Speeding up Large-Scale Learning with a Social Prior

Deepayan Chakrabarti
Facebook Inc.

deepay@fb.com

ABSTRACT

Slow convergence and poor initial accuracy are two prob-
lems that plague efforts to use very large feature sets in
online learning. This is especially true when only a few fea-
tures are “active” in any training example, and the frequency
of activations of different features is skewed. We show how
these problems can be mitigated if a graph of relationships
between features is known. We study this problem in a fully
Bayesian setting, focusing on the problem of using Face-
book user-IDs as features, with the social network giving
the relationship structure. Our analysis uncovers significant
problems with the obvious regularizations, and motivates a
two-component mixture-model “social prior” that is prov-
ably better. Empirical results on large-scale click prediction
problems show that our algorithm can learn as well as the
baseline with 12M fewer training examples, and continu-
ously outperforms it for over 60M examples. On a second
problem using binned features, our model outperforms the
baseline even after the latter sees 5x as much data.

Categories and Subject Descriptors

1.2.6 [Learning]: Parameter Learning

Keywords
Social Prior, Mixture Model

1. INTRODUCTION

Large-scale online learning faces two challenges. The first
is the huge number of features whose weights must be learnt.
The second is sparsity and skew: any one training example
typically “activates” only a few features, and the frequency of
activation of various features can be heavily skewed. SVMs
can deal with large (indeed, “infinite”) dimensional feature
spaces, but only when these features are of a very particular
form (e.g., all monomials of a given degree, for polynomial
kernels) and only by making computational complexity de-
pend strongly on the number of training examples N; how-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

KDD’13, August 11-14, 2013, Chicago, Illinois, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.
Copyright 2013 ACM 978-1-4503-2174-7/13/08 ...$15.00.

650

Ralf Herbrich

Amazon Inc.(Work done while at Facebook Inc.)
herbrich@amazon.com

ever, the features in large-scale learning can be arbitrary,
and N is always very large. Linear models (including lin-
ear SVMs) are often the best tools in such situations, but
even they converge only slowly. Due to skewed activations,
learning the weights of rare features is particularly slow.

Consider, for instance, the problem of predicting clicks by
users on any form of online content (e.g., news-feeds or ads)
on large websites such as Yahoo! or Facebook. In addition
to the “usual” features (say, user age or gender), the user’s
ID itself could be a binary feature — 1 if the user viewing the
content has this particular ID, and 0 otherwise — potentially
adding ~ 10° binary features of the form {user-ID= x} to
the learning problem. The weight learnt for such a feature
is then the user-specific bias that is left over after all other
features are accounted for. Another example would be the
{user-ID= z, content-category= y} binary feature, which
encodes the residual propensity of user x to click on content
from category y that is unexplained by other features. Each
training example involves the action (click or not) of only one
user when shown one particular piece of content, and hence
only one of these features is activated. Clearly, learning the
entire set of weights will be very slow.

However, there are many situations where features are
known to be related or “close”. In the example above, we
may know the social network between users, and could rea-
sonably claim that users are generally “close” to their friends
and show similar biases. If so, the weights for {user-ID= u}
and {user-ID= v} should be similar whenever v and v are
friends. Thus, any updates to one weight (say, due to new
training examples) can be propagated to other weights in its
neighborhood; in effect, each training example affects mul-
tiple weights even though only one weight is activated. This
should speed up the learning process, as long as our original
assumption of closeness of weights was correct.

Another situation with related weights occurs when an
ordinal variable (say, average time spent on website per day)
is binned into non-overlapping intervals, and the user’s bin
becomes a binary feature {bin= z}. Normally, the weight for
each such feature would be learnt independently. However,
by construction, adjacent bins are related. Indeed, if the
response variable (say, click or not) is a smooth function of
the original ordinal variable (average time spent) and the
bin-size is small enough, we expect adjacent bins to have
similar weights. This insight can lead to faster learning.

While this problem exhibits superficial similarity with la-
bel propagation, the problems are actually orthogonal. La-
bel propagation assumes that feature values for similar items
are close, and uses this to predict missing feature values.

Our problem is to learn weights for {feature value= z},
where these weights denote how different values affect a
given response variable (say, clicking behavior). The un-
derlying assumption here is that similar feature values af-
fect the response variable in similar way, and hence have
weights that are close. Thus, weights are inherently tied to
a specific prediction problem, while values are immutable
(if unknown) properties of the items themselves. The same
problem setting may exhibit both situations: we may need
to impute missing values for some users (say, the age), and
also the effects of these values on the click-through rate.

We formalize this similar-weights intuition into a model
that places “social prior” on the feature weights. The sim-
plest version places a N (0,02) prior on the difference be-
tween the weights of every pair of related features. While
appropriate for certain situations, this formulation runs into
severe problems when applied to the social network of user-
IDs: in brief, some weights are forced to have tiny variances
even before any training examples are observed. We ana-
lyze the reasons for this, and present a better model that
provably avoids these issues.

Our contributions are as follows:

(1) We show that users in a large social network are in-
deed similar to their friends, in the context of clicking on
ads. This effect exists even after accounting for important
covariates such as the type of ad, and the context in which
the ad is displayed.

(2) We propose Bayesian models that formalize this notion
of feature weight similarity via a social prior. We analyze
these models and show a basic problem afflicting a broad
class of such models: prior variances of some weights can
become too small even before any data is seen. This analysis
leads us to a model that avoids this pitfall.

(3) In addition to the social network setting, we show how
our proposed methods are applicable in a broad range of
problems, such as when features are derived from histograms
or trees. Such cascading of features — using the results of a
related algorithm as input features for the learning problem
— is a common technique in practice, and the proposed
method can lead to faster learning in such cases as well.

(4) We empirically demonstrate the significantly faster
convergence of our proposed method. For a click-prediction
problem with user-ID features, the use of the Facebook social
network achieves an accuracy that would otherwise require
12M extra training examples. These gains are primarily
observed in the initial stages of learning, which is precisely
where large-scale learning suffers the most. On a second
real-world problem the social prior model outperforms the
baseline model even when the latter sees five time as many
training examples.

This paper is organized as follows. Section 2 discusses
prior work. The usefulness of the social network for click-
prediction is validated in Section 3. The proposed method
is presented in Section 4, followed by a discussion of broader
applications (Section 5) and experiments (Section 6). We
conclude in Section 7.

2. RELATED WORK

We split this discussion into two parts: (a) learning al-
gorithms using a network among features, and (b) work in-
volving social networks in particular.

NETWORK-BASED LEARNING. There are three major threads
in this category. Network structure has been used directly

651

via random walks with restarts in recommendation prob-
lems, and have been shown to outperform standard collabo-
rative filtering [9]. Networks of features have also been used
as regularizers, with a penalty being assessed on dissimi-
lar weights that are connected in the network [13, 11, 15].
Regularization in a more Bayesian setting has also been pro-
posed [5]. Finally, the network has been used as an aid in
achieving sparsity of the weight vector, with a regularization
term that pushes connected weights to be either both zero
or both non-zero [8].

Our work is closest to the work on regularization, but our
goal is to infer the weight distributions instead of optimal
point-estimates. Also, there is no obvious sparsity require-
ment that can be used to reduce the dimensionality of the
weight vector. While our first model is indeed similar to
some in prior work, we show that it, in fact, is particularly
poor in problems involving large social networks. We believe
that our work is to first to formally analyze the reasons be-
hind its poor performance, and to offer a solution that actu-
ally works well on a large social network and O(10®) training
examples.

UTILITY OF SOCIAL NETWORKS. Social networks have seen
recent use in a variety of problems, with varying success. It
has been useful in collaborative filtering situations [9], in re-
view quality prediction [10], and in increasing user clicks via
targeted “social ads” [2]. On the other hand, Goel et al. [6]
show that the social network offers less than 2% lift in CTR
prediction overall, though it is more useful in other problem
settings. Bao et al. [3] found that “influential” users rarely
click on ads, but they can be useful for CTR prediction for
other users, if we mine their data to find “hints” that are (a)
propagated to other users, and then (b) used in the CTR es-
timation algorithm. Such hints can be mined separately for
users and ads, and can then be used for matching, without
explicitly using the social network itself [14, 17].

Thus, while social networks have been useful in general,
evidence of their utility in the problem of click prediction is
more ambiguous. Our focus is on using the social network
to speed up convergence of the learning algorithm, which
could lead to easier exploration of this topic.

3. EXPLORATORY ANALYSIS

Our underlying assumption was that the social network
is informative in predicting user clicks on online content,
even after accounting for the most common effects such as
the type of content and the context in which the content is
shown. Before we can proceed, we must justify this assump-
tion.

If users are similar to their friends, then we should ex-
pect a user’s click-through rate (CTR) to be correlated with
the average CTR of her friends. However, simply calculat-
ing correlations between aggregate CTRs may not suffice,
for two reasons. First, CTR can vary widely depending on
aspects of the content (e.g., the content creator, such as
the owner of a Facebook page for page posts, or the adver-
tiser for an online ad) and the context in which the content
was shown (e.g., desktop or mobile, news-feed or user-profile
page, etc.). Hence, we compute CTR correlations only be-
tween CTRuser (4, C) and the average CTRy504 (4, C) for
all content by content creator A shown in context C for
which both the user and some friends have enough impres-

sions'. Second, there might be unknown biases due to the
content-serving system, such as implicit connections between
the number and kind of content a viewer sees and the num-
ber of friends in her social network. Hence, we need a
baseline correlation that abstracts out just the Facebook so-
cial network while leaving other variables unchanged. We
achieve this by computing correlations on randomly gener-
ated graphs where each user has the same number of friends
as in the Facebook social network, but the friend-list is ran-
dom [1].

We present correlations computed specifically for the case
of ads shown on Facebook. Based on data collected over a
short period in 2012, there were around 45M users who had
at least 50 impressions on some (A, C') pair, and the induced
subgraph had 2.3B friendship edges. We found a correla-
tion of 0.273 for this subgraph, but only 0.167 £ 0.002 for
the random graphs (correlations were calculated over many
randomly generated graphs to get the 95% confidence inter-
vals). The significantly higher correlations as compared to
the baseline can only be due to the actual choices made by
users in forming the social network, and it implies that ad
clicking behavior of users and their friends are similar. This
motivates our efforts to exploit such similarity in the click
prediction problem, which we discuss next.

4. PROPOSED METHOD

Our goal here is to speed up large-scale learning in the
presence of related features, under conditions of feature skew
and sparsity: any single training example is likely to have
only a few “active” features, and the frequency of activations
of various features is likely to be very skewed over an entire
training corpus. For the sake of concreteness, we shall fo-
cus on binary features of the form {value= z}, where the
value could be user-ID with an associated social network,
or a histogram bin for the case of a binned ordinal variable
such as average time spent on Facebook, etc. In large-scale
learning, the cardinality of such feature sets is by definition
very large, which leads to slow learning. Sparsity limits tra-
ditional learning methods to updates of only a few features
at a time, and skew implies that a large fraction of features
might receive relatively little training data overall, both of
which only accentuate the problem. This emphasizes the
need of the solution we propose.

Our solution can be applied to any model linking feature
weights to the response variable, as long as it uses distri-
butions on the weights instead of point estimates. This is
because confidence intervals on the weights can be very dif-
ferent due to skew in the training data, and without knowing
these confidences (equivalently, variances of the weights), it
is impossible to correctly propagate information between re-
lated weights, or analyze the resulting algorithm. For our
experiments, we use the following model [7]:

o |ow) =0 (428

(1)
(2)

Here, y is the response variable (say, click or not), x the
binary feature vector, w the weight vector, and 8 a known

B
w ~ N (0,diag (¢2))

!An impression is one instance of showing the content to
a user. We require at least 50 impressions of content cre-
ated by A to be shown on context C for inclusion in the
correlation calculation.

652

scaling factor. This is a probit model where the components
w; of the weight vector are marginally independent. Call
this model NoSocial.

Now, suppose features u and v are known to be related.
In the interest of clear exposition, we resume our running
example of ad click prediction in the social network: v and
v could refer to users who are friends (henceforth, u ~ v),
for which we have already established a positive correlation
in Section 3. This observed correlation can be incorporated
into the model by positing dependence between w, and w,.
Specifically, we can add in an extra “social prior” in the
marginal of w:

p(w) = N (0, diag (¢%)) - TunoV (wa — we;0,0%,) (3)

Call this model SocialPrior. Here, af:’p is a constant “social
prior variance”; smaller values lead to tighter coupling of
weights, with agp = 0 implying identical weights for neigh-
bors. We emphasize that this formulation can be extended
to any setting where a similarity graph between features is
available, and we shall discuss examples of these in Section 5.

LEARNING THE WEIGHTS. To learn the weights, we turn to
a message-passing schedule: whenever a weight is updated
(e.g., when new data becomes available), a corresponding
message is passed to its “neighboring” weights (see [4] for
an introduction on the topic). However, computation of
the exact posterior is intractable, for two reasons: (1) the
form of Equation 1 makes the determination of the exact
message from the data y to the weights w; difficult, and (2)
the presence of loops in the social friendship graph means
that message-passing need not converge, and need not yield
the correct posterior variance even if it does converge [16].

The solution is to use approximations instead of the exact
posterior. The first problem (which exists even in NoSocial)
can be approached by using an approximation based on Ex-
pectation Propagation, as in [7]. For the second problem, we
perform message-passing on a restricted set of links such that
convergence is guaranteed but the results are again approxi-
mate. In particular, if user u is being shown the content, we
only perform message passing on edges u ~ v. This set of
edges is singly-connected so the message-passing algorithm
converges, but it ignores (a) any links to users that are not
direct friends of u, and (b) any links v ~ v’ where both v
and v’ are friend of u. Note, however, that every link partic-
ipates in message-passing at one time or another unless both
users at its’ endpoints never see new content, and ignoring
completely inactive users is intuitively reasonable. In this
way, both problems mentioned above can be addressed by a
message-passing solution that takes O(AK) time, where K
is the maximum number of active weights for any training
example, and A the maximum neighborhood size.

However, there is another inherent problem with this model
— either the social prior variance agp must be large, or the
variance of w; must be small (in a sense that we will soon
make precise). The former would imply that the compo-
nents of w draw very little “strength” from their neighbors,
defeating the very purpose of a social prior, while the latter
renders the model inflexible even before any data is observed.
Next, we state these notions precisely.

4.1 Analysis of SocialPrior

Formally, our model may be represented as a weighted
graph G = (V, E) where V is the set w;, each having a stan-
dalone “prior” factor N'(0, ¢7), and E = {(i ~ j,05;]i,j € V'}

is a set of edges as discussed above, along with a corre-
sponding social prior variance afj (this is a generalization
of Eq. 3). This weighted graph corresponds to the graphi-
cal model of Eq. 3. As marginal inference in an arbitrary
graphical model is difficult, and especially so in the presence
of loops that we expect in social graphs, we develop bounds
on marginals for the social prior model. Let G = (V, E) be
such a graphical model, and G, be an extension of G that
increases the precision (i.e., inverse variance) on edge i ~ j:
1/0%(Gy) = 1/0%,(G) + v (if the edge does not exist in G,
it is created in G). Let p; = p(w;) be the marginal of node
1 (corresponding to w;), and let o? be the corresponding
variance. Then, we have the following lemma.

LEMMA 1. For any k € V and v > 0, 02(G~) < 02(G).

PRrOOF. Clearly, p(w;G) is a multivariate normal. De-
note by A the inverse covariance matrix of p(w; G). Then,
expanding Eq. 3, we can show:

p(w; G4) o exp { —w'A,w}
Ay = A+ Ay
1 fp=gq=iorp=q=3j

-1 ifp=dg=jorp=jqg=i
0 otherwise

Aijl,, =

pq

Let M; and M; be the it" and jth columns of A~ L. Then,
the covariance matrix A5 ! for G, depends on « as follows:

0A? ,
8; = —(M; — M;)(M; — M;)
902(G,) [0A7 ,
- — (M — Mj)? <
= 6’}/ 8’}/ o (Mk M]k) <0

Thus, the variance of any k € V is a non-increasing function
of 4. From the smoothness of matrix inversion, the result
follows. [

This implies that addition of extra factors reduces node
variances, so:

COROLLARY 1. For any G = (V,E) and G' = (V',E')
such that V. =V’ and E' C E, 03(G) < 02(G").

In particular, consider the subgraph G’ of G that consists of
only the edges incident on i. This is a “star” graph, which is
singly-connected and hence the sum-product message-passing
algorithm is guaranteed to converge and be correct.

On this star graph G’, let m;; be the precision of the
message from j to i at ConvergenceZ. Let 7; represent the
precision of node i: 7; = 1/0?. Then, we can show the
following:

LEMMA 2. For G', we have:

1
Ti = g + iji
Q i
1 2 Ti
mj; = ng ((O’ijﬁ +2) = [(oFm)? + 47_—;)

2More formally, if f represents the factor node connecting j
and 4, then there are messages from j7 — f and f — i; we
refer to the precision of f — ¢ as my;.

653

PROOF SKETCH. Standard message-passing formulas yield:

1 1
mji = 1 > = 1 (4)
pp— + 035 — T
3T £ R w——-
Ti—mjg ij

The result follows from the solution of this equation. [

We now have the tools to understand the problem inherent
in the SocialPrior model. Consider a basic scenario where all
social prior links are equally strong afj = Ufp, and we want
every node to have the same marginal 7, = 7 before any
data becomes available. Noting that precisions in G are
greater than those in the subgraph G’ (Lemma 1) yields the
following basic corollaries.

COROLLARY 2. If all nodes have the same precision T;
7 >0, and node i has degree deg(i) > 2, then:

> deg(i) (deg(i) — 2)
T > deg(i) — 1 '

PROOF. Setting y = 01-2]-7' and using Lemma 2:
my >(y+2) —Vy?+4 (settingy = ijT)
eg(i

This is a quadratic equation that is satisfied only when

. deg(i) (deg(i) ~ 2)
deg(i) — 1

O

COROLLARY 3. If all nodes have the same precision T;
7 > 0, all social prior variances are identical 02-2]- = afp, then

A(A-2)
N

where A is the mazimum degree of the graph and A > 2.

Note that, by Lemma 1, these results hold for G even though
they were proved using the subgraph G’.

The implication is that for a large social graph, the prod-
uct of the social prior variance and the marginal precisions
must be large (A &~ 5000 for Facebook). A model can spec-
ify either a small UEP or a small 7, but not both. A large
agp means that inter-node ties are weak, and nullifies the
reasons for using a social prior, while a small precision 7
makes the model inflexible even before any data has been
observed. Clearly, both situations are undesirable.

Even if the individual precisions 7; are different, a similar
result holds if all priors are the same ¢; = ¢ > 0.

1 deg(i)
COROLLARY 4. 75 > — + —22—.
T 92 o3, +¢?

PROOF SKETCH. Use 7; > 1/¢? in Eq. 4. [

Again, either agp must be large, or 7;.

Another way to see the problem is in terms of the influence
of new data on the marginals. As above, consider the case
of 7, = 7 and Ufj = 02,. Suppose node i receives a message
with precision §7 due to new observations.

LEMMA 3. The change in precision of the neighbors of i
in G' (with A > 2) due to a 6T precision message to i is
given by:

T

influence < m

PrOOF SKETCH. When 7; = 7, Lemma 2 yields m;; = m
for all 7,5 and some constant m, and 7 > Am. Now, the
influence of the incoming message on some neighbor j of i
is given by:

1 1

influence =

1

- 2
T—m+57'+03p

1
7+J§p
T—m

O

Thus, the effect of new data at any node propagates mini-
mally through the graph, irrespective of the model’s exact
specifications. Qualitatively similar results hold even for dis-
tinct afj and 7;, as long as the sum 7 = 1/¢7 + ij‘ mj;
is not dominated by any O(1) subset of the neighbors of i.
Note that this result is not restricted to one particular form
of the prior; while Eq. 3 corresponds to an Ly regularization,
any norm will face similar problems due to the equivalence
of norms.

The result follows from analysis of this expression.

INTUITION.
straints:

w; = wjr + N(0,025,) = ... = wjn +N(0,02,)
= wjr =wi +N(0,02,) k=1...n,

The social prior is essentially a set of con-

where wjr ~ w;. If the neighboring weights wj1 ... w;, were
known, then w; could simply be estimated as the average of
these; by the Central Limit Theorem, the variance in this
estimate would asymptotically be Ufp/ n. Since the variance
is just 1/7;, we see that 2,7 &~ n = deg(i) asymptotically,
and Corollary 3 is exactly the finite-size form of this result.
The generality of the Central Limit Theorem reinforces our
previous remark regarding the result being unaffected by the
exact model specifications.

4.2 The ShadowPrior Model

The above discussion highlighted two problems with the
SocialPrior model: limited flexibility in picking agp and T,
and limited propagation of influence. We now propose a
model which alleviates the first problem, and also provides
a useful parametrization for social priors.

Ideally, we would like to keep Ufp small, so that social
links have a strong effect on the joint distribution. How-
ever, as we have seen, this leads to high precision 7, which
leads to extremely low data likelihood if the means of the
w; distributions are even slightly incorrect. To fix this, we
introduce a new “shadow” variable w} for each w;; the social
prior is placed on the shadows w; while the “true” weights w;
are drawn from their shadows with an additional variance:

p(w | w') o< N (diag (0) , diag (¢2)) LN (W — wh; 0,1/)2)
p(w') o MumwN (W, — wy;0,0%,) (5)

The model can be generalized to set different values of afp
and v in the different terms; we call this model ShadowPrior.

It might seem as if ShadowPrior is merely a reparametriza-
tion of SocialPrior, and that if we marginalized out the shadow
variables, we would get an instantiation of SocialPrior with
specific afj values. However, this is not so.

LEMMA 4. ShadowPrior is strictly more general than So-
cialPrior.

PRrOOF. Every SocialPrior model can be trivially encoded
as a ShadowPrior by setting all ¥; = 0. To see that Shad-
owPrior is a strict superset, consider a node ¢ and two of its

654

neighbors j and k. By setting 1; — oo in ShadowPrior, we
can have w;,wy L w;. In particular, if ¢; = ¢ = Uf,j, =
o%,, = 0, then we get w; = wy for any value of w;. This
is impossible in SocialPrior; to have w; = wy, we must set
afj = 02, = 0 which means that w; must equal w;. [

In ShadowPrior, only the shadow variables are involved in
the social prior and hence can have high precisions 7;’, but
the precisions 7; of the “true” weights w; can be different:

T ¢?

o (74 + a) BCGER
This is an increasing function of 7;’, but with an upper
bound of 7, = 1/¢* 4+ 1/4* for very large 7;". Thus, the
precision of the true weights is always under control, and
the data likelihood does not fall too low.

However, this still does not solve the problem of limited
influence propagation.

Ti = «

LEMMA 5. In ShadowPrior, the change in precision of a
neighbor j of i in G’ (with A > 2) due to a 57 precision
message to i (with deg(i) > 2) is:

| 1 ¢ ’ !

influence < 67 - () <(deg(i/)1)z <a§p + 1)) (m
__9

where o = ey

Thus, the shadow variables enable us to have strong so-
cial links (low Ufp) and still have relatively wide marginal
precisions 7;, which was impossible under SocialPrior. How-
ever, this is achieved only by breaking the direct connection
between the weights w;; now, the weights corresponding to
i ~ j are connected via a long path w; ~ wj ~ wj ~ wj,
so the problem of poor influence propagation remains. The
problem is that we have not fixed the underlying cause —
the constraints placed by the Central Limit Theorem. For
this, we must try a very different approach, discussed next.

4.3 The MixturePrior model

All models discussed above suffer from the problem of
poor influence propagation: a increase in precision of d7
causes only O(1/ deg?) change in the neighboring precisions.
This would cease to be a problem if we could only restrict
the degrees of the nodes, e.g., by deleting all but the top-k
most “important” social links for each node. Recalling the
intuition from the analysis of SocialPrior, if only a constant
k links are active, then the Central Limit Theorem does not
apply, and hence the ill-effects on precisions do not mate-
rialize. The top-k neighbors may be picked manually, but
they might not be optimal for the learning algorithm. Ide-
ally, the algorithm should learn the top-k edges as well; this
motivates our next model.

Instead of the normal social prior A (wu — Wy; 0, pr) (Eq. 2),
the MixturePrior model uses a Gaussian mixture to represent
social links:

Zuw ~ Bernoulli(7y,)
Wy — Wy | Zup = 1 NN(O,LQ)

wa = wy | 2uo = 0~ N(0,0%)

(6)
(7)
(8)

where 7y, is the mixing proportion, and L is some large
number that we will later send to infinity. Intuitively, the

link is “present” only when the hidden variable z,, = 0, and
the probability of this occurrence can be tuned via 7y,. For
example, to retain at most k£ edges for every node, set:

Tuy = 1.0 — min (k/ max(deg(u), deg(v)),1.0). (9)

COMPUTING THE MESSAGES. While MixturePrior expands
the expressiveness of the basic model, the marginal distri-
butions and the update messages are no longer Gaussian,
but instead are Gaussian mixtures; a node with degree d
will have a marginal distribution composed of 2¢ Gaussians.
Clearly, approximations are required, and we choose to ap-
proximate the marginals (and hence the messages across the
social links) as Gaussians. However, instead of approximat-
ing each message independently, we use Expectation Prop-
agation to jointly approximate the messages [12]. This has
the property that for any single social link, the approximate
messages for that link are the best approximation to the ac-
tual Gaussian mixture for that link, given the approximate
messages for all other social links.

Paraphrasing Eqgs. 6-8, the social link between each pair
of neighbors ¢ and j is represented by a factor:

w(wi, wi) = 1N (wi—w;; 0, L)+ (1=)N (wi—w;; 0, 05,).

We approximate this factor as k(ws,w;) = tg;) (wi)tg‘;)(Wj),
where the two terms on the right are Gaussians that depend
only on w; or w; respectively. The joint distribution of Eq. 3
is then approximated by

p(w) = N (diag (u) , diag (¢?)) T (wi, w;) (10)
~ N (diag (p) , diag (¢2)) Hijt%)(wi)tg)(wj) (11)

Intuitively, the approximate factors tE;)(wi) and t%)(wj)
correspond to Gaussian messages sent from j to ¢ and vice
versa (i.e., m;; and m;; respectively). In Expectation Prop-
agation, we set the their parameters iteratively; given the
current approximations for all other factors, ti;-)(wi) and

tg)(wj) should be set so as to minimize the KL-divergence
between (a) the distribution obtained by replacing the prod-
uct tg;-) (w;) tEj)(wj) in Eq. 11 by the actual factor x(w;, w;),
and (b) the approximate joint of Eq. 11.

For ease of notation, we shall use A'"'(.) to denote the
normal distribution in terms of its “precision” and “precision-
mean”; N7 (z,y) = N(z/y,1/y). Then, let N~ (w;; as, Bi)
be the product of all terms in Eq. 11 that depend on w; ,
except tg;-) (w;); these consist of the prior term A (u;, $7) and
the approximate messages from all other neighbors of i. Let
N~ (wj; a;, B5) be the corresponding product for w;. Note
that the products are Gaussian due to the assumed normal-
ity of the approximate messages. Then, as we take L — oo
(i.e., remove the link between 7 and j with probability m;;),
Expectation Propagation leads to the following equations:

myi = 3} (wi) = N} (pm, p), where (12)
1 Tij 1 — 75

= 13
Bi+p Bi Bit (13)

a-—|—’y-%

citpm o ‘T,
——— =mii— + (1 — 7y 14

1
Yi=T (15)
7+G§p

655

The precision and precision-mean of tg)(wj) can be com-
puted similarly.

As a sanity check, consider the case of m;; = 0, which
corresponds to having all social links be connected in the
social prior. In this case, we find:

1 a;/B;

e —— m — ——
1/8,+02, U T 18+ 02,

which is exactly the message that would be computed for a
social link under SocialPrior. Conversely, when m;; =1 (i.e.,
no social link), we find p = pm = 0, just as expected.

We can also compute the message as a function of the
marginal precisions 7;.

p (16)

LEMMA 6. If ; = 7Vi and m; > 0,

b= y+2—Vy*+4+dymy;

202,

(y= ngT)'

PROOF SKETCH. Proved using Egs. 12-15. []

Note that, for consistency, the marginal precision must be
at least the sum of the incoming messages:

T> Zm‘ji = deg(i)p

J~i

=S >y+2- VP +a+dymy (y=o05,7)
which can be achieved for any degree deg(i) by setting m;;
close enough to 1. This allows flexibility in setting crfp and
7, which was one of the weaknesses of SocialPrior.
As for the earlier models, we can compute the influence
propagated from one node to another.

LEMMA 7. In MixturePrior, with the mizing proportions
mi; set as in Eq. 9, the change in precision of a neighbor j
of i in G’ due to a 8T precision message to i (deg(i) > 2) is:

570 7)

O

1-— T4
2
(1 +7i; + Bo2,)
PROOF. The proof follows easily from Eq. 13.

influence = O -

Note that this O (1/ deg(i)) rate compares favorably with
the O (1/deg”(i)) rate obtained from previous models.

Thus, we have finally achieved our desiderata: we can
combine strong social priors (low o2,) with relatively wide
marginals (small 7;), and still have much better influence
propagation than SocialPrior or ShadowPrior. This is be-
cause, intuitively, only a constant k£ of the links are active
for any node in the social graph, so the corresponding k mes-
sages dominate the rest. Hence, the Central Limit Theorem
no longer applies, freeing us from its strict constraint.

4.4 Disengaging the social prior

There is one final issue that affects all versions of the social
prior discussed above. Typically, the effect of a prior dimin-
ishes over time, and eventually vanishes as enough data be-
comes available. However, this process is much slower with
the social prior: stronger evidence from data is countered
by stronger messages from neighbors, since the neighbors
get new data as well. Thus, for any one feature, the social
prior and the evidence from data remain roughly balanced
throughout.

Since the goal of the social prior was to speed up learning,
it should be “disengaged” once enough data is available to de-
termine the feature weights from evidence alone. Hence, we

stop performing message updates to weights whose variance
drops below a threshold, allowing it to change henceforth
only through evidence from data.

4.5 Implementation Details

For our experiments, we implemented all the social prior
models as part of an online learning system: for each new
example, the algorithm first predicts the outcome (click or
not), and then uses the true outcome to train. Model pa-
rameters must ensure that the initial precisions 7 are small
enough, or else learning from data would be too slow; we
set 7 = 1. By Corollary 2, this lower-bounds Ufj for both
SocialPrior and ShadowPrior; in fact, if we want 0,2]- = ng,
then o2, ~ A/7 = 5000 for Facebook (Corollary 3). Only
for a line graph (A = 2) places no constraints on agp.

On the other hand, this problem never arises for Mix-
turePrior, as we saw from the discussion after Lemma 6.
Here, we can use any combination of 7 and U§p7 as long
as m;; is set as in Eq. 9; we use k = 3, meaning only 3 top
social links will be (probabilistically) “active”.

S. BROADER APPLICATIONS

While the discussion until now has focused on the social-
features context, the methods we derived are far more widely
applicable. Indeed, what we have is a framework for learn-
ing feature weights with known pairwise relationships. We
shall look at two such cases, with features derived from (a)
histograms bins, and (b) trees.

5.1 Binned features

Continuous-valued features, such as a user’s age or average
time spent on a web portal, can be incorporated in a learning
framework by converting them into categorical features by
binning them, and then learning a separate weight for each
bin. If the number of bins is large enough, this can closely
approximate the true effect of the feature. However, the
weight for each bin must be learned independently. This
forces a trade-off between time to convergence (better with
fewer bins) against prediction accuracy (better with more
bins). In fact, this problem exists for any ordinal feature
that is used as a categorical variable.

The root cause of the problem is that the ordering of the
bins is forgotten, and the smoothness of feature weights as a
function of feature values is ignored. However, our methods
can be easily applied here: each bin is linked to its adja-
cent bins (its “friends”) by the social prior. This creates
a line graph, with correspondingly simple message-passing
updates. In fact, message-passing is guaranteed to converge
correctly on this graph.

5.2 Trees

Histogram bins are simply intervals in feature space on
which pairwise distances can be specified. Intervals can be
easily generalized to “regions” of feature space, as long as
some reasonable distance between regions exists.

For example, if online content can be placed into a known
taxonomy, then the leaves of the taxonomy represent such
regions, with the tree metric giving a distance between them.
Thus, each leaf of the taxonomy becomes a feature, and a
“social” prior can connect close leaves, with the prior vari-
ance crfp depending on the distance metric.

A similar idea holds for, say, leaves of a random forest
or boosted decision trees created using some historical data.

656

These leaves can then be used as extra features in a learning
algorithm, possibly in addition to the features on which the
trees were originally built. However, in this case, leaves
from the same tree should not be connected, since the tree
construction algorithm specifically tries to find regions in
feature space that are maximally distinct. Thus, the tree
metric is inapplicable, and we need some metric between
leaves of different trees.

Noting that each leaf in a decision tree corresponds to a set
of (possibly open-ended) feature intervals, we propose using
the fraction of overlap between these intervals as a measure
of similarity between leaves. Only leaves that reference the
same set of features are comparable in this manner; how-
ever, evidence from a large real-world content-serving sys-
tem shows that even with this restriction, many leaf pairs
show significant overlap. The “social graph” between leaves
is no longer a simple line graph, as with the histogram bins
above, but is rather close to a set of quasi-cliques. Another
related distance measure is the closest L1 distance between
any two points from the two leaves, with the distance being
0 for overlapping leaves. In our experiments, we find that
both these distance measures yield similar results.

6. EXPERIMENTS

The primary purpose of the social prior was to speed up
the learning process, and this is the question we investi-
gate next. We present experiments on two problem settings.
The first, called Feeds, involves predicting clicks on Face-
book news-feed stories, with the user-ID as a feature. The
data consists of a sample of around 100M stories presented
to a 3.5M-strong subset of Facebook users, with around
410M undirected friendship edges between them. The sec-
ond, called Ads, involves predicting clicks on ads using 18
different ordinal features bucketed into 100 bins each. In
both problems, training and prediction are performed on-
line: for each new example, the algorithm first predicts the
outcome (click or not), and then uses the true outcome to
train. Clicks, non-clicks, and the set of users are all sampled
separately, so the reported accuracy should not be thought
of as the “true” accuracy of the current Facebook systems.

We measure accuracy with Normalized Entropy (NE), de-
fined as the ratio of model log-likelihood to the observed
entropy of outcomes (click or not). A NE of 1.0 corresponds
to a random predictor that knows the correct fraction of
clicks in the dataset, and lower values are better.

ACCURACY ON FEEDS.

For Feeds, the weights for the user-ID features are related
via the social network which has a maximum degree of A =
5000. As discussed in Section 4.5, we must have o2, > A/T
for both SocialPrior and ShadowPrior, and even a modest
initial marginal precision of 7 1.0 implies pr > 5000,
and translates into almost no influence of a weight on its
neighbors (Lemmas 3 and 5). Indeed, in our experiments on
Feeds, the results from SocialPrior and ShadowPrior were in-
distinguishable from NoSocial, even after using the smallest
Ufj allowable by Corollary 2; hence, we do not separately
show their results here. Only MixturePrior can reasonably
decouple 7 and Ufp, and is the only applicable model.

Figure 1(a) shows the results for various settings of o2, for
Feeds. We observe that any social prior at all is better than
NoSocial, with Uf,p = 0.01 being the best (Ufp = 0.001 is also
almost identical). The benefits of a social prior are greatest
when the fewest training examples have been seen, which is

1.01 T T T T T 1.01

" spvar=0.001
spvar = 0.01 ——
1 spvar=0.1 —— - 1
! spvar=1.0 —=—
2 No social prior
§ o9| atpr 1 099
k<
ui
® o098 4 0.98
N
g
s 097t 4 0.97
z
0.96 [B 1 096
pi’f’m’f::ﬁﬁ
0.95 0.95

30 40
Impressions (x 1M)

50 60 70 80

(a) MixturePrior on Feeds

Normalized Entropy

spvar=0.01

0.78 15 spvar=0.1 —— |
B spvar=1 ——
0.77 5 No social prior —=— |

0.71
400 600 800

Impressions (x 1K)

(b) SocialPrior on Ads

1000

Figure 1: Normalized entropy: Accuracy for various ogp

when there is the least evidence from data. The gain can
be characterized by the number of extra training examples
needed by NoSocial to replicate the accuracy of MixturePrior:
in Feeds, this is around 12M training examples. Indeed,
MixturePrior remains better than NoSocial even after 60M
examples. Both of these demonstrate the impressive utility
of the social prior.

Also, below a certain o2, (~ 0.01), there are very little dif-
ferences. Thus, choosing the “optimal” afp is not necessary
as long as it is in the right range.

1.01 1.01

e T
topk=3 ——
1,\\%% topk=10 — 1 1
%‘\‘ E‘Eﬂ‘% No social prior —e—
>
g 1 0.99
& %
E 4 0.98
8
E
Zo 4 0.97
4 0.96
0.95

30 40 50
Impressions (x 1M)

80

Figure 2: Effect of the top k in MixturePrior

1.01 T T T T T T 1.01

/N\\ No social prior ————
spvar = 0.001, min variance = 0.3 —=—
1% \ spvar = 0.001, min variance =0.1 —+— 1
5, spvar = 0.001, min variance =0 —s—
>
S 099t 4 099
€
[}
B 098 4 0.98
N
E PPy PP
5 097 f 1 097
= .
0.95 0.95

40
Impressions (x 1M)

920

Figure 3: NFE against the variance threshold for
Feeds: Without a threshold, the social prior is too
restrictive when enough data becomes available.

ACCURACY ON ADS. Recall that the Ads problem has binned
features, whose relationship structure is given by a line graph
(each bin is similar to its adjacent bins). Since the maximum

657

degree A = 2, the constraint of Corollary 3 is always sat-
isfied, so SocialPrior can use any Ufp. Hence, in this case,
we report results using SocialPrior; the more complicated
models can offer no further gains.

Figure 1(b) shows the results. Once again, the social prior
leads to significantly faster learning, with agp = 0.001 be-
ing optimal but ng = 0.01 being almost as good, implying
that picking the optimal value is not as important as be-
ing in the correct range. Note that NoSocial does not reach
the accuracy for SocialPrior with aﬁp = 0.01 even after 1M
training examples, and its rate of improvement is very slow.
Thus, we can conclude that the social prior yields significant
speed-up not only in the initial stages of learning, but also
in reaching convergence.

SENSITIVITY TO THE TOP k. Figure 2 plots NE as a function
of the top k important edges used in the mixing proportion
m;; in MixturePrior (Eq. 9). The experiments are for Feeds,
with agp = 0.01 everywhere. We see that k = 3 is nearly
optimal, and there is not much gained by increasing k. This
suggests that at least 3 “close” friends are needed to infer a
user’s interests, and all our experiments use k = 3.

IMPORTANCE OF DISENGAGEMENT. Figure 3 shows the im-
portance of the variance threshold below which the social
prior is “disengaged.” Without any threshold, the NE de-
creases the fastest initially, but stops improving far too early;
this is because the social prior forces neighboring weights to
move in lockstep, even if data indicates otherwise. Con-
versely, a high threshold makes the model equivalent to
NoSocial, which performs poorly initially. In our case, a
variance threshold of 0.3 performs best.

EFFECT OF FARTHER PROPAGATION. Instead of propagating
messages from a node receiving new training data to its im-
mediate neighbors only, we could also propagating further.
However, this could slow down training, and hence the pre-
diction throughput, in our online prediction setting. Hence,
we consider two alternatives where propagation is done in a
separate thread: (a) either all propagation of messages could
be done in a separate thread, or (b) messages to immediate
neighbors could be spread immediately, with further prop-
agation being performed in a thread. Figure 4 shows the
results for Ads. We see that (a) any form of propagation
greatly outperforms the NoSocial case, and (b) propagating
to just the immediate neighbors is almost as good as further
propagations, while requiring the least CPU. This justifies
the approach taken in the previous experiments.

spvar=0.01 ——
2L spvar=0.1 ——
spvar=1 —x— 1
151 No social prior —=— |

Mean weight
Mean weight

spvar=0.01 ——
spvar=0.1 ——
spvar=1 —x—

No social prior —s—

spvar = 0.01 ——
spvar=0.1 ——
spvar=1 —»—

No social prior —s—

Mean weight

0 20 40 60 80

Bin number

100

Figure 5: Mean weight for each bin

0.79

T
No social prior ——

078 1, All propagation in thread —— |
\ Immediate 1-step propagation only ——

077 | *w\ Immediate 1-step propagation + further steps in thread —=— |

§ el N

£ omep |

€ | \

o |

B o7\

N 5

© \

E

S

P4

0.71

. . .
400000 600000 800000

Impressions

.
0 200000 1e+06

Figure 4: Propagating messages to immediate neigh-
bors is almost as beneficial as propagating further.

SMOOTHING OF WEIGHTS. The social prior pulls related
features closer together. To verify this, we plot the mean
weight as a function of the bin number for several binned
features in Ads (Figure 5). Since the binned features in
Ads form a line graph, we expect a strong social prior (i.e.,
smaller values of ng) to lead to weights that vary smoothly
as a function of bin number, and this is indeed observed.

7. CONCLUSIONS

Large-scale learning can be speeded up considerably if we
can utilize known relationships between features; if two fea-
tures are similar, then any new data affecting one can be
propagated to improve our knowledge of the other. We
proposed a “social prior” to achieve this in a Bayesian set-
ting. Via analysis of this model, we showed that obvious
instantiations of such a prior suffer from a significant weak-
ness: any reasonably strong link between features forces the
marginal variances to become too small, even in the ab-
sence of data. We showed how a two-component mixture
model can solve this problem, and presented update equa-
tions based on Expectation Propagation for learning under
this model. Experiments on large real-world click predic-
tion problems on a subset of the Facebook social network
shows that our method can save 12M training examples in
the initial part of the learning. On a separate problem, a
social prior on binned features converges in less than a fifth
of the time required by the baseline model. This clearly
demonstrates the utility of the social prior.

8. REFERENCES

[1] W. Aiello, F. Chung, and L. Lu. A random graph
model for massive graphs. In STOC, 2000.

Bin number

658

100

Bin number

in Ads: Smaller the social prior variance, smoother the plot.

[2] E. Bakshy, D. Eckles, R. Yan, and I. Rosenn. Effects
of social cues and tie strength in social advertising:
Evidence from field experiments. In EC, 2012.

H. Bao and E. Chang. Adheat: An influence-based
diffusion model for propagating hints to match ads. In
WWW, 2010.

D. Barber. Bayesian Reasoning and Machine
Learning. Cambridge University Press, 2012.

M. Gartrell, U. Paquet, and R. Herbrich. A bayesian
treatment of social links in recommender systems.
Technical report, Univ. of Colorado, 2012.

S. Goel and D. Goldstein. Predicting individual
behavior with social networks, 2012.

T. Graepel, J. Q. Candela, T. Borchert, and

R. Herbrich. Web-scale bayesian click-through rate
prediction for sponsored search advertising in
microsoft’s bing search engine. In JCML, 2010.

J. M. Hernandez-Lobato, D. Hernandez-Lobato, and
A. Suarez. Network-based sparse bayesian
classification. Pattern Recognition, 44, 2011.

I. Konstas, V. Stathopoulos, and J. Jose. On social
networks and collaborative recommendation. In
SIGIR, 2009.

Y. Lu, P. Tsaparas, A. Ntoulas, and L. Polanyi.
Exploiting social context for review quality prediction.
In WWW, 2010.

H. Ma, D. Zhou, C. Liu, M. R. Lyu, and I. King.
Recommender systems with social regularization. In
WSDM, 2011.

T. Minka. A family of algorithms for approximate
Bayesian inference. PhD thesis, MIT, 2001.

T. Sandler, P. P. Talukdar, L. H. Ungar, and

J. Blitzer. Regularized learning with networks of
features. In NIPS, 2008.

C. Wang, R. Raina, D. Fong, D. Zhou, J. Han, and
G. Badros. Learning relevance from heterogeneous
social network and its application in online targeting.
In SIGIR, 2011.

S. Wang, L. Yuan, Y.-C. Lai, X. Shen, P. Wonka, and
J. Ye. Feature grouping and selection over an
undirected graph. In KDD, 2012.

Y. Weiss and W. T. Freeman. Correctness of belief
propagation in gaussian graphical models of arbitrary
topology. Neural Computation, 13:2173-2200, 2001.
Z. Wen and C.-Y. Lin. On the quality of inferring
interests from social neighbors. In KDD, 2010.

B3l

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

