-commerce site, brick-
and-mortar shop and free web service, customers can halt
their flow of transactions with no explicit notification of their
dropout.

This problem was first recognized by Schmittlein, Morri-
son, and Colombo [3]. They proposed ParetoNBD model; it
estimates profitable lifetime using Recency-Frequency(RF)
data. RF data includes purchase frequency, day of the first
purchase, and day of the last purchase. This model is at-
tracting the attention of researchers and practitioners be-
cause of its increasing importance in new types of market-
ing, such as CRM, and One-to-One Marketing. Their work
is highly regarded and follow up research has been con-
ducted [4][5][6][7][8]. Abe [8] proposed a hierarchical Bayes
extension to the Pareto/NBD model to estimate the impact
of the customer’s characteristic variables on profitable life-
time duration. The hierarchical Bayes model(HB model),
whose lifetime parameter is a function of customer charac-
teristics, can achieve this in one step.

HB model assumes a single functional relationship be-
tween lifetime parameters and the customer characteristics;
so a single set of coefficients (impact of the customer’s char-
acteristic variables) is estimated using data from all cus-
tomers in the sample. These coefficients are effective in sup-
porting marketing decisions for average, but they do not
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support customized marketing decisions for individual cus-
tomer. This is because the HB model pools the impact over
all customers. The most recent trend in CRM is for per-
sonalized actions, e. g. promotions or recommendations, for
each customer, so estimating the impact of the customer’s
characteristic variables one by one is an important goal. It
permits the identification of the most effective customers
in terms of increasing lifetime. For example, Abe [8] dis-
covered the marketing knowledge that keeping a food cor-
ner fully stocked is effective in decreasing the dropout rate
for the store. Unfortunately, this knowledge cannot identify
the customers who could be prevented from dropping out
through promotion of the food corner.

A simple solution is a model that includes as many coeffi-
cients as their customers; each customer has one coefficient.
However, this raises the identification problem (degree of
freedom problem) in estimation. This is because a set of
customer parameters and a set of customers’ characteristic
variables are needed to estimate a set of customer coeffi-
cients.

To overcome this problem, we propose a new model that
can estimate the impact of the customer’s characteristic vari-
ables one by one using a non-parametric Bayes paradigm.
Our model is based on an HB model that includes a multiple
coefficient to which each customer belongs probabilistically.

The key feature of this model is the mathematical pre-
sentation of a dynamic coefficient distribution; it is based
on the Dirichlet Process Mixture (DPM). DPM is a non-
parametric Bayes model that can estimate both coefficients
(parameters) and the number of coefficients, in a natural
Bayesian paradigm. Accordingly, this model can provide
dynamic coefficients without prior setting of the number of
coefficients or coefficient parameters. In other words, our
model makes the following assumptions; Finite coefficients
are sampled from a potentially infinite set of unobserved
coefficients, and each customer can be assigned to each co-
efficient probabilistically as in soft clustering.

Our model has 2 merits at the practical level, and these
merits are the innovations of our research. At first, our
model offers greater accuracy with trustful prior distribu-
tions using multiple coefficients. Secondly, our model can
discern the impact of the customer’s characteristic variables
for each customer.

The effectiveness of our proposal is confirmed by a com-
parison involving a real E-commerce transaction dataset and
an artificial dataset.

The next section introduces related works on survival anal-
ysis and mixture distribution analysis. Section 3 describes
the proposed model and compares it against the conven-
tional model. Section 4 explains how our model uses the
MCMC method for making the estimations. Section 5 presents
experimental result conducted on three datasets of various
types; the model’s performance is compared to that of the
conventional model. Section 6 presents empirical analyses
conducted on real e-commerce dataset. Section 7 presents
the discussions followed by the conclusions in Section 8.

2. RELATED WORKS
Schmittlein et al [7] calibrate a Pareto/NBD model sep-

arately for each segment specified by the SIC code. The
proposed model, by including segmentation variables in a
hierarchical manner, allows estimation of all segments simul-
taneously, thereby increasing the degrees of freedom. The

model can also incorporate non-nominal explanatory vari-
ables.

Reinartz et al [9] and Abe [8] proposed new models for
estimating lifetime and the impact of the customer’s char-
acteristic variables. Reinartz and Kumar proposed a 2-step
model, paretoNBD for lifetime and regression to discover
the impact of the customer’s characteristic variables. Abe
proposed a hierarchical Bayes model and MCMC estima-
tion which sets up the customer’s characteristic variables as
a prior distribution. Both approaches can provide lifetime
and impact, but the latter approach, whose dropout param-
eter is a function of customer characteristics, can achieve
these in one step, thus providing correct error assessments
for statistical inferencing. Accordingly, our model is based
on the hierarchical Bayes approach.

Conventional models require that the number of compo-
nents be given in preliminary step. (e. g. Schmittlein [7]
sets the segmentation number in a preliminary step, while
Reinartz et al [9] and Abe [8] set the number of components
to 1.)

Our model sets the number of components as unknown,
and each customer is assigned to each component proba-
bilistically. This means model complexity (the number of
component) must be estimated from the given data. Esti-
mation of K, the number of components, is a special kind
of model choice problem, for which there is a number of
possible solutions [13] :

Approach 1 The number of components is decided after
parameter estimation, using entropy distance or Kullback-
Leibler (KL) divergence [14].

Approach 2 The number of components is estimated as a
parameter by the DPM average over all possible set of
mixture cardinalities according to a particular prior.

We focus on the latter, because it exemplifies more natu-
rally the Bayesian paradigm and offers a much wider scope
for inferencing, including model averaging in the non-parametric
approach to mix estimation 1.

Approach 1 above pertains strongly to the testing per-
spective, the entropy distance approach being based on the
KL divergence between a K component mixture and its pro-
jection on the set of K − 1 mixtures, in the same spirit as
Dupuis and Robert [16]. Additionally, this solution can not
provide correct error assessments for statistical inference in
practical tasks.

Our approach, the non-parametric extension of the HB
model, can identify the impact of the customer’s charac-
teristic variables. If the number of components is always
estimated to be 1, HB and our model are equivalent.

1In addition, the unusual topology of the parameter space
invalidates standard asymptotic approximations of testing
procedures [15]
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Figure 1: Notations for RF data

3. CONVENTIONAL MODELS AND OUR
MODEL

3.1 Model Assumptions
This section describe the assumptions of the conventional

HB model (Conventional hereafter) and the proposed model
(Proposed). Conventional has 3 assumption as follows.

Assumption 1 Poisson purchases. While active, each cus-
tomer makes purchases according to a Poisson process
with rate λ .

Assumption 2 Exponential life time. Each customer re-
mains active for an exponential distributed duration
(lifetime) with dropout rate µ .

Assumption 3 Individuals’ purchase rate λ and dropout
rate µ follow a multivariate lognormal distribution.

Assumptions 1 and 2 are identical to the behavioral as-
sumptions of Pareto/NBD model, and their validity has been
confirmed by other researchers. Assumption 3 is the addi-
tional assumption of HB model. Proposed replaces assump-
tion 3 as follows.

Assumption 3a Individuals’ purchase rate λ and dropout
rate µ follow a mixture of multivariate lognormal dis-
tributions.

To determine the impact of the customer’s characteristic
variables one by one, the model needs to set groups that use
different parameters for their lognormal distributions. Un-
like Conventional, Proposed sets multiple customer groups,
and each group has a different lognormal distribution. In
Proposed, a customer belongs to all groups probabilistically
(like soft clustering).

3.2 Mathematical Notations
Following past research [7], Figure 1 depicts our notations

of recency and frequency data (x, tx, T ). Lifetime starts at
time 0 (when the first transaction occurs and/or the mem-
bership starts) and customer transactions are monitored un-
til time T . x is the number of repeat transactions observed
in time period (0, T ), with the last purchase (xth repeat)
occurring at tx. Hence, recency is defined as T − tx. τ is
unobserved customer lifetime. Using these mathematical no-
tations, the preceding model assumptions can be expressed
as follows:

P (x|λ) =

(

(λT )x

x!
e−λT (τ > T )

(λτ)x

x!
e−λτ (τ ≤ T )

(1)

f(τ) = µe−µτ (2)

»

log(λ)
log(µ)

–

∼ MNV
“

θ0 =

»

θλ

θµ

–

, Γ0 =

»

σ2
λ σλµ

σµλ σ2
µ

–

”

(3)

MVN denotes a multivariate normal distribution. λ, the
Poisson distribution parameter, is the purchase frequency
per period while the customer is active. µ, the parameter of
exponential distribution, is the dropout rate.

A model that link purchase rates and dropout rates, λ
and µ, to customer characteristic can offer insights into the
frequency of transactions and increasing the lifetime. The
approach of Conventional is to use the logarithm of λ and µ
as a linear regression as follows. where index i is added to
emphasize that the rate parameters are for customer i.

»

log(λi)
log(µi)

–

= θi = β′di + e (4)

where e ∼ MNV (0, Γ0)

di is a G∗1 column vector that contains G characteristics
of customer i. β is a G ∗ 2 parameter vector and e is a 2 ∗ 1
error vector that is normally distributed with mean 0 and
variance Γ0. This formulation replaces θ0 in the previous
section with β′di . When di contains only a single element of
1 (i.e., an intercept only), this model reduces to the previous
no-covariate case.

Note that Conventional, which uses a single β, can not
determine the impact of the customer’s characteristic vari-
ables one by one, therefore, Proposed sets multiple β for
multiple customer groups. The model sets an infinite num-
ber of groups, and sets a different β to each group that the
user belongs to. We define the Dirichlet process (DP) as
a prior distribution for unknown β. Famous implementa-
tions of DP are the stick-breaking process and the Chinese
restaurant process (CRP). Our model adopts the latter, be-
cause it readily suits the MCMC procedure. CRP handles a
potentially infinite group mixture in theory, but it makes a
number of groups according to the given data structure [12].

hi = c, i ∈ 1, ..., N, c ∈ 1, ..., C means customer i belongs
to the cth group, and is assigned βc. The equation is as
follows.

»

log(λi)
log(µi)

–

= θi = β′
hi

di + e (5)

where e ∼ MNV (0, Γ0)

where hi|α ∼ CRP (α)

P (hi = k|λ, µ) is expressed as follows; n is the number
of customers, and n(k) is number of customers for which
hi = k.

P (hi = k|λi, µi) ∝

(

n(k)
N+α−1

P (λi, µi|hi = k) (ifk 6= new)
α

N+α−1
P (λi, µi|hi = k) (ifk = new)

(6)

P (λi, µi|hi = k) ∼ MNV (λi, µi|βkdi, Γ0) (7)

We set a unique distribution for P (λ, µ|hi = new).
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The likelihood function for RF data (x, tx, T ) is given by
the following simple expression. z is an indicator function
defined as 1 if a customer is active at time T and 0 otherwise.
Another latent variable is a dropout time, y, when z = 0.
See Abe 2009 for details.

L(x, tx, T |λ, µ, z, y) =
λxtx−1

x

Γ(x)
µ1−ze−(λ+µ)(zT+(1−z)y) (8)

Because we observe neither z nor y, we treat them as
missing data and apply a data augmentation technique [17].
To simulate z in our MCMC estimation procedure, we can
use the following expression as the probability of a customer
being active at T .

P (z = 1|λ, µ, tx, T ) =
1

1 + (µ/λ + µ)(e(λ+µ)(T−tx) − 1)
(9)

4. PROPOSED MODEL

4.1 Parameter Estimation with MCMC
We are now in a position to estimate parameters,

θi, yi, zi, hi, ∀i; βk, ∀k; Γ0, K, by the MCMC method. To es-
timate the joint destiny, we sequentially generate each pa-
rameter, given the remaining parameters, from its condi-
tional distribution until convergence is achieved. The pro-
cedure is described below.

Step 1 Set initial value for θi;∀i.

Step 2 Sample zi according to Equation 9, for each i.

Step 3 Sample yi using truncated exponential distribution
(t < y < T ) for each i, if zi = 0.

Step 4 Sample θi with independent MH algorithm using
likelihood Equation 8, for each i.

Step 5 Sample hi and K using Equation 6 and 7 according
to DPM, for each i.

Step 6 Sample βk, Γ0 with multivariate normal regression
update.

Step 7 Iterate Step2-Step6 until convergence is achieved.

Each step is explained below.
Steps 2 and 3 generate z and y which are needed by Equa-

tion 8 in step 4.
In step 4, given zi, and yi, Equation 8 is used to generate

λi and µi, which are transformed into θi by taking their
logarithms. An independent Metropolis-Hasting algorithm
is used to generate λi first then µi; the proposed distribution
is lognormal. Unlike Conventional, Proposed uses β of prior
distribution for each i. βhi is used for customer i.

Step 5 is the additional model choice step of Proposed.
Equations 6 and 7 are used to generate hi and K with CRP.
In the first MCMC cycle, none of the hi of customers are
decided(hi = 0;∀i). so equation 7 is not used. The number
of clusters is optimized for each CRP step using the given
data.

As for step 6, see Bayesian textbooks elsewhere for details
on multivariate normal regression update [19] [20] [21]. The
hyper parameters of this lognormal distribution, β and Γ0,

β0

Σ0

ν0

β(k)

θi

k∈(1,2,…,∞)

RFi

di Ti

ν0

γ0

Γ0

α hi

i∈(1,2,…,N)

Figure 2: Graphical Model of Proposal

µi τi

Ti ti

λi xi

i∈(1,2,…,N)

Figure 3: Graphical Model of RF Data Generation

are estimated in a Bayesian manner with a multivariate nor-
mal prior and an inverse Wishart prior, respectively:

β ∼ MNV (β0, Σ0) (10)

Γ0 ∼ IW (υ0, γ0) (11)

These distributions are standard in Baysian regression
[19] [20] [21]. We set a non-informative prior distribution
for the hyper-parameters.

Figure 2 show our graphical model. RFi include x and t.
Figure 3 show the detail of RFi generation.

5. EVALUATIONS FOR ARTIFICIAL DATA

5.1 Experimental Setup
Proposed was evaluated in terms of the qualitative effec-

tiveness of non-parametric coefficient division and compared
to conventional methods.

Evaluations that use artificial purchase data have 2 merits.
First, the artificial data can be generated to cover various sit-
uations and parameters, such as number of components(β)
and degree of noise. Datasets used in the experiments are
shown in ”About Data”. Second, artificial data can set un-
observable parameters, i.e. λi, µi, βhi , and activeness at the
end of calibration. A real dataset was also tested, results are
in the next section, but it can not provide wide parameter
coverage.

The MCMC steps were repeated for 15,000 iterations, of
which the last 5,000 were used to infer the posterior distribu-
tion of the parameters. Convergence was monitored visually
and checked with the Geweke test [18].

5.2 Evaluation metrics
The results of Proposed are compared with Conventional

and K-given model. K-given model has the number of com-
ponents, K, fixed in advance. It assumes Dirichlet distri-
butions for the prior distribution with which customer is
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associated with a component. The appendix provides de-
tails.

Accordingly, Conventional and K-given model are equiva-
lent if K = 1, and Proposed and K-given model are equiva-
lent if the number of distributions is actually K (If K is es-
timated to be 1, Proposed and Conventional are also equiv-
alent).

Proposed was compared against the benchmark models in
terms of fit in the calibration period and prediction in the
validation period. As disaggregate performance measures,
correlation and mean squared errors (MSE) between pre-
dicted and actual, λ, µ, and each coefficient for individual
customers were used. Additionally, loglikelihood of being
active at the end of calibration was compared as permitted
by the artificial data.

5.3 About Data
The experiment used 4 types of artificial purchase data,

Each dataset had 100 customers and was designed to exhibit
2 types of impact from characteristic variables. Dataset 1
has less white noise for λ and µ, and a mixture of 2 types
of customers. 50 customers have hi = 1, β1 = (1,−1), and
the other 50 customers hi = 2, β2 = (−1, 1). White noise
σ2

λ and σ2
µ are 0.1. Dataset 2 has stronger white noise

for λ and µ, and a mixture of 2 types of customers. β
takes the same value as dataset 1. White noise σλ and
σµ are 1. Dataset 3 has stronger white noise for λ and µ,
and a mixture of 4 types of customers. 50 customers have
hi = 1, β1 = (1,−1), 50 customers have hi = 2, β2 = (1,−4).
50 customers have hi = 3, β3 = (−1,−1), and 50 customers
have hi = 4, β4 = (−1,−4). white noise σλ and σµ are 1.
Dataset 4 has stronger white noise for λ and µ, and a mixture
of 8 types of customers; they has 2 independent dimensions
in di. 50 customers have hi = 1, β1 = (1,−1;−1, 0), 50 cus-
tomers have hi = 2, β2 = (1,−4;−1, 0). 50 customers have
hi = 3, β3 = (−1,−1; 1, 0), 50 customers have hi = 4, β4 =
(−1,−4; 1, 0), 50 customers have hi = 5, β5 = (1, 0;−1,−1),
50 customers have hi = 6, β6 = (1, 0;−1,−4), 50 customers
have hi = 7, β7 = (−1, 0; 1,−1), and 50 customers have
hi = 8, β8 = (−1, 0; 1,−4). white noise σλ and σµ are 1.
Every dataset includes just a single type of di, to simplify
the division problem; λ and µ are independent.

Datasets 1 and 2 have the same number of components,
but different white noise variance, Γ0. We can evaluate the
models in terms of their effectiveness and robustness for Γ0.
Dataset 3 and 4 has a more complex tasks, since dataset 3
includes 4 components, and dataset 4 include 8 components
in 2 dimensions for di. We can evaluate model effectiveness
on these complex cases.

Artificial transaction datasets 1-4 were produced by the
following steps. (tx, T ) are natural numbers.

Step 1 Set single di with normal distributions 2 for each
customer.

Step 2 Set λ and µ with β′
hi

di+e. e represents white noise.

Step 3 Set T with unique distribution 3 for each customer.

Step 4 Set τ with exponential distributions using parame-
ter µ. If τ > T , the customer is alive.

2means are 3, and covariance of 1
3we set 1 < T < 365 for datasets 1, 2 and 4, 182 < T <
365 for dataset 3, because dataset 3 was designed to exhibit
frequency dropout.
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Step 5 Set x and tx with active period min(τ, T ) for Pois-
son random transactions. x is the summation of trans-
action number, and tx is the period from first transac-
tion to the last transaction.

Table 1 shows data details.
Figure 4, 5, 6 and 7 plot data distributions between d and

θ.
Artificial data are unrealistic values, for example, trans-
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Table 1: Details of Artificial Data Set
frequency (x) period (tx) period (T ) customers

ave. max. min. ave. max. min. ave. max. min. #
Dataset 1 9,280 240,884 0 26.9 354 0 189.7 359 2 100
Dataset 2 3,531 124,850 0 12.7 227 0 184.3 363 4 100
Dataset 3 70,486 8,731,537 0 79.3 360 0 271.6 364 183 200
Dataset 4 1,624 84,876 0 51.5 354 0 185.0 364 2 400

action x is repeated over one thousand times. These ex-
periment are intended to evaluate unobserved parameters
(coefficient, lifetime, λ, µ).

5.4 Result
Table 2 lists the results for datasets 1-4. Mark (†) means

actual number of components in K-given model. Mark (*)
means the highest score. In the results for datasets 1 and
2, HB, K-given (who has actual number of components),
and Proposed achieved higher evaluation scores in every cri-
teria, MSE, correlation and loglikelihood. Looking at the
results in more detail, K-given and Proposed are effective in
terms of evaluating λ (2 different coefficients). On the other
hand, Conventional is effective with regard to µ evaluation.
Comparing datasets 1 and 2, K-given model shows lower cri-
teria scores, so we can confirm the robustness of Proposed
in terms of Γ0.

Figure 8, 9, 10 and 11 are histograms of the number of
components in MCMC as estimated by Proposed. Mark
(*) means actual number of components. Proposed esti-
mated that 2 components were predominate in dataset 1,
and that 40% of the MCMC cycle were covered by 3 compo-
nents (1 additional component) in dataset 2. As white noise
Γ0 strengthened, Proposed created an additional temporary
coefficient for robustness.

In the results for dataset 3, K-given model (K=2) and
Proposed showed higher evaluation scores in every crite-
ria, MSE, correlation and loglikelihood. The more compo-
nents the dataset included, the lower was the criteria score
achieved by Conventional. It is natural to consider that K-
given model is a generalization of Conventional (HB model
equals K-given model when K=1). Focusing on the ac-
tual number of components (K=4) K-given model, achieved
lower criteria scores than when the false number of compo-
nent (K=2) was used. This result indicates that an actual
data generative model does not always fit the data if the
model uses multi-stage estimation like a survival model. For
example, it is difficult to estimate the λ and µ of one shot
customers (x=0). Survival models may perceive them to
have large µ or small λ, The actual number of components
models often fail in coefficient estimation because of their λ
and µ value estimations. On the other hand, K=2, not the
actual number of components, allowed the model to achieve
higher prediction performance. This results from making
the same temporary group of customers with fuzzy λ and µ
values. The same problem of components can be seen in the
results for dataset 4.

The discussion section addresses this problem.

6. EVALUATIONS FOR REAL DATA

6.1 Experimental Setup
The real database contained e-commerce transactions cap-
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Figure 8: Distributions of the Number of Compo-
nent in Dataset 1

Frequency

1500

2000

2500

3000

*

Number of components

0

500

1000

1 2 3 4 5
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nent in Dataset 2
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Figure 10: Distributions of the Number of Compo-
nent in Dataset 3

tured over a 162 week period (26/09/09–02/11/12) at com-
mercial website. It includes data gathered by random sam-
pling 3,000 customers who purchased at least one item from
the website during the first 81 weeks. The first 81 weeks
of data were used for model calibration and the second 81
weeks of data were used for model validation.

Proposed was compared against Conventional and K-given
(K=2,4,8) in both the calibration period and the validation
period (prediction performance). We used as disaggregate
performance measures, correlation and mean squared errors
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Table 2: Artificial Data Results
MSE Correlation loglikehood

log(λ) log(µ) coef. for λ coef. for µ log(λ) log(µ)
Dataset 1

Conventional 1.93 0.32* 1.01 0.06 0.95 0.98* -19.23
K-given model(K=2 †) 1.49 0.76 0.24 0.03* 0.97* 0.93 -17.26*
K-given model(K=4) 76.63 20.41 2170.13 3800.56 0.38 0.17 -22.96
K-given model(K=8) 450.39 383.03 1607.22 1275.50 0.29 0.41 -302.76
Proposed 1.44* 0.74 0.224* 0.03* 0.97* 0.93 -17.72

Dataset 2
Conventional 3.98 1.15* 1.43 0.21 0.85 0.91* -19.42
K-given model(K=2 †) 3.45 1.24 0.86 0.10 0.87 0.86 -20.26
K-given model(K=4) 107.19 41.35 25.79 12.77 0.40 0.27 -158.31
K-given model(K=8) 157.58 32.83 46.22 38.34 0.47 0.15 -266.95
Proposed 3.01* 1.37 0.65* 0.01* 0.89* 0.85 -19.31*

Dataset 3
Conventional 2.73 61.17 1.00 3.33 0.94* 0.71 -336.70
K-given model(K=2) 2.77 35.07* 0.75 2.11* 0.91 0.76* -326.41*
K-given model(K=4 †) 238.48 57.62 52.51 5.66 0.44 0.53 -605.41
K-given model(K=8) 190.34 137.56 31.40 48.44 0.44 0.35 -784.34
Proposed 2.04* 42.34 0.43* 2.34 0.94* 0.67 -329.25

Dataset 4
Conventional 3.35 52.23 1.01 3.02 0.77 0.56 -2120.96
K-given model(K=2) 3.18* 52.52 0.54* 3.02 0.78* 0.53 -2446.6
K-given model(K=4) 30.88 115.73 4.23 4.17 0.38 0.24 -2463.8
K-given model(K=8†) 115.02 140.04 10.54 15.60 0.30 0.17 -2907.7
Proposed 22.05 45.47* 1.91 2.89* 0.46 0.79* -2009.01*
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Figure 11: Distributions of the Number of Compo-
nent in Dataset 4

(MSE) between predicted and observed numbers of trans-
actions for individual customers. As an aggregate measure,
we used root mean square (RMS) between predicted and ob-
served weekly cumulative transactions. These measures are
generally used [8] in the evaluation of non-contractual sur-
vival model. Characteristics of customer d include 4 types
of value, amount of discount price, e-mail membership, av-
erage price of transaction and intercept. For evaluating the
effect of d, every model was compared to themselves with
no characteristic except intercept.

6.2 About Data
Table 3 shows data details.

6.3 Result
Figure 12 show the distribution of correlation between

log(λ) and log(µ). The average of correlations is 0.131. Ta-
ble 4 show the results for the real dataset. Conventional and

Proposed yielded higher evaluation scores for the disaggre-
gate performance measures. For aggregate measures, Con-
ventional, K-given (K=4), and Proposed showed high and
roughly equivalent evaluation scores. Conventional and Pro-
posed have almost the same prediction performance, how-
ever, Proposed performs better at aggregate tracking. This
can be seen from the time-series tracking of the cumulative
number of transactions in Figure 13. The line at week 81
separates the validation from the calibration period. On the
other hand, Conventional performs better at disaggregate
tracking.

Compared to their dummy characteristic model, they of-
fered superior prediction performance as confirmed by the
RMS values. The result suggest the effectiveness of the cho-
sen characteristics. In particular, K-given (K=4) and Pro-
posed achieved greater performance than Conventional when
they use the characteristics of customer d as a prior distri-
bution.

Furthermore, Proposed can extract the impact of the cus-
tomer’s characteristic variables. They can be used for ex-
tracting a list of customer for which discounts are effective
for extending customer lifetime or E-mail is effective for in-
creasing transaction number.

7. DISCUSSION
We discuss the difficulty of deciding K and emphasize the

importance of our proposal; the proposed model determines
the number of components from the target dataset. The
results for artificial dataset 3 show that the K-given model
achieved a lower criteria score for the actual number of com-
ponents (K=4) than for an erroneous number of compo-
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Table 3: Details of Real Dataset
frequency (x) period (tx) period (T ) customers

ave. max. min. ave. max. min. ave. max. min. #
2.9 55 0 237.4 565 0 396.4 565 5 3000

Table 4: EC Data Result
Disaggregate Aggregate

MSE Correlation RMS
Calibration Validation Calibration Validation Calibration Validation Pooled

Conventional 2.92 14.63* 0.98* 0.65* 32.72 165.80 119.46
K-given model(K=2) 2.51 16.05 0.96 0.63 32.90 169.00 121.70
K-given model(K=4) 4.45 16.31 0.89 0.60 32.49* 165.64 119.35
K-given model(K=8) 3.06 15.67 0.94 0.63 32.71 168.96 120.57

Proposed 2.41* 15.78 0.96 0.64 32.68 164.80* 119.21*
Not using characteristic

Conventional 2.68 14.99 0.98 0.65 32.80 169.10 121.80
K-given model(K=2) 2.52 15.69 0.97 0.63 32.85 170.10 122.50
K-given model(K=4) 2.41 15.97 0.97 0.63 32.86 170.04 122.46
K-given model(K=8) 2.40 16.09 0.96 0.63 32.90 168.96 122.65

Proposed 2.55 15.49 0.97 0.64 32.82 170.20 122.60
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Figure 12: Distribution of Correlation Between
log(λ) and log(µ) for EC Data
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Figure 13: Weekly Time-series Tracking Plot for EC
Data

nents(K=2). This raises the question of the effectiveness
of multiple stage estimation.

Table 5 lists the results for dataset 3 for just βk estimation.
For this, actual λ and µ were input to MCMC, steps 5 and
6. The K-given model and Proposed achieved higher criteria
scores for the actual number of components (K=4) in this
additional experiment. This is different from the previous
result. Thus only the proposed model could achieve high
criteria scores in both cases, single and multiple estimation.

These results indicate that the survival model approach
has difficulty in achieving high prediction performance with-
out using DPM in multiple stage estimation, even if the user
(researcher) has actual knowledge of customer group num-
ber.

8. CONCLUSIONS
In this paper, we introduced the goals of discovering cus-

tomer lifetime and the impact of the customer’s character-
istic variables on lifetime duration for each customer. We
developed a nonparametric mixture model to achieve both
goals. We extended the assumption of the conventional
model, logarithm of λ and µ with linear regression, by the
additional assumption of DPM of regression. It assesses the
structure of the target data set and determines the number
of groups that yield high prediction accuracy automatically.

Experiments on artificial datasets showed the effectiveness
and robustness of our model, and the results for a real data
set showed the superior prediction performance of our model

Table 5: Results of Additional Experiment on Data
3

coef. for λ coef. for µ
HB model 1.01 2.30

K-given model(K=2) 1.01 0.13
K-given model(K=4†) 0.17 0.12
K-given model(K=8) 0.18 0.12

Proposed 0.17 0.12
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with chosen characteristics, over the conventional HB model
and the parametric Bayes (K-given) model. Additionally, we
showed that actual number of components given models do
not always suit multiple stage estimation.
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APPENDIX
A. K-GIVEN MODEL

DPM is not the only way to determine the impact of the
customer’s characteristic variables one by one. We introduce
the K-given model as one such different other model. In the
K-given model we can set the number of components, K
from out of model. Our model decides K from the given
data structure,

Each K-given model set has a different β corresponding
to the group that the user belongs to. The model takes
the Dirichlet distribution as a prior distribution for hi. The
equation is as follows. α is a vector including K of 1.

»

log(λi)
log(µi)

–

= θi = β′
hi

di + e (12)

where e ∼ MNV (0, Γ0)

P (hi|α) ∼ DIR(α)

P (hi = k|λ, µ) is expressed as follows.

P (hi = k|λ, µ) ∝ n(k) + 1

N + K − 1
P (λ, µ|hi = k) (13)

where k ∈ (1, ..., K)

The model estimates θi, yi, zi, hi∀i; βk, ∀k; Γ, using the MCMC
method. MCMC step 5 in subsection 4.1 is changed as fol-
lows.

Step 5-a Sampling hi and K with using Equation 12 and
13 according to Dirichlet distribution for each i.
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