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ABSTRACT

Micro-blogging services, such as Twitter, and location-based so-
cial network applications have generated short text messages as-
sociated with geographic information, posting time, and user ids.
The availability of such data received from users offers a good op-
portunity to study the user’s spatial-temporal behavior and prefer-
ence. In this paper, we propose a probabilistic model W* (short for
Who+Where+When+What) to exploit such data to discover indi-
vidual users’ mobility behaviors from spatial, temporal and activ-
ity aspects. To the best of our knowledge, our work offers the first
solution to jointly model individual user’s mobility behavior from
the three aspects. Our model has a variety of applications, such as
user profiling and location prediction; it can be employed to an-
swer questions such as “Can we infer the location of a user given
a tweet posted by the user and the posting time?" Experimental re-
sults on two real-world datasets show that the proposed model is
effective in discovering users’ spatial-temporal topics, and outper-
forms state-of-the-art baselines significantly for the task of location
prediction for tweets.

Categories and Subject Descriptors

H.2.8 [Database applications]: Data mining; H.3.1 [Information
Storage and Retrieval]: Content Analysis and Indexing

Keywords

User Profiling; Graphical Model; Prediction and Recommendation;
Spatio-Temporal; Twitter

1. INTRODUCTION

Posting short messages through micro-blogging services (e.g.,
Twitter and Tumblr) has become an indispensable part of the daily
life for many users. For example, as of December 2012, there were
more than 200 million monthly active Twitter users'. A short text
message posted through Twitter is known as a tweet with the maxi-
mum length of 140 characters. With the prevalence of GPS-enabled
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devices (e.g., smart phones), many tweets are associated with loca-
tion information. The locations may be in the form of the lati-
tude and longitude coordinates, or in the form of exact addresses.
The latter can be specified explicitly by users, detected by mobile
devices, or geo-tagged by geo-tagging tools. Apart from Micro-
blogging services, Location-based Social Network (LBSN) appli-
cations, such as Foursquare and Facebook Places, allow users to
share their current locations and activities by checking-in points of
interests and composing short text messages at check-ins. In short,
each the geo-annotated tweet or check-in message contains a user
id, a text message, posting time, and a location.

The large availability of such short messages directly received
from users offers an exciting opportunity to study the behaviors
of individuals (whe is the user?) with respect to three important
aspects, namely, geographical location (where does an individual
visit?), time (when does a user visit a place for some activity?),
and activity (what does a user do?).

To the best of our knowledge, most of previous studies on model-
ing mobility behaviors of individual users have focused on at most
three out of the four factors. Several studies [4, 5,8, 11,22] fo-
cus on the geographical location and the temporal factors, aiming
at modeling and analyzing the relationship between user’s mobility
patterns and temporal factor. An example finding of such stud-
ies would be that a user usually visits a region centered at a par-
ticular building at 2-3pm. Note that understanding human mobil-
ity has many applications, such as location-based recommendation
and location-based advertisement among others. However, these
studies ignore the activity aspects of users, which is represented
as tweet content. There also exist studies [13] that focus on the
geographic location and activity aspects, but ignore the temporal
factor. An example finding captured by the models in these stud-
ies is that a user participates in some activities (e.g., having meals)
in a geographic region. However, these models cannot capture the
relationship with the temporal factor.

In this paper, we model the interactions of all the four factors in
a unified way to better understand individuals’ behaviors. In par-
ticular, we discover spatial-temporal topics and identify uses’ in-
terest over time and regions from the geo-annotated messages (e.g.,
tweets) from users. With our model, we are able to answer the
following questions among others.

e Can we predict the activity of a user at a given time?

e Can we infer the location of a user given a tweet posted by
the user

e What are the mobility pattern and words used by a user at a
given time?

e Can we infer the user who will visit a given location at a
given time?



It is however challenging to develop a model to capture the four
factors jointly, since they are in different data types (continuous and
discrete), and the four dimensions together will make the modeling
and parameter estimation complicated. Moreover, the interdepen-
dencies among them and role played by each is unclear. To this
end, based on several intuitions (to be detailed in Section 3.1), we
propose a novel probabilistic generative model to model user be-
havior from the geographic, temporal, and activity aspects, which
has a variety of applications such as user profiling, content recom-
mendation, location prediction and recommendation, topic track-
ing, etc. We show that our model is able to identify interesting
spatial-temporal topics for users, and we demonstrate its effective-
ness on various applications such as predicting locations for tweets
(w/wo time), predicting locations for users at a given time, and pre-
dicting users who will visit a given location at a given time. Ex-
perimental results show that our approach outperforms the existing
approaches [8, 13,17] for these applications.

The contributions of this work are summarized as follows:

1. We propose a novel probabilistic model W*, which is short
for Who+Where+When+What, to model users’ mobility be-
haviors from geographic, temporal and activity aspects in a
unified way. The model enables us to discover geographical-
temporal topics for individual users.

. We propose new inference algorithms for estimating the model
parameters.

. Experimental results on two real-world datasets demonstrate
that our model is capable of identifying interesting spatial-
temporal topics for users. The results also show that our
model outperforms the state-of-the-art methods significantly
for various applications including location prediction and user
prediction.

The rest of this paper is organized as follows: We survey the re-
lated work in Section 2. Section 3 presents the proposed model and
the method of estimating model parameters. We discuss some ap-
plications of our model in Section 4, and present the experimental
results in Section 5. Section 6 concludes our work.

2. RELATED WORK

We group the existing proposals on mobility modeling and geo-

graphical topic modeling based on the aspects considered in these
proposals, namely Who, Where, When and What.
Where What: The existing studies on geographical topic model-
ing focus on the geographic (Where) and activity (What) aspects,
but do not consider users at all. How to represent locations is an
essential part of these studies. Locations have two properties: the
geo-locations represented by coordinates, and the functions (e.g., a
shop) represented by the topics. Based on the ways of representing
locations, the existing studies can be divided into two categories:

First, some proposals [12,23] represent locations by location ids,
and this enables these proposals to distinguish the functions be-
tween locations. However, this modeling manner fails to exploit the
coordinate information, which is important to analyze the user mo-
bility region. Specifically, Wang et al. [23] propose a Latent Dirich-
let Allocation (LDA) based model to learn the relationship between
location and words. They assume that each word is associated with
alocation. When a word is generated, its associated location is also
generated. Hao et al. [12] mine the location-representative topic
from travelogues using an LDA-based model.

Second, other proposals [9, 21, 26] represent locations as coor-
dinates, and they are capable of describing the mobility regions of
users. However, they either neglect the functions of locations or
assume that nearby locations have the same functions, which are
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generally not true in reality. Eisentein et al. [9] propose regional
variants of topics, which are used to generate the words of a geo-
referenced document. They use bi-variant Gaussian distributions of
regions to generate coordinates of locations. Sizov [21] proposes
GeoFolk model to manage geo-referenced documents. In addition
to the word distribution, each topic in GeoFolk is also associated
with two Gaussian distributions over latitude and longitude, re-
spectively. In GeoFolk each geographic region represents a distinct
topic/function. Hence, it fails to correlate the different regions with
the same function; it would not be suitable to model a large area
containing many topical regions since the topic model becomes
computationally expensive as the number of topics is large. Yin et
al. [26] propose a Probabilistic Latent Semantic Analysis (PLSA)
based model to discover geographical topics. In the model, each
region is characterized by a topic distribution, and represented by a
bi-variant Gaussian distribution over coordinates.

In contrast, we propose an approach that is able to exploit both
properties of locations. Further, different from these proposals, we
model individual users and consider the temporal aspect.

Where When What: Mei et al. [18] model topics of documents
from spatio-temporal aspects using PLSA. Specifically, they as-
sume that each word is drawn from a background word distribu-
tion, a time and location dependent topic, or a topic of the doc-
uments. Similarly, Bauer et al. propose an LDA-based spatio-
temporal model [1], where a city is divided into grids. Compared
with the models [1, 18], our model considers more aspects:1) the
models [1, 18] do not consider the user information at all; 2) it ei-
ther does not consider the geographic property of locations [18],
or does not consider the functions of locations [1]; 3) they only
consider discretized time. There are also several works on extract-
ing events from twitter stream [16, 19], which exploit the temporal
(When) and activity (What) information, and some work even con-
siders the geographic aspect (Where) [20]. However, their problem
settings are different from ours, and none of them considers user
information.

Who Where When: We next review the work on modeling mo-
bility behaviors of individual users (Who) that focuses on the geo-
graphic (Where) and temporal (When) aspects.

Brockmann et al. [4] find that human mobility behavior can be
approximated by the continuous-time random-walk model. Gonziélez
etal. [11] find that users periodically return to a few previously vis-
ited locations, such as home or office, and the mobility of each user
can be represented by a stochastic process centered at a fixed point.
Song et al. [5,22] focus on the predictability in human mobility, and
report that there is a 93% predictability of human mobility, which
is contributed by the high regularity of human behavior. Cho et
al. [8] observe that the mobility of each user is centered at two re-
gions ( representing “work™ and “home”), and model each region
as a Gaussian distribution over latitude and longitude. The proba-
bility that a user stays at the two regions is modeled as a function of
time. They propose a generative model, Periodic Mobility Model
(PMM), to predict the location of a user. PMM takes a user and
time as input; It generates a region, and the region further gener-
ates a geo-location.

None of these studies consider the activity (topic) aspect of user
behavior as we do in this paper.

Who Where What: The recent work [13] presents a model from
the geographic (Where) and activity (What) aspects for individuals
(Who). Hong et al. [13] propose a method to learn the geographi-
cal topics for twitter users. For a user, this method first generates a
region based on the popularity of regions and the preference of the
user over the regions. Then, a topic is generated dependent on both
the region and the user. The topic, together with the region, gener-



ates the words of a tweet; the region alone generates the coordinates
based on its Gaussian distribution over coordinates.

Different from our work, the work does not consider the tem-
poral aspect. In addition, the regions [13] are global, which are
shared by all users, and cannot precisely depict individual users’
mobility areas, while our proposed model is able to model regions
of individuals. Moreover, the method fails to consider the semantic
information of individual venues in the same region.

In summary, none of existing studies aim to model the three as-
pects (Where, When, and What) for individual users (Who). In
addition, previous work does not exploit the coordinates and func-
tions of locations simultaneously, and thus they cannot capture both
the geo-graphic region and functional information of locations.

3. PROPOSED MODEL

We present the proposed approach W* to modeling user mobility
behavior with a collection of geo-tagged tweets. We first describe
the intuitions of W* in Section 3.1 We then present the model in
Section 3.2, and detail the inference algorithm in Section 3.3, fol-
lowed by the complexity analysis of the algorithm in Section 3.4.

3.1 Intuitions

We model user mobility behavior based on the following intu-
itions. These intuitions jointly cover the four factors in user mobil-
ity behavior (i.e., who, where, when, and what).

1. Intuition 1: an individual’s mobility usually centers at dif-
ferent personal geographical regions, e.g., home region and
work region [8] and users tend to visit places within these
regions. In addition, the region where a user stays is influ-
enced by the time factor, i.e., the time in a day and the day
of a week. It has been reported that users often demonstrate
different mobility patterns in weekdays and weekends [8].
For instance, most users have lunch at different places dur-
ing weekdays and weekends, and a user is likely to stay at
different regions in the noon and evening.

2. Intuition 2: the topics of a user at a place are influenced
by both the user’s personal topic preferences and the region
where the user stays. For example, suppose a user who is
interested in both eating and hiking comes to a place full
of restaurants, the user is more likely to be interested in the
eating topic. In addition, the topics of a user at her home
region (e.g., entertainment and shopping) are expected to be
different from the work-related topics at her work region.

3. Intuition 3: when a user chooses a location to visit, both the
topic requirement and the region where the user stays should
be considered. Intuitively, a user tends to visit nearby loca-
tions within her current region of stay that meet her require-
ment (e.g., for meal).

4. Intuition 4: different regions and different topics lead to dif-
ferent language variations, which in turn reflect the user’s
activity. Therefore, the words in user’s tweet are affected
by both the topic and the region. For example, if a user is
shopping at her home region, the words she would use are
related to both the shopping topic and home region, such as
“grocery”, “family”, etc.

3.2 Notations and Model Description

We consider each user u has several personal regions, i.e., home
region and work region, denoted by {r,0, 7,1, ..., 7.z}, Where |R] is
the number of regions. The personal regions are estimated based
on the locations of all geo-tagged tweets from a user. We model a

607

Du

S
>/ 5@

Figure 1: The graphical representation of proposed model W*

location ¢ as a two-tuple ¢ = {id;, cd,}, where id, is the identifier
of the location, and ¢d, is the latitude and longitude coordinates of
the location, denoted by ed/ and cd, 1, respectively. A region 7 is
modeled by a bi-variant Gaussian over the latitude and longitude,
parameterized by the mean vector p, and covariance matrix X,.
Note that we use  to represent a region (i.e., any one of the personal
regions) when the semantic is clear.

To model the time factor, we model time # in a day as a contin-
uous variable in {4k : mm : ss} format, and categorize days into
two classes, namely, weekdays and weekends. Specifically, we use
s € {0, 1} to denote a day of a week, i.e.,, s = 0 for a weekday and
s = 1 for a weekend day. Note that 7 is cyclical on a daily basis.
For instance, the time difference between 23:00:00 and 1:00:00 is
the same as the difference between 1:00:00 and 3:00:00.

With the above notations, we consider a tweet d is a five-tuple
d = {ug,ly,wy,t;,54}, where u, denotes the user or the author of
the tweet; ¢4, t;, and s, denote the location, the time in a day, and
the day of a week, as described earlier; w, are the words in tweet d.
For easy presentation, we use D, U, and L to denote the collection
of tweets, users, and locations respectively. The word vocabulary
is denoted by V. Thatis,d € D, u € U, ¢ € L, and each word w; in
w, belongs to V. The topics of a user are reflected by the words in
the user’s tweets.

Based on the aforementioned intuitions and notations, W* gen-
erates the day, time, words, and location for each tweet posted by a
user, shown in Figure 1. The generative process is briefly described
below. The details of the distributions are discussed after the gen-
erative process, followed by the inference algorithm in Section 3.3.

1. For each tweet d of a given user u, a day s is first selected
based on a Bernoulli distribution p(s|u), and then a time in
that day ¢ is selected based on p(t|u, s), which can be a uni-
form distribution or Gaussian mixture distribution, among
other appropriate distributions. After that, a personal region
r is generated by drawing from the multinomial distribution
p(rlu, s, t) (Intuition 1).

2. Parameterized by the topic preference of the user u and the
sampled region r, a topic z is generated using the multinomial
distribution p(zlu, ) (Intuition 2).

3. After generating the region and the topic, the location ¢ and
each word w are sampled based on p(w|r, z) and p(¢|r, z), re-
spectively (Intuition 3 and 4).

In summary, to generate a collection of tweets D, the following
generative process is applied to each user u € U:

e For each tweet d € D,, D, is the collection of tweets posted
by u

— Draw a day s ~ p(s|u);



Draw a time ¢ ~ p(t|u, s);

Draw a region r ~ p(rlu, s, t);

Draw a topic z ~ p(zlu,r);

Draw a location £ ~ p({|r, z);

— For each word w in w,,, draw w ~ p(wlr, z).

While the distributions for modeling p(s|u) and p(t|u, s) are rela-
tively straightforward, it is complicated to model p(7|u, s, t), given
that 7 is discrete while ¢ is continuous. We propose a method to
solve this problem, which will be detailed in Section 3.3. To model
p(wlr, z), a parameter A is introduced to balance the importance
between the region and the topic, i.e., p(wlr,z) = Ap(wlz) + (1 —
A)p(wlr), where p(wlz) and p(w|r) are the word distribution of topic
z and region r, respectively. For sampling, an indicator x following
a Bernoulli distribution is assumed with probability p(x = 0) = 4
and p(x = 1) = 1 = A. A word w is sampled based on p(wlz) if
x = 0, and sampled based on p(w|r) if x = 1. Because a tweet is
very short, we assume all words in a tweet come from the same
topic.

Next, we generate a location according to 7 and z. It is however
challenging to model the generating process of location. Previous
studies treat a location either as geographic coordinates or a loca-
tion identifier. Treating locations as geographic coordinates makes
it feasible to capture user’s mobility regions [26], or discover geo-
regions that have specific topics [13,21], but fails to capture the
topic variations of different locations. On the other hand, treating
locations as location identifiers enables us to differentiate the top-
ics of locations [12, 18,23] (because p(¢|z) is always modeled by a
multinomial distribution, which calls for a limited location set L),
but the geographic coordinate information is ignored.

As stated in Intuition 3, a user tends to visit a nearby location
(e.g., restaurant) that can fulfill her topical needs (e.g., lunch). That
is, when choosing a location to visit, a user jointly considers both its
geographic location and its topic (e.g., restaurant or bar). However,
no previous work jointly models geographic locations and topics
of locations. Indeed, it is hard to model them together: from the
geographic perspective, a location is drawn from a Gaussian dis-
tribution N(l,, X,), which is a continuous distribution, while from
the topic perspective, a location is generated based on a multino-
mial distribution p(¢|z), which is discrete. What makes the issue
even more complicated is that if we treat p(¢|r) as the density of
its Gaussian distribution at ¢, p(¢|r) will have a different scale from
that of p(¢|z). The former will be much greater than 1 if ¢ is close
to the mean vector 4. Thus, a simple combination by linear in-
terpolation of the two components leads to p(¢|z) overwhelmed by
p(lr). A straightforward solution is to perform a good number of
sampling based on the Gaussian distribution, and estimate p(¢|r)
by counting the times each location is sampled. However, this ap-
proach will introduce inner loops, which will greatly deteriorate
the efficiency. To solve this problem, we propose a method to com-
pute the probability of generating ¢, given a region r, according to
Lemma 1:

R ~2 ~2
exP(—%(Cdz,o +edgy)) - exP(—%(Cdzzo +edy )

plr) o«

)

~2 ~2 ~2 —2
m(edy oy +cdy —cd,y—cd, )

where cd; and cd,s are the geographic coordinates of £ and its close
point ¢’ after we perform the standardized coordinate transforma-
tion for Gaussian as follows. For each point ed ~ f(cd|u,X) =

L exp(—1(cd—p) E7' (ed—p)), we replace it with cd =X 7 (cd-

27|82

— ~2 ~2
M), then we have ed ~ ﬁexp(—@) (Figure 2 (b)).
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Figure 2: Standardizing Gaussian to calculate p({|r)

Lemma 1:

—2 —~2 —~2 —~2
exp(—%(cd/,o +ed;y)) - exp(—%(cd/,,o +cdy )
n(cd[,ro + calg,v1 - cdm - cdm)

Proof: Draw a line from the mean point of a Gaussian f(cd|u, X)
to a point cd/, and on the line we can get another point cd, that

is y farther from the mean point than e¢d,, where ¥ is a small value
(Figure 2 (a)). If v is small enough, we can assume that the points
between the contours defined by cd, and edy have equal proba-
bility. After transformation, the original ed, and ed, become Z‘?l

— ) . ~2 ~2
and cd,, which define an annulus ¢ with area n(cd, , + cd, ) —

ﬂ:(é?izo + é;lzl). By integral in the polar coordinate system, we get
the probability of a as follows.

1 ~2 ~2 1 ~2 ~2
pl@) = (1 —exp(=5(cdy g+ cdp ) = (1 = exp(=7(cdy + cdy 1))
1 ~2 ~2 1 ~2 ~2
= exp(—z(cd/,o +cdy)) - exp(—z(cd//,o +cdy ).
Dividing p(a) by its area, we get the probability value

s s L2 ~2
exp(—5(cd g+ cdy,)) —exp(—5(cdy o +cdy )

— —2 —2 —2
nledyg+cedy —cd;y—cd,))

After the transformation, we get a multinomial distribution p(¢ |rE)|,
which has the same scale with p(¢|z). Then, a parameter K is intro-
duced to balance p({|z) and p(¢|r), i.e., p(lir,z) = Kp(llz) + (1 —
K)p(Llr).

3.3 Inference Algorithm

As shown in Figure 1, there are two latent variables in W*, namely,

region r and topic z. The joint probability over tweet d = {ug, Ly, Wa, L4, Sa},

region r, and topic z, can be written as:

p(d7 }"72) :p(ud7 12,84, td7€d7wd)
=p(ua)p(salua) p(taltia, sa)p(rliea, sa, ta)
p(Zluthr)p(gdlrvz)p(wd|r7z)> (1)

where
plalr, z) =xp(Lalz) + (1 — K)p(Lalr),
p(Walr, 2) = 1_[ (Ap(wlz) + (1 = A)p(wlr)) ).

weEWy

In the above equation, c(w, wy) is the count of word w in w,.

We use an indirect way to calculate p(rluy,sq,t4). Specifically,
from Figure 1, we find the nodes u, s, ¢, r and the edges between
them form a fully connected graph, and other nodes, namely, z, ¢
and w are all children of them. For this fully connected graph, we
can re-order its nodes as follows [3]:

p)p(slu)p(tlu, s)p(riu, s, 1) = p)p(stu)p(riu, s)p(tu, s, r), (2)



where p(t|u, s, r) follows Gaussain distribution parameterized by
the mean v, , and variance o, i.e., given a day s, the time a
user u stay within a region r is centered at the time Vi, and the
probability of staying at 7 decreases as the time becomes derivative
from v, .

Substituting Equation 2 into Equation 1, we have a new expres-

sion of the joint probability:

pd, 1, 2) =p(ug) p(salua) p(riua, sa) p(talia, sa, )

plzlug, r)p(Lylr, 2) p(wqlr, z). (3)

We can also prove it in a different way: by applying Bayes The-
orem to p(rlug, sq,tqs), we have:

Pua; 1,4, ta)
P, Sa;ta)
_ ptalua,sa, ") p(ua,sa, 1)
- P, sa:ta)
_ palua, sa, 1) p(ua) p(salua) p(riuag, sa)
- P(ug)p(salua) ptaluia, sa)
By substituting Equation 4 into Equation 1, we again reach Equa-
tion 3.
This model has a set of parameters p(rlu, s), p(zlu, ), Vusr> Ousirs
pllz), 1, s, Zuvs > p(Wlz) and p(wlr). Denoting them by ¥, we have
the log-likelihood of the historical data D:

p(lug, sa,ta) =

)

L(¥; D) = log p(DY). (&)
We use Expectation-Maximization (EM) to find parameters ¥
that can maximize the log-likelihood of the historical data.
In the E-step, since there are two latent variables » and z in W4,
we update their joint expectation p(r, z|d) according to Bayes rule
as Equation 6.

pd,rz) _ pldrz)
pd) X, X.pd.nz)

p(r,zld) = (6)

In the M-step, we find the new ¥ that can maximize the log-likelihood

as follows:
ZdeD,” ZZ P(": Zld)
ZdeD,M Zz Zr’ p(i"/, Zld) '

where D, is the collection of tweets written by user « on the day
5. We will not explain D unless necessary.

ZdeD,, p(, zld)

prlu,s) = (N

Zlur)y = ——————, 8
e = S Pl ®
ZdED,‘AS Zz p(l", Zld) la
Vusr = ; ©
' ZdeD””g Zz p(l", Zld)
Z s Zz (I", Zld : tdz 1d; Visr
uzw _ &udeDu, P ) (ta ) (10)

ZdeD,‘AS Zz P(": Zld) ’

where td(t,,1,) is the difference between time in a day # and 2,
because the time in a day is cyclical. Note that for each region, we
get two sets of v and 62, and the two v’s are 12-hour apart from
each other. For example, v for 1:00 and 23:00 can be either 0:00 or
12:00, but the 6 value for 0:00 is much smaller than that for 12:00.
Obviously, 0:00 is a better choice for the mean than 12:00. Thus,
between the two sets, we choose the v, 62 pair with the smaller ¢
value.

Estimating p(w|r) and p(wlz) is not straightforward, because they
are coupled by the sum in logarithm in the log-likelihood, i.e.,
log(Ap(wlz) + (1 — A)p(w|r)). We solve this problem by applying
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Jensen’s inequality [14]. Because logarithm is a concave function,
we have:

log(Ap(wlz) + (1 = 2)p(wir)) = Alog(p(wlz)) + (1 — A)log(p(wir)),
log(kp(tlz) + (1 = K)p(£Ir)) = Klog(p(llz)) + (1 - K)log(p(Llr)).
By substituting the above two Equations into Equation 5, we have

a lower bound of the log-likelihood. By maximizing the lower
bound, we have:

ZdeDw Zz C(W7 wd)p(r> Zld)

= 11

PO = s e S 7 W ) (1
S aen, S clw.wa)plr 2Ad)

= 12
PO = 5 s e 5 e, W plr 1) (12
= ZdeDu‘s Zz p(l’, Zld) : Cd[d 7 (13)

o ZdeD””g Zz p(}", Zld)
dezD: Zz P(7'7 Zld) : (Cd/d - ﬂu,x,r)T(Cdfid - ”’u,x,r)

u.s,r = ~ ) 14

T DESWICEr) (i
deDy, ¢

p(€|z) _ ZdEDg Zr p(}", Zld) (15)

Saen, L X P(1,2'1d)
Please note that the lower bound technique has no impact on the
inference of other parameters, since they are surrounded in different
logarithms. As a result, the derivative with respect to a parameter
does not involve with the others.

3.4 Complexity analysis

We now analyze the time complexity of the inference algorithm
proposed in Section 3.3. For Equation 6 in the E-step, the time
complexity is O(K|DI||R| + K|W||R|), where K, |D|, [W|, |R| are the
number of topics, the size of collection or number of tweets, the
total number of words in the collection, and the number of regions
for each user, respectively. The evaluation of Equation 6 requires
to estimate p(¢|r). Theoretically, the time complexity to estimate
p(lr) is O(U|IR|IL]). However, early pruning of locations faraway
from r can be conducted. For example, when estimating p(¢|r) for
a user in the United States, it is unnecessary to calculate p(¢|r) for
locations in Singapore, since its value approximates to zero based
on Lemma 1. A number of indexing techniques can be employed
to achieve the early pruning of the search space |L|, such as R*-
Tree [2], Quad-tree [10], etc. For M-step, the time complexity for
Equations 7, 8, 9, 10, 13, 14, 15is O(K|D|IR]), and is O(K|W||R|)
for Equations 11, 12. Thus, the time complexity for the M-Step is
O(T(K|D|IR| + K|W||R| + |U|IR|ILI)), where T is the number of EM
iterations, which is set to 50 in our experiments.

4. APPLICATIONS

The proposed model W* has a variety of applications. We name
some of them as examples:

Location prediction for tweet. Given a tweet with its text content,
user id, and posting time, the task of location prediction is to pre-
dict the most likely location at which this tweet is posted. It has
been shown [7,8] that geographical locations can be used to predict
user’s behavior, discover users’ interest, and deliver location-based
advertisement or content. However, it is reported that only 1%—2%
of tweets have geographical locations explicitly attached. Hence,
location prediction for tweets is an very important application.



A number of methods have been proposed for this task [9,13,15,
17,24]. The studies [15, 17] build language models for each candi-
date location, and make prediction based on these language models.
They are designed to predict location identifier for a text. Instead
of predicting a location for a give text, the work [24] segments the
world into grids, and employs supervised models, such as Naive
Bayes, to predict grid for a given text. The recent proposal [13]
presents a new approach for predicting geographic coordinates of a
text from a user(See Section 2 for details).

Since W* incorporates both location identifiers and geographic
coordinates, we can make both kinds of predictions for a text from a
user, namely, predicting location identifiers [15,17] and geographic
coordinates [13]. Our method is also able to take the time factor
into consideration.

Formally, given a user u, day s, time 7, and words w,, a location
¢ (represented with both location identifier and geographic coordi-
nates) is predicted by maximizing p(|u, s, ¢, w,). Specifically, we
calculate p(llu, s,t, w,) for each candidate location ¢ as follows:

Zz er(uvsv t,rz, wd7€)
ZZ Zr Z[’ 17(“757 1,12, Wq, é’)’
where p(u,s,t,r,z,wy, £) is computed as Equation 3.

p(f|u,s,t,wd) = (16)

Requirement-aware location recommendation. Location recom-
mendation aims to recommend new locations for users. Previous
studies only rely on users’ historical visiting information [6, 25],
neglecting the specific needs at a given time. W* is able to utilize
both the time and the needs (in the form of short text), to make
more accurate recommendation. Given a user u, day s, time ¢ and
words wy that describe the need, the candidate locations are ranked
by p(llu, s, t,w,), defined by Equation 16, and the top ranked ones
are returned as results.

Activity prediction. W* is able to predict the activity of a user at a
given time. Specifically, given a user « and time s and ¢, the words
describing the activity are ranked by:

2 2 Py, 1,12, W) (17
Zz Zr Zw’ P(% S, t> nz W/) ’
User prediction. User prediction aims to predict the likelihood of
a user visiting a location at a given time. This could be very useful
for merchants for planning purpose, or for them to target on specific
costumers. Specifically, given location ¢, day s, and time ¢, we rank
candidate users by p(ull, s, t), which is calculated as follows:

ZZ ZI’ p(u7 S7 t’ r7 Z’ E)
Zz Zr Zu’ p(u/7s>t7 Lz £)7
where p(u, s, ,7,2, €) = p(u)p(slu)p(rlu, $)p(tlu, s, P)p(Elu, r)p(llr, 2).
Note that previous studies on user mobility modeling (e.g., [8]) can
also be used for user prediction, if we use location and time as in-
put, and find the user who can maximize the likelihood.

p(Wlu, s, 1) =

plull,s,0) = (18)

Location prediction for user. This task is to predict the place
where a user stays at a given time. This would be useful for logis-
tic planning, e.g., to arrange a meeting with a user or a group of
users, and location-based advertisement delivery. Formally, given
a user u and time ¢, we aim to rank all candidate locations based on
p(lu, s,t), which is calculated by:

2 2 (U8, 1,2, 0)
Zz Zr Z[’ P(% s, t> 1z, ﬁ,)
Tweets recommendation. This task is to recommend tweets that

are interested to a user based on the user’s topic preferences, current
location and time. Specifically, given user u, day s, time ¢, and

p(llu, s t) = (19)
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Table 1: Statistics of the two datasets

ww USA
Number of users 3,883 4,122
Number of locations 60,962 35,989
Number of tweets/messages | 89,007 171,768

location ¢, we aim to rank tweets by considering p(w,lu,s,t, /),

where wy is the word vector of a candidate tweets, and
Zz er(u7sv t7 rz, wd7€)

Zz Zr Zw;l P(% s, t,1,z, W/d, ﬁ)

p(wdlu,s,t,f) = (20)

5. EXPERIMENTAL EVALUATION

We evaluate the proposed model in this section. Against several
state-of-the-art baseline methods, we examine the accuracy of w*
for the application of location prediction for tweets in Section 5.2.
We present samples of the discovered topics and the mobility pat-
terns of users in Section 5.3. Results of other example applications
of W* are reported in Section 5.4.

5.1 Dataset

In our experiments, we use two real-world datasets, namely, WW
dataset and USA dataset.

WW Dataset. Using the streaming API provided by Twitter?, we
collect a large volume of tweets with location information from
November 1, 2012 to February 13, 2013. We refer to this dataset as
WWw (World-wide) dataset as the tweets are from users in different
countries.

USA dataset. This dataset is the GeoText® (Geo-tagged Microblog
Corpus) published by researchers from Carnegie Mellon Univer-
sity [9]. This dataset comprises messages from geo-located mi-
croblog users approximately in the United States. Each message is
associated with its geographic coordinate. To map the geographic
coordinates of each message to a location identifier, we crawl the
geographic coordinates of locations in United States from Foursquare,
and map the coordinates of each message to its nearest location.

For both datasets, we remove stop-words, and keep only the ac-
tive users who visited at least 5 different locations. The statistics
of the datasets after pre-processing is shown in Table 1. For each
dataset, we randomly split the documents (tweets or messages) into
three collections in proportion of 8:1:2 as the training set, develop-
ment set, and testing set, respectively.

5.2 Location Prediction for Tweets

Given a tweet with its text content, user id, and posting time, the
task of location prediction is to predict the most likely location at
which this tweet is posted.

5.2.1 Evaluation Metrics

To evaluate the prediction performance of different models, we
use two metrics, namely, prediction accuracy (Acc) and average
error distance (Dis).

Prediction accuracy (Acc) is the percentage of tweets for which
the predicted locations are exactly the true location among all tweets
in the test set.

Average error distance (Dis) is the average of the Euclidian dis-
tance between the predicted geographic coordinates and the true
geographic coordinates for all tweets in the test set.

2https ://dev.twitter.com/docs/streaming-apis
3http ://www.ark.cs.cmu.edu/GeoText/



Table 2: Comparison of baseline methods with W* and W*

Factors in modeling | KL TR w3 w?
Who (User) X v N Y
Where (Geo) X  GIbR PsnR PsnR
When (Time) X X X v
What (Words) v v v v

Note that Acc and Dis are different—it is possible that the num-
ber of correctly predicted tweets is similar, but the wrongly pre-
dicted locations are deviated from the true locations very differ-
ently for different methods. Apparently, larger Acc and smaller Dis
indicate better prediction performance.

5.2.2 Baseline methods

We compare with two baseline methods to evaluate the perfor-
mance, which are the state-of-the-art models for predicting loca-
tions for text.

KL-divergence based method (KL) [15,17]. This method builds
language models (LM) for each candidate location during training.
Given a test text, it computes the KL-divergence between the LM
of the test text and the LM of each candidate location, and returns
the most close location as the result.

Topic+Region (TR) [13]. This model captures the user preference
over latent regions and topics. The location is generated from the
Gaussian of regions, and words are generated based on the topic
and region. This model represent locations as geographic coordi-
nates. In addition, the latent regions in this model are not personal.
Given a tweet from a user, TR predicts the geographic coordinates
of the tweet, but cannot return the location identifier. Thus we can-
not compute Acc for TR. In order to compare with other approaches
in terms of Acc, we identify the location identifier for the predicted
geographic coordinates by finding the nearest location to the coor-
dinates.

Neither KL nor TR method makes use of the time factor in pre-
diction. To study the performance of our model without time factor,
we also use a simplified version of our proposed method as a base-
line method.

Who+Where+What (W?). This W* method is based on similar
inference modeling as our proposed model without considering the
time factor (i.e., time of a day and day of a week). Note that W*
considers the similar set of aspects as does the TR model [13], but
its modeling method is different from TR.

Who+Where+When+What (W*). The differences between W*
and other methods are summarized in Table 2, where “PsnR” and
“GIbR” represent “using geographical information by estimating
personal regions” and “using geographical information by estimat-
ing global regions for all users”, respectively.

5.2.3  Parameter Setting and Tuning

We fix the number of personal regions as 2 for each user (e.g.,
home region and work region), following the setting in [8]. Note
that our model is capable of dealing with a larger number of per-
sonal regions. In our datasets, we notice the cases that a user may
visit only one location at a region, or visit a region at only one time
point. Such cases will result in problems like (i) errors in calculat-
ing the inverse of X, ,, or (ii) always getting zero value for p(¢|r).
To avoid these problems, we set the minimum values for the deter-
minant of £, and 67, , to be le — 16 and 1, respectively.

We set the three parameters in our model, namely, K: the number
of topics, A: the weight of p(wlz), and k: the weight of p(¢|z), by
tuning them one by one on the development set. The default values
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Figure 3: Tuning parameters for W*

for them are 60, 0.5, and 0.1, respectively. The tuning results on
both datasets are reported in Figure 3. The impacts of varying the
three parameters are discussed below.

We first study the effect of number of topics K on the prediction
performance. Figures 3(a) and (b) report the results of varying K
from 10 to 100 on both datasets. Observe that K has almost no
impact on Acc on both datasets. It has little impact on Dis on US4
dataset. However, a larger K usually results in greater Dis on WIW
dataset. Recall that Acc and Dis are two different metrics, and Dis
could be very different for different parameter settings even with
similar Acc. We set K to 10 for WW data and 20 for USA data.

Next we tune A. Observe from Figures 3(c) and (d), when A = 0
or 1, Acc and Dis on both datasets are worse than other A values
between 0 and 1. This result shows that word variations of both
regions and topics are important for prediction. We set A to 0.6 for
both datasets.

Finally we tune parameter k. The results are shown in Fig-
ures 3(e) and (f). We observe that on both datasets, as k is in-
creased, Dis increases, but Acc keeps stable. However, Acc almost
drops to zero at ¥ = 1.0, where the location selection is made only
based on the topics (p(¢|z)), and the region information (p(¢|r)) of
users is ignored. This is understandable since locations of all over
the world can be returned as prediction results if the topic matches.
At K = 0, the prediction is purely based on the region of the user
without taking into account the topics of the user—the predicted
locations would be close to the mean location of the regions of the
user. Finally, we set k¥ = 0.1 for both datasets.

5.2.4 Experimental results

We compare the prediction performance of the four methods
(KL, TR, W3, and W4). The Dis and Acc of each method are
reported in Figure 4. Note that only W* makes use of the time
information in prediction.

As shown in Figure 4, W* outperforms the state-of-the-art base-
line methods KL and TR significantly in terms of both Acc and Dis.
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Figure 4: Performance of all methods

W* outperforms KL in terms of Acc by 88.50% and 3953.04% on
WW and USA datasets, respectively. In terms of Dis, compared
with TR, W* reduces the average error distance by 80.73% and
77.02% on the two datasets, respectively.

KL is designed to predict the location label for short text. Be-
cause it does not exploit geographic coordinate information, its
prediction performance in terms of Dis is much worse than other
methods, i.e., the average error distance of KL is much greater than
those of the other methods. In addition, KL builds language model
for locations based on the words posted by all users without consid-
ering the individuals’ visiting history. In other words, it does not
consider the preferences of individual users on locations. More-
over, the number of tweets posted at each location is small on av-
erage as observed from Table 1, and thus the language models of
location are usually sparse, limiting the prediction performance of
KL.

TR is designed to predict the geographic coordinates for short
text. It returns the mean of the Gaussian distribution of the most
likely latent region for a given tweet as the prediction result, but
not the location identifier of the prediction. We observe that TR
performs much better than KL in terms of Dis on both datasets. TR
is based on topic models while KL adopts language models. Fur-
thermore, TR incorporates the user preference information and the
geographic coordinates information in its model. However, TR has
the worst Acc among all methods, since the means of the global re-
gions are less likely to be the exact locations of individuals’ tweets.

Our model W? utilizes the same types of information as does
TR, but it outperforms TR significantly. The reasons are two fold.
First, the latent geographic regions in W* are personal while the
latent geographic regions in TR is global for all the users. Hence,
the regions in W* can describe individuals’ mobility areas more
precisely than the regions in TR. Second, both the location identi-
fiers and the geographic information of locations are used by W* to
enhance the prediction.

W* outperforms W? in terms of both measures. This is because
W* incorporates the time factor in its model, which can further im-
proves the prediction results. W* is capable of capturing the user’s
mobility patterns in terms of geographic, temporal, and activity as-
pects.

5.3 Sample Topics and Mobility Patterns

We take the model trained on WW dataset as an example to
demonstrate the topics discovered by W*.

We first randomly select 5 topics, and check their representative
words. Specifically, for each topic z, we rank the words based on
p(wlz) and use the top-6 English words to represent each topic. The
results are shown in Table 3.

For the ease of reading, we manually assign title for each topic.
We find that, the representative words well reveal the semantic
meaning of each topic.

Next, we randomly select a user, and look into the user’s mobility
patterns. We plot the two personal regions of the user in Figure 5,
and the time patterns of each region in Figure 6. We assign the
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Table 3: Representative words for topics

Topic Representative words
Home family fun offroad rental home love
Dinning | lunch dinner birthday breakfast drinks eat
Nightlife | night happy singing playing dance football
Work working tonight coffee tired money friday
Holiday | christmas friends holiday merry celebrating choir
103.96
103.92r b
S
2103.88 1
s
103.841 1
1038 % 128 13 132 134 136
latitude

Figure 5: Personal regions

labels (e.g., work and home) to the two regions based on the time
of user visits. Figure 5 shows that the two geographic regions of the
user are not far from each other. In addition, the contour lines of the
work region are more close together than that of the home region,
showing that the user usually stays in a small region at workplace,
but visits a relatively larger range of places around her home.

From Figure 6, we observe that the user has different time pat-
terns over the personal regions in weekdays and weekend. The time
span that the user is more likely to stay in work region on weekends
is much small than that on weekdays. In addition, the user is likely
to spend more time in home region on weekends than that in week-
days.

5.4 Results of Example Applications

In addition to location prediction for tweets, we implement an-
other three applications, namely, activity prediction, user prediction
and user’s location prediction, and present their evaluation results
in this subsection. We do not evaluate the location recommendation
and tweet recommendation, because they require different datasets
than what we use in our experiments.

Activity prediction Activity prediction returns the representative
words describing user’s activity at a given time. Using two dif-
ferent time as input (i.e., 14:30 weekday, and 10:00 weekend), the
top-6 (in terms of p(wlu, s, t)) English words returned by W* for a
randomly selected user from W data are shown in Table 4.

Observe that, in the weekday afternoon, the user’s activity is
more about work, taking a coffee break or resting. The user may
also do body-building sometimes in the weekday afternoons. In the
morning of weekends, the user stays at home for breakfast. Shop-
ping and eating are also keywords for weekend mornings for the
selected user.

User prediction. User prediction aims to predict the user who is
most likely to visit a given location at a given time. We compare
the performance of W* with a user mobility model PMM [8], on
both datasets. Note that here we do not use the text of tweets, and
thus PMM is applicable while the baseline approaches [13,15,17]
for predicting locations of tweets take text as input and are not ap-
plicable here. For each tweet in test set, its time and location are
used as input; if the predicted user is the true user of the tweet, it is
a correct prediction. We employ prediction accuracy (Acc) as the
evaluation metric, which shows the percentage of correct predic-
tions.
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Table 4: Representative words for a user at a given time
time words
14:30 weekday | break work coffee resting gym international
10:00 weekend | good morning home breakfast shopping eat

The results are reported in Table 5. In user prediction, W* out-
performs PMM by 21.62% and 45.81% on the two datasets, re-
spectively. Potential reasons are two-fold: on the one hand, we use
a new way to calculate the probability of latent regions at a given
time, which is different from the way used in PMM; on the other
hand, our model exploits both the functional and graphical coordi-
nate information of locations, while PMM only utilizes the latter.

Location prediction for user. This task aims to predict the loca-
tion at which a given user is most likely stay at a given time. For
each tweet in test set, its time and user are used as input; if the
predicted location is the true location of the tweet, it is a correct
prediction. We still evaluate the performance using prediction ac-
curacy. The experimental results are reported in Table 6. For this
task, the PMM method is also used as the baseline, where the in-
put has no text. The results show that our method outperforms the
baseline method significantly for similar reasons discussed earlier.

6. CONCLUSION AND FUTURE WORK

The large availability of geo-tagged tweets enables us to study
individuals’ mobility behaviors from four factors, namely user, ge-
ographic information, time, and activity. Unfortunately, none of the
previous studies considers all of them. In this paper, we propose a
probabilistic generative model W*, which is capable of capturing
the four factors jointly, and providing a comprehensive description
of user mobility behavior. We evaluate the performance of W* for
several applications on two real-world datasets, and the experimen-
tal results show that the proposed method outperforms state-of-the-
art baselines significantly for these applications.

In the future, we aim to exploit the proposed model for other po-
tential applications. In addition, it will be interesting to incorporate
social information into the model.
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