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ABSTRACT
Online social networks have become important channels for users
to share content with their connections and diffuse information. Al-
though much work has been done to identify socially influential
users, the problem of finding “reputable” sharers, who share good
content, has received relatively little attention. Availability of such
reputation scores can be useful for various applications like rec-
ommending people to follow, procuring high quality content in a
scalable way, creating a content reputation economy to incentivize
high quality sharing, and many more. To estimate sharer reputation,
it is intuitive to leverage data that records how recipients respond
(through clicking, liking, etc.) to content items shared by a sharer.
However, such data is usually biased — it has a selection bias since
the shared items can only be seen and responded to by users con-
nected to the sharer in most social networks, and it has a response
bias since the response is usually influenced by the relationship be-
tween the sharer and the recipient (which may not indicate whether
the shared content is good). To correct for such biases, we propose
to utilize an additional data source that provides unbiased goodness
estimates for a small set of shared items, and calibrate biased social
data through a novel multi-level hierarchical model that describes
how the unbiased data and biased data are jointly generated accord-
ing to sharer reputation scores. The unbiased data also provides the
ground truth for quantitative evaluation of different methods. Ex-
periments based on such ground-truth data show that our proposed
model significantly outperforms existing methods that estimate so-
cial influence using biased social data.
Categories and Subject Descriptors: H.2.8 [Database Manage-
ment]: Database Applications – Data mining
General Terms: Algorithms, experimentation.
Keywords: Sharer reputation, Influential users

1. INTRODUCTION
Social networks have made it seamless to share content among

connected users, or simply called connections. A large fraction of
publishers allow easy sharing of content on major social networks
like Facebook, LinkedIn, Twitter and others by instrumenting their
pages with social network “buttons”. Usually these content sharing
events, which we shall refer to as shares, are broadcasted to user’s
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first degree connections on the social network. The recipients can
respond to the broadcasted content through clicks or social gestures
like re-shares, likes and comments. Such social gestures may fur-
ther propagate content to the connections of the respondents. For
example, the network update stream (NUS) on the homepage of
LinkedIn (shown in Figure 1) provides each user with a stream of
content items shared by her connections (among other types of up-
dates), and she can respond to a shared item by clicking the item to
see the content, clicking the “share” or “like” button to broadcast
the item further to her connections, or commenting about the item.
We call such data social response data.

Sharer reputation and item attractiveness. We study the prob-
lem of estimating sharer reputation for different content topics. In-
tuitively, the reputation of a sharer for a topic represents her ability
of sharing “good” content on that topic. More precisely, we define
sharer reputation as the propensity of a random user interested in
the topic (not necessarily connected to the sharer) to respond posi-
tively to a typical content item shared by the sharer (e.g., through a
click, share or like). For ease of exposition, we call the propensity
of a random user to respond positively to a content item the attrac-
tiveness of the item. Examples of applications that can leverage
such sharer reputation scores are as follows.

• Recommending reputable sharers for users to follow (e.g., [16]):
Reputable sharers can serve as information filters for differ-
ent topics. Following them allows a user to receive the best
content in the corresponding topics from a large number of
potential candidates.

• Selecting high quality content curators (e.g., [12]): Reputable
sharers can help to identify high quality content in a way that
is more scalable than hiring editors to do so and more accurate
than machine learning approaches. Giving them proper recog-
nition can further incentivize high quality content sharing.

• Providing features for item ranking: Items shared by reputable
users can be ranked higher than other items (after adjusting for
other features).

Biases in social response data. Estimating unbiased user reputa-
tion scores from social response data described above is difficult.
While such data allows us to measure how positive the recipients
respond to the items shared by a sharer, it is inherently biased.

• Selection bias: The content shared by a user is usually only
seen and responded to by the immediate connections of the
sharer. However, the definition of reputation we pursue is
based on a random user (interested in a topic), to ensure shared
content from reputable sharers is attractive for a typical user
(interested in the topic). This selectivity in item consumption
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imposed by connections in a social network introduces selec-
tion bias in social response data.

• Response bias: The recipients of a shared item know the sharer’s
identity when making a decision to respond. As discussed in
studies like [7, 3, 9, 6], users’ response in such a social setting
is often based on the sharer-recipient relationship, which may
not indicate whether shared content is good. For example,
friends tend to respond to one another more positively than
a random user. Junior people also tend to respond to senior
people or their managers more positively [8, 9]. This response
bias needs to be corrected.

Prior work. Most work on user reputation or influence in social
networks does not try to correct for biases in social data [25, 28,
22, 21]. One common approach is to construct an influence graph
among users based on how information propagates (e.g., response
to shared items), and then apply methods such as PageRank [4] or
HITS [17] to identify influential nodes in the graph. It should be
clear that such an influence graph is directly affected by the selec-
tion bias and the response bias. Thus, influential notes tend to result
from high network in-degree, or high concentration of activities in a
sharer’s neighborhood, instead of the attractiveness of shared items.
Our experiments (Section 4) also show that such an approach fails
to estimate sharer reputation. See Section 2 for a discussion of
other related work. Bias removal of social data has been studied in
question-answering [26, 6] and comment rating [7] environments,
where unbiased scores on a small sample of data were provided by
human editors. In this paper, we study a different problem setting
(i.e., content sharing) and develop a data-driven approach which
does not require human supervision.

Our approach. We propose to supplement biased social response
data with some unbiased user action data that quantifies the attrac-
tiveness of a sample of shared items, and estimate unbiased reputa-
tion scores by a novel multi-level hierarchical model that describes
how the unbiased data and biased data are jointly generated. The
unbiased user action data records how users respond (e.g., click) to
a sample of shared items that they saw in a way that satisfies the
following two important properties:

• Random user: Those shared items should be seen by a ran-
dom sample of users, instead of only the connections of the
sharers (to remove the selection bias).

• Hidden identity: When a user decides to take an action (e.g.,
click) on an item, she should not know the identity of the
sharer (to remove the response bias).

Availability of unbiased data. We argue that most social network
sites can obtain unbiased user action data through active experi-
mentation. Most social network sites either have or can create a
content recommendation module on their pages. For example, the
LinkedIn Today (LT) module as shown in Figure 1 is such a mod-
ule that recommends top content items to users, where items can be
recommended to all users and sharer identities are not displayed.
One way to collect unbiased data is to randomly display a sam-
ple of shared items to a random subset of users and record their
responses. We note that, even without active randomization, data
directly collected from such a module has much less selection and
response biases as long as the recommended items cover a set of
typical shared items. We also note that the amount of unbiased
data does not need to be large, as long as it covers a set of typical
shared items. Reasonable performance can be achieved with a few
thousands of typical shared items in our experience.

LinkedIn Today

Network update stream

Figure 1: Snapshot of LinkedIn homepage. LinkedIn Today (LT)
module is in the red solid box and Network Update Stream (NUS)
module is in the green dashed box.

Modeling challenge. Note that, in a sense, the unbiased user action
data is “aggregated” since a user’s response to an item in such data
does not provide a reputation assessment for a particular sharer, but
an aggregated assessment for all of the sharers of that item. On
the other hand, the biased social response data is “disaggregated”
since each response is an assessment for an individual sharer. The
main challenge is how to jointly model unbiased aggregated user
response on a small set of items and a large amount of biased dis-
aggregated user response on all shared items to obtain unbiased
reputation scores.

Contributions. We study a novel problem of estimating unbiased
sharer reputation scores by combining biased social response data
and unbiased user action data through a novel multi-level hierar-
chical model. Our model combines information by coupling the
latent reputation score in the unbiased data with the latent reputa-
tion score in the biased data through a linear regression with sharer
specific coefficients. To improve model performance with small
amounts of unbiased data, we propose a novel co-sharing Markov
random field prior for the reputation scores in the unbiased data.
We provide rigorous evaluation of our method through ground truth
provided by the unbiased data. We show that our method provides
significant improvement compared to existing methods that esti-
mate social influence through biased network response data.

2. RELATED WORK
Estimating the importance of individual users in terms of infor-

mation diffusion [23] has been studied under the topic of finding
influential users who significantly affect their neighbors (connec-
tions). Following the seminal theory on the “influentials” by Katz
and Lazarsfeld [14, 29], the problem of identifying influential users
has been studied in several different contexts. Before discussing
how our work is different from work on user influence, we first note
that influential users usually refer to those who affect their neigh-
bors [20], while reputable users in our definition refer to those who
receive good response from an anonymous audience.

One of the well studied framework for finding influential users
is the influence maximization problem [15] where one chooses a
seed set of nodes so that the information from the seed set has
maximum reach in the network. While we aim at estimating the
reputation (some latent property) for all nodes, the influence maxi-
mization problem focuses on picking a small number of important
nodes. Also, the methodologies for influence maximization have
been illustrated mostly with synthetic data, whereas we use unbi-
ased ground-truth data for both training and testing.

Another line of research that has a long history is related to rank-
ing the nodes in a network. Examples of such methods include
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PageRank [4] or HITS [17] that identify important nodes from the
network structure [13, 18]. Early studies use just network infor-
mation to estimate users’ influence [30], same as PageRank. Re-
cently, as researchers realized that diffusion process may be differ-
ent from the network structure [5], ground-truth diffusion data as
well as network information are used to identify influential users in
information diffusion [25]. However, we note that the ground-truth
diffusion data may still be heavily influenced by the underlying net-
work structure. For example, if two users are not connected in the
network, the current data-driven approaches assume that the two
users fail to infect each other in any case. Our method can avoid
this problem by calibration against network independent data (re-
sponses from anonymous crowd). Furthermore, our evaluation is
quantitative as we have ground-truth data for the users’ reputation,
while the previous methods used manual inspection [22] or quali-
tative analysis [25].

Another weakly related line of research are empirical studies that
analyze the relationship between the reputation and the behavior of
users. Question answering sites adopt reputation scoring system
where users who give the right answer earn reputation scores as
rewards. [2, 27, 6] studied how reputation scores of a user would
affect the quality of answers by the user. Our method to estimate
latent reputation could also be helpful in designing more effective
reputation scoring systems.

3. METHOD DETAILS
In this section, we describe our novel method for estimating

sharer reputation through joint modeling of unbiased aggregated re-
sponse (in the unbiased user action data) and biased disaggregated
response (in the biased social response data).

3.1 Problem Setting
We begin with a precise definition of user reputation that we

study in this paper.

Sharer reputation. We define the reputation score of sharer s for
topic k as the propensity that a randomly selected user who is “in-
terested in” topic k but not necessarily connected to s would take
a positive “action” on a random content item shared by sharer s.
Typically, a user is interested in multiple topics and for simplicity
we assume a user’s interest affinity to various topics is known. If
this is not the case, methods for identifying users’ topical interests
(e.g., [24, 10, 19]) can be applied before estimating user reputation.
Based on the data available to us, we use click as our main action.
Note that other kinds of actions can be handled in a similar manner.

Our motivation for defining reputation as above is the follow-
ing: (1) It makes an explicit connection to a common type of ob-
jective in content recommendation, i.e., to maximize user actions
on the recommended items. For example, recommending highly
scored sharers based on this definition of reputation would maxi-
mize clicks by respondents. (2) Reputation scores for sharers with
“sufficient” amount of “unbiased” data can be computed accurately
and provides valuable ground-truth data to evaluate the accuracy of
different methods. We will discuss data sufficiency and unbiased-
ness in more details later.

We now provide a more detailed description of the two kinds of
data we use to estimate reputation scores.

Biased social response data. On social networking sites, users
share items that in turn propagate through their connections to other
users. When a recipient sees a shared item together with the sharer’s
identity, she may respond to the item through clicking, liking, re-
sharing, etc., or just ignore it depending on factors like item quality,
whether the sharer is a close friend, etc. In our experiments, we use

log data collected from the Network Update Steam (NUS) module
on the homepage of LinkedIn.

Let zsij ∈ {0, 1} indicate user i’s response to item j shared
by sharer s. For simplicity, we do not distinguish different types
of positive response like clicks, likes, re-shares, and just look at
whether there is any positive response. This response data can po-
tentially be used to quantify the reputation of the sharer. How-
ever, selection and response biases (as defined and discussed in
Section 1) need to be corrected.

Unbiased user action data. To help remove biases in social re-
sponse data, we can collect some unbiased user action data in ad-
dition to the biased social response data. Similar to social response
data, unbiased user action data records users’ response to the items
that they saw. However, it needs to satisfy the random user and
hidden identity properties defined in Section 1.

Although the unbiased user action data does not have response
bias and minimal selection bias, sharing information in some form
has to be available to allow estimation of sharer reputation scores.
Here, although identities of sharers is not known to the respon-
dents, the system knows the set of sharers for each item, it opens
the door to combine this information with biased social response
data to estimate sharer reputation scores.

Unbiased user action data can be collected through active ex-
periments on the site or approximated by log data from some item
recommendation application. In our experiments, we take the lat-
ter approach. Specifically, we use log data from the LinkedIn To-
day (LT) module on the homepage of LinkedIn. We note that this
dataset has no response bias and items can be recommended to
all users (not just the sharer’s connections), but a different kind of
slight selection bias may exists since items are not recommended
to users randomly — the serving scheme uses some notion of ar-
ticle popularity. However, because article popularity is typicaly
estimated through an explore/exploit algorithm that also ensures
some degree of randomization [1], selection bias is weak. See Sec-
tion 4 for details of our data. As discussed in Section 1, this kind of
nearly unbiased user action data is not unique to LinkedIn and can
be made available for many social network sites.

Let yij ∈ {0, 1} indicate user i’s response on item j without
knowing who shared item j. In our dataset, each click is a positive
action. Other types of actions can also be used. Let Js denote the
set of items shared by sharer s and Sj denote the set of sharers
who shared item j. It is important to note that although such user
action data does not have (or is less affected by) the biases found
in the social response data, sharing information is available at an
“aggregated” resolution which poses additional challenges:

• Such unbiased data is usually sparse. For example, in our
dataset, the number of items is much smaller than the number
of items in the social response data; also, many users share
items that never occur in the unbiased user action data.

• The attribution of credit for a user action on an item to a sharer
of the item is indirect since there are usually multiple sharers
for a single item. Because of data sparsity, we are also likely
to face a situation where the number of sharers is much more
than the number of shared items (this is true for our dataset),
this makes the attribution problem even more difficult.

Problem definition. Given a set {zsij} of social response data and
a set {yij} of unbiased user action data together with a user interest
vector ηi for each user i, a feature vector xi for each user i and a
feature vector wsi for each pair of connected users s and i, the
goal is to estimate unbiased reputation score µsk of each sharer s
on each topic k, which intuitively represents the the propensity that
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a random user who is interested in topic k would take a positive
action on a random content item shared by user s.

3.2 Model
We now develop our generative model for estimating topic-specific

user reputation scores (µsk, the reputation of sharer s on topic k),
which are unknown latent factors to be learned from data. The
model fitting algorithm will be described in Section 3.3

User action model. For the unbiased user action data, we assume
the mean of the binary response yij for user i on item j is a func-
tion of user i’s interest vector ηik for different topics k, and the
attractiveness pjk of item j for users interested in different topics
k. More specifically,

yij ∼ Bernoulli(probability = σ(
∑
k ηikpjk + b)), (1)

where σ(x) = 1/(1 + e−x) is the sigmoid function and b is a bias
term to be learned from data. Here, pjk is a latent factor associ-
ated with (item j, topic k), also to be learned from data. We note
that the interest vector ηik is assumed to be given or has been ex-
tracted from the user’s profile and content consumption patterns in
a separate process before our modeling.

Aggregation of user reputation. We connect attractiveness of
items to user reputation through modeling the attractiveness pjk
of item j for users interested in different topics k as the average of
reputation scores µsk of the sharers s ∈ Sj of item j; i.e.,

pjk ∼ N (mean =
1

|Sj |
∑
s∈Sj

µsk, var =
1

λ1|Sj |
) (2)

where λ1 is a tuning parameter which represents the strength of a-
priori belief that the attractiveness of an item is connected to the
reputation scores of the sharers of the item . We note that from the
generative point of view, we aggregate user reputation to generate
item attractiveness. However, from the estimation point of view,
we need to disaggregate attractiveness to obtain user reputation.

Co-sharing random-field prior. Recall that the unbiased user ac-
tion data is sparse. In particular, it is quite likely that the number
of items j in the unbiased data is much smaller than the number
of sharers s. This is in fact the case in our LT dataset and poses a
challenge when we disaggregate attractiveness of a small number
of items to obtain reputation scores for a large number of sharers.
One common approach is to shrink all reputation scores to 0 (in-
tuitively, when we lack data to estimate a score, make sure it is
close to a neutral value 0 and does not overfit the data). This kind
of shrinkage does not work well in our scenario (see Section 4.2
for experimental results) since we lack data for most of our shar-
ers and hence a large fraction of them will obtain reputation scores
close to 0. Hence, we leverage co-sharing data and propose a novel
co-sharing Markov random-field prior to regularize the µsk’s.

The basic idea of our co-sharing random field prior is as follows.
In the absence of observed user actions, we assume the reputation
score of sharer s is similar to the reputation scores of other users
who share the same items as sharer s; this leads to the following
Markov random field prior.

(µsk | {µtk : all sharer t 6= s}) ∼ Normal distribution with

mean =

∑
j∈Js

1
|Sj |

∑
t∈Sj :t6=s µtk∑

j∈Js
(1− 1

|Sj |
) + λ2/λ1

var =
1

λ1

∑
j∈Js

(1− 1
|Sj |

) + λ2

(3)

To understand this co-sharing random-field prior, note that the neigh-
bors of each sharer s are all other sharers who have shared at least
one common item. We also see that the weight on a neighbor de-
pends not only on the number of co-shared items, but also on the
total sharers per common item. If co-sharing happens to an item
with many other sharers, the weight is discounted.

We now look at the formulation from a technical perspective; we
begin with the prior mean that performs double averaging. For a
given item j shared by s, we average the reputation scores µtk of
other users t who also share item j. Then, we average over all the
items shared by s. Note that the actual averaging in the equation is
a bit special. For a given item j, instead of dividing the sum of µtk
by |Sj | − 1 (which is the number of elements in the sum), we di-
vide the sum by |Sj | and correct this bias using

∑
j∈Js

(1− 1
|Sj |

)

in the denominator. We choose this kind of averaging because it
provides a very clean prior probability density function (see Equa-
tion 4). We shall denote the co-sharing Markov random field prior
as PrCSH-MRF({µsk}).

PROPOSITION 1. The joint log-prior distribution
log(Pr({pjk}, {µsk}) = log(Pr({pjk} | {µsk})·PrCSH-MRF({µsk}))
is

−λ1

2

∑
s

∑
j∈Js

(pjk − µsk)2 − λ2

2

∑
s

µ2
sk + constant (4)

The proof follows by completing squares and performing routine
algebraic computations. From the above formula, we can clearly
see the roles of tuning parameters λ1 and λ2 when we estimate pjk
and µsk by maximizing the log-posterior function. λ1 specifies
the strength of interaction between item attractiveness pjk and user
reputation µsk, while λ2 specifies how strongly we want to shrink
user reputation toward 0.

If we have a large amount of unbiased user action data that cov-
ers items shared by all users, the above model alone would be suf-
ficient. However, unbiased user action data is usually sparse. In
particular, it usually covers a small number of items and a small
fraction of sharers. Thus, we need to leverage biased social re-
sponse data but correct for both the selection and response biases
through proper modeling.

Social response model. In the biased social response data, we as-
sume that each response zsij represents whether user i would re-
spond positively to item j shared by sharer s, and it is modeled
as a function of user i’s interest vector ηik and the “uncalibrated
reputation score” αsk of sharer s on different topics k; i.e.,

zsij ∼ Bernoulli(probability = σ(
∑
k ηikαsk + β′xsi)), (5)

where xsi is a feature vector including features that can potentially
explain the bias between users s and i, β is a vector of regression
coefficients to be learned from data, and αsk is a latent factor also
to be learned from data. Here, we call αsk uncalibrated reputation
because user behavior in social response data can be quite different
from that in the unbiased user action data from which we obtain the
unbiased reputation µsk.

Regression-based calibration. We model the relationship between
αsk and µsk through a linear regression, where the regression co-
efficients depend on user features; i.e.,

µsk ∼ N (mean = (φ′kxs)αsk + θ′kxs, var = 1/λ3), (6)

where xs is a feature vector of sharer s, and φk and θk are vectors
of topic-specific regression coefficients to be learned from data.
Here, we calibrate αsk through a linear function and predict the
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Figure 2: Graphical Representation of our model (variance compo-
nents are not shown)

Symbol Description
Observation
zsij User i’s response to item j shared by sharer s
yij User i’s response on item j
Js The set of items shared by sharer s
Sj The set of sharers who shared item j
ηik User i’s interest in topic k
xs Feature vector for sharer s
xsi Feature vector between sharer s and user i
Variables to be learned
µsk Unbiased reputation score for sharer s on topic k
αsk Uncalibrated reputation score for sharer s on topic k
pjk Item j’s attractiveness in topic k
φk, θk Topic-specific regression coefficients

between µsk and αsk
β Regression coefficients for a bias term for zsij
b Bias for yij

Table 1: Definitions of the symbols.

unbiased reputation µsk by regressing on αsk. In this regression,
φ′kxs is the slope and θ′kxs is the intercept. Different users can
have different slopes and intercepts depending on their user fea-
tures. This provides more flexibility and leads to better perfor-
mance.

Summary. Figure 2 shows the graphical representation of our
model. We also summarize our notations in Table 1. We denote
the response in unbiased and biased context as Y and Z respec-
tively. Representing all unknown parameters as Θ, we summarize
our model below.

• Y and Z are conditionally independent:

Pr(Y ,Z|Θ) = Pr(Y | {pjk}, {ηik}) · Pr(Z | {αsk})

• Joint prior on latent variables:

Pr({pjk}, {µsk} | {αsk}) = Pr({pjk}|{µsk})·
PrCSH-MRF({µsk}) · Pr({µsk}|{αsk},φk,θk)

where PrCSH-MRF({µsk}) is the co-sharing Markov random
field prior. Note that the prior on [{µsk}] is proportional to

PrCSH-MRF({µsk}) · Pr({µsk}|{αsk},φk,θk).

3.3 Model Fitting
Although we specify our model using a probabilistic framework,

parameter estimation is performed using an optimization approach
for the sake of scalability. Our goal is to find the mode of pos-
terior distribution Pr(Θ|Y ,Z). We obtain this by maximizing
log Pr(Θ|Y ,Z), which is a non-convex problem but one can ob-
tain the mode by using a coordinate ascent approach. We use coor-
dinate ascent since the set of conditional maximizations we iterate
are standard regression problems and could be solved through read-
ily available software.

We have to find the maximum of

argmaxΘ log Pr(Θ|Y,Z)
= argmaxΘ log Pr(Y,Z|Θ) + log Pr(Θ)
= argmaxΘ log Pr(Y |Θ) + log Pr(Z|Θ) + log Pr(Θ)

(7)

where the last equality comes from the conditional independence
between Y and Z given Θ. Our model specifies Pr(Θ) as follows:

log Pr(Θ) = log Pr({pjk}|{µsk}) + log PrCSH-MRF({µsk})
+ log Pr({µsk}|α,x,θ, φ)

(8)
We can express log Pr(Θ) as follows:

log Pr(Θ) = −λ1
2

∑
s

∑
j∈Js

(pjk − µsk)2 − λ2
2

∑
s µ

2
sk

−λ3
2

∑
s,k(µsk − (φ′kxs)αsk − θ′kxs)2

+constant
(9)

We develop a coordinate ascent approach to solve Equation 7 ef-
ficiently. We note that if we are to solve for one set of variables
(e.g., µsks or pjks) with other sets fixed, then each subproblem
becomes a regression problem with regularization. First, we con-
sider fitting p and the corresponding bias b by solving the following
problem:

argmax
{pjk},b

log Pr(Y |{pjk}, b, {ηik})−
λ1

2

∑
j,k

(pjk−
1

|Sj |
∑
s∈Sj

µsk)2

(10)
As ηiks are fixed, Y is a logistic function of pjks and b, and thus
this problem is logistic regression with gaussian priors which can
be solved efficiently [11].

Second, we aim to fit µsks with other variables fixed. Instead of
solving the above problem for all µsks, we can optimize each µsk
one at a time by solving the following subproblem for each µsk:

argmaxµsk
(−λ1

∑
j∈Js

(pjk − µsk)2

−λ3(µsk − (φ′kxs)αsk − θ′kxs)2 − λ2µ
2
sk)

(11)
which is a standard linear regression problem.

Third, we update αsks by solving:

argmax
α,β

log Pr(Z|α,β) + log Pr(α|µ) (12)

From Equation 6, we can show Pr(αsk|µsk,θk,φk) is a Gaussian

distribution with mean µY
sk−θ

′
kxs

φ′
k
xs

and variance 1
(φ′

k
xs)2λ3

. There-
fore, the problem of updating αsks is a logistic regression with
Gaussian priors.

Fourth, we updateφk and θk by fitting linear regression for each
topic k as given by

argmax
φk,θk

−λ3

∑
s,k

(µsk − (φ′kxs)αsk − θ′kxs))2 (13)

We iterate the four steps described above until the likelihood
converges. In our experiments, our method converges within less
than 10 iterations. After learning the parameters, we output the
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estimates for user s’s reputation on topic k as the conditional ex-
pectation of µsk given (φ′kxs)αsk+θ′kxs. Note that for cold-start
sharers (users who never shared on unbiased context), the estimated
reputation score is simply given by (φ̂′kxs)α̂sk + θ̂′kxs

4. EXPERIMENTS
In this section, we illustrate our method using LinkedIn datasets.

We compare it with two versions of PageRank and a few special
cases of our model. We note that availability of unbiased data gives
us the ground truth to quantify the performance of various methods.

Dataset description. LinkedIn is the largest professional network
in the world with more than 200 million members as of Decem-
ber 31, 2012. The unbiased user action data is obtained from the
LinkedIn Today module (LT), while the biased (but granular) social
response data is obtained from user interactions with the network
update stream (NUS). Figure 1 shows a snapshot of the homepage
of LinkedIn and the two modules. The data used in our analysis
was collected during a four-month period from May 2012 to Au-
gust 2012. All unique user identifiers were anonymized.

LinkedIn Today (LT) dataset. A large part of our LT data comes
from a random sample of users, to whom LT randomly recom-
mends top algorithmically picked articles that match users’ profiles.
During the data collection period, LinkedIn Today recommends 3
items (which are articles shared by some sharers) to each user visit.
When a user responds to a recommended item in LT, she does not
know who shared the item and, thus, can respond in a more unbi-
ased way. Also, LT recommends items to all users (instead of only
users connected to the items’ sharers) with randomization; thus,
user selection bias is weak. To mitigate bias due to displaying same
items to a user multiple times, our response yij for user i on article
j is only confined to first view events; i.e., the first time an article is
seen by the user. We also only consider users who clicked at least
once during the four-month period.

Network Update Stream (NUS) dataset. On LinkedIn, an item
(article) shared by any sharer s propagates to the connections of s
through NUS; the connections of s can see such a sharing event
with the sharer’s identity in their NUS modules. The connections
can respond by clicking the item or ignore the sharing event. Simi-
lar to the LT data, we only consider responses to first view events;
i.e., zsij represents whether user i clicked item j shared by sharer
s when user i saw item j in her NUS module for the first time.

Users’ topical interest. In our experiments, the topical interest
ηik of a user i is obtained through the industries (e.g., Internet, Fi-
nance, Semiconductor, Communication, and so on) that the user
follows or belongs to. On LinkedIn, every user belongs to at least
one industry, which is indicated in their profile and can also be
inferred through the user’s current company. A user can also “fol-
low” a number of industries to obtain article recommendations re-
lated to those industries even if she does not belong to them. Using
industries to define topics is natural for LinkedIn since it focuses
on professional news. Thus, we seek to estimate sharer reputation
scores for each industry. Analysis with other kinds of topics can
be done similarly. In fact, our model can also be extended to work
when ηiks are latent variables to be estimated from data by adding
another layer to the hierarchical model, which is future work.

Proxies for ground-truth sharer reputation. As a proxy to mea-
sure reputation of sharer s on topic k, we use the average LT CTR
(Click-Through Rate using the unbiased LT dataset) of items shared
by sharer s based on response by viewers of LT interested in topic
k. More specifically, for each (sharer s, topic k) pair, we count the
numbers of views and clicks by viewers interested in topic k on the

set of items shared by s in the unbiased LT data. Then, average LT
CTR = number of clicks / number of views.

Evaluation Metric. To evaluate the performance of a model, we
split our data into a training set and a test set (the splitting method
will be described later), and then train the model using the training
set and evaluate the method using the test set. To reduce noise, we
compute evaluation metrics based on a set of “test sharers” who
satisfy the following two conditions: (1) A test sharer must have at
least 10 shared items in the unbiased LT data in the test set; oth-
erwise his/her average LT CTR (our proxy for ground-truth repu-
tation score) would be noisy since it is based on small counts. (2)
A test sharer must also have at least 100 view events in the NUS
data; otherwise, given the low click rate in NUS, she may receive
too few clicks to exploit the NUS data for estimating her reputation
due to noise induced by small counts.

Since our goal is to rank sharers based on reputation, we use two
ranking-based evaluation metrics. We note that because a ranking-
based metric does not depend on the scale of the predicted repu-
tation scores, it is particularly useful for comparing methods that
generate scores on different scales. For example, scores from our
model and PageRank scores can be on very different scales, but
what we focus on is the ranking of sharers. Intuitively, a good
method assigns higher scores to sharers who share better items.

• Kendall’s τ : To determine whether the ranking of sharers
based on scores produced by a model is concordant with the
ranking of sharers based on their average LT CTR (our proxy
for ground-truth reputation scores), we use Kendall’s τ rank
correlation coefficient [25] (the higher the better).

• CTR of top k sharers: The top k sharers identified by a better
model should share better items (having higher average LT
CTR) than those identified by a worse model. We define the
CTR of top k sharers of a model as the average LT CTR of
the set of items shared by the top k sharers identified by the
model (the higher the better), and compare models at different
k values (ranging from 10 to 200).

To evaluate a model, we first compute the two metrics on the test
set for each individual topic (i.e., industry) and then average across
topics. It is important to note that the main focus of this paper is on
estimating sharer reputation scores. Thus, improving model accu-
racy in terms of predicting individual users’ response (e.g., click)
to individual items is not the main goal. Because of this, we do not
consider metrics that measure click prediction accuracy per event.

4.1 Comparison with Different Methods
In this subsection, we consider splitting data into a training set

and a test set by time. In particular, we use the data in May for
training, and the next 3 months for testing. We estimate sharers’
reputation scores using the training data, and then evaluate the esti-
mated scores based on average LT CTR computed using data in the
test period. Notice that our test set is much larger than the training
set. This is done to reduce the variance of the evaluation metric.

Baseline Methods. Many recent methods for finding influential
users in social networks are based on PageRank (e.g., [30, 25,
28]). Thus, we consider PageRank as the main baseline to compare
to. We implemented two versions of PageRank [4] for computing
sharer reputation scores: PageRank-Rate and PageRank-Volume.
These two methods are based on the intuition that users who share
good items would necessarily get more responses from their con-
nections. Let NV (i, s) be the number of items that are shared by
sharer s and viewed by her connection i, and let NR(i, s) be the
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number of items that are shared by sharer s and responded (clicked
or liked or re-shared) by her connection i. For example, if sharer s
shared 11 items and her connection i saw 10 of them and responded
to 3, then we have NV (i, s) = 10 and NR(i, s) = 3. Each method
defines the edge weight w(i, s) between each (recipient i, sharer
s) pair based on NV (i, s) and NR(i, s) in its own way, and then
computes the PageRank scores [4] for all of the sharers.

• PageRank-Volume defines edge weight w(i, s) as the volume
of responses from recipient i to sharer s: w(i, s) = NR(i, s).

• PageRank-Rate defines edge weight w(i, s) as the response
rate from recipient i to sharer s:
w(i, s) = NR(i, j)/NV (i, j).

Both methods normalize the edge weights so that the sum of out-
going edge weights is one: w̄(i, s) = w(i,s)∑

s w(i,s)
. Each model com-

putes the score f(s) of sharer s by solving the following equation:

f(s) = (1− δ)
∑
i

w̄(i, s)f(i) +
δ

N

where δ is a given constant and N is the number of users. We
experimented with a number of δ values, but only report the per-
formance of δ = 0.2 following [25]. We note that other values of
δ do not improve the performance. To estimate reputation scores
for industry k, we take an induced subgraph of users who follow
or belong to industry k. Then, the PageRank scores on the induced
subgraph (either by PageRank-Rate or PageRank-Volume) provides
reputation scores for that industry.

We note that our PageRank methods follow the same approach
as [30, 28]. We also tried another version of PageRank proposed
by Sáez-Trumper et al. [25] in our early experiments. However,
its performance is worse than PageRank-Rate or PageRank-Volume
and gives negative correlations probably because it tends to identify
abusive users. So, we drop it from our experiments.

Variations of our model. To measure the effect of adding differ-
ent components to our hierarchical model, we consider two sim-
plified versions of Full Model: Model (only Y) and Model (only
Z). Model (only Z) assumes that the reputation of sharer s on topic
k is its uncalibrated score αsk estimated based only on biased so-
cial response data. Specifically, Model (only Z) estimates αsk us-
ing only the NUS response data zsij (Equation 12) and then sets
µsk = αsk. Model (only Y) estimates µsk using only unbiased
user action data (the LT data) yij without using the NUS social
response data at all. Specifically, Model (only Y) first estimates
pjk by solving Equation 10 and then estimates µsk through Equa-
tion 11. Note that Model (only Y) cannot estimate the reputation
scores of “cold-start” sharers, who do not share any items recom-
mended by LinkedIn Today during the training period.

Comparing overall performance of different models. The first
row of Table 2 shows the performance of each model. Our Full
Model achieves the highest rank correlation, which indicates that
appropriate combination of biased social response (NUS data Z)
with unbiased user action (LT data Y ) improves the accuracy. Model
(only Y) achieves the second highest rank correlation and Model
(only Z) is the third. This is expected since user reputation is pri-
marily defined based on unbiased LT data. For sharers with a suffi-
cient amount of unbiased LT data, the biased NUS data is not really
needed. However, for sharers who do not have many shared items
in LT data, NUS data helps. Note that the PageRank baselines per-
form poorly — they show slight negative rank correlations.

As discussed in Section 3, the main purpose of using biased so-
cial response data (NUS data Z) is to estimates the reputation of

cold-start users who do not share any item (or share very few items)
in the unbiased user action data (LT data Y ). To measure the per-
formance of the methods in the cold-start scenario, we limit our
focus on “cold-start test sharers” who did not share any item in
the unbiased LT data. To reduce the variance of the performance
metric, we increase the number of the cold-start test sharers by ran-
domly picking 50% of test sharers and removing them from the
unbiased training data. The second row of Table 2 shows the perfor-
mance of different methods for these cold-start test sharers. Recall
that Model (only Y) cannot estimate reputation scores for cold-start
sharers. Full Model outperforms all the other methods with a sig-
nificant margin. It achieves rank correlation 0.1124, a 241% lift
over the second best method, Model (only Z).

Figure 3 shows the CTR of top k sharers (relative to the CTR of
all shared items) for different models as a function k for the cold-
start scenario. First, note that all curves would eventually converge
to 1.0 when k is the total number of sharers since, by definition,
the CTR of all sharers equals the average CTR of all shared items.
Second, note that our Full Model significantly and uniformly out-
performs all other methods. Also note that the other three curves,
which compute reputation purely on biased social response data,
are all below 1.0 when k is small. This suggests that users who
receive highest social response seem to exhibit some undesired be-
havior (e.g., LinkedIn Open Networkers whose goals are connect-
ing to as many people as possible, forming a large densely con-
nected component with a large number of activities).

Breaking down by industries. We examine how the performance
of different models varies depending on the topics (industries). Due
to space limitation, we only show the results of Kendall’s τ . Fig-
ure 4 shows box plots for the distributions of Kendall’s τ across
industries for the all user scenario and the cold-start scenario. Note
that this box plot does not represent statistical significance, but
shows the variation of rank correlation across industries. In Fig-
ure 4a, Full Model achieves higher τ in most industries; the 75%
quantile of Full Model is higher than the median τ of the best
baseline (Model (only Y)). On the other hand, the PageRank-based
baselines and Model (only Y) perform poorly regardless of indus-
tries. In Figure 4b, we see a larger gap in performance than the gap
in Figure 4a. The minimum value of Full Model is higher than the
median value of the best baseline (Model (only Z)).

Figure 5 shows finer breakdown of the performance of Full Model
compared to the best baseline for the top 20 industries for the two
scenarios, where the y-axis ∆τ is the difference between τ of Full
Model and τ of the best baseline, for each industry (positive values
mean Full Model outperform), and the bar width is proportional to
the number of test users in the industry. In Figure 5a, Full Model
outperforms in 14 (70% of all) industries and more importantly, the
industries where Full Model cannot outperform have smaller num-
bers of sharers — the average number of test sharers in industries
where Full Model is inferior is 56% of the number of the test users
in the rest of the industries. In Figure 5b, Full Model is superior
in most industries — it outperforms the best baseline method in 18
(90% of all) industries.

4.2 Model Characteristics
Different amounts of unbiased data. We first study the effect of
using different amounts of unbiased user action data (the LT data)
in model training. To control the amount of unbiased data, we cre-
ate a series of datasets in the following way: Instead of splitting by
time (as in Section 4.1), here we split by items. Specifically, we
consider all of the items that appear in the unbiased LT data and
randomly select 40% of the items to be the “test items” and call
the rest 60% “training items”. We set aside all of the events on
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Model PageRank-Rate PageRank-Volume Model (only Y) Model (only Z) Full Model
Kendall’s τ (All) -0.0176 -0.0215 0.1879 0.0211 0.2078
Kendall’s τ (Cold-Start) -0.0325 -0.0365 N/A 0.0329 0.1124

Table 2: Overall performance of different models in Kendall’s τ rank correlation. “All” indicates the all users scenario. “Cold-Start” indicates
the cold-start scenario, where test users do not have unbiased training sets. Simulation shows that the 95% confidence interval of a model
that just assign random scores to users is between -0.011 and 0.011. To give a sense of an upper bound, we compute Kendall’s τ between the
ranking of users by their average LT CTRs (our proxy for ground-truth reputation scores) computed using the training data and that computed
using the test data, for (user, topic) pairs with sufficient data (the user shared at least 10 articles on the topic). The upper bound is 0.3897.
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Figure 4: Box plots of the distributions of Kendall’s τ for the top
20 industries. R: PageRank-Rate, V: PageRank-Volume, Y: Model
(only Y), Z: Model (only Z), M: Full Model.

the test items to form the test set. The remaining events form the
“initial training set”. Because our main focus is on how to estimate
sharer reputation for sharers without unbiased data (cold-start), we
randomly select 50% sharers who satisfy the two test sharer con-
ditions (defined when we introduce evaluation metrics) to form the
set of test sharers. We then remove all the events related to the
test sharers from the initial training set to form the “100% training
set”, which consists of events on 16,545 items. To simulate dif-
ferent amounts of unbiased data, we randomly sample P% of the
items that appear in the “100% training set” and select only training
events on the sampled items to form a “P% training set”. We note
that model performance numbers in this subsection is not compa-
rable to those in the previous subsection due to different ways of
splitting data into training and test sets.

Figure 6a shows Kendall’s τ rank correlation as a function of the
percentage of unbiased training data used to train our model. As
can be seen, the unbiased data can be reduced by 50% without sig-
nificantly affecting model performance. From 50% to 5%, model
performance degrades roughly in a log-linear manner (notice that
x-axis is log scaled).
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Figure 5: Improvement in Kendall’s τ for each industry by Full
Model compared to the best baseline. The bar width is proportional
to the number of test users in the industry

Co-sharing random field prior vs. zero-mean prior. Recall that
in our model, we put a co-sharing random field prior over µsk. To
understand the benefit of using co-sharing random field prior, we
compare our model with this prior to the model that replaces the
co-sharing random field prior with a commonly used alternative
prior, a zero-mean prior; i.e.,

µsk ∼ N (0, 1/λ4). (14)

Figure 6b shows the lift in Kendall’s τ rank correlation of our
model with the co-sharing random field prior over the model with
the zero-mean prior as a function of the percentage of unbiased
training data, where lift is defined as (τCSH-MRF−τzero-mean)/τzero-mean.
As can be seen, the smaller the data size, the higher the lift.

4.3 Discussion
Our experiments provide interesting insights which we summa-

rize below.
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Figure 6: Effect of different amounts of unbiased data (x-axis is log
scaled)

• Classical methods of estimating social influence like PageR-
ank perform poorly. Our method that corrects bias in social
response data with unbiased user action data through a novel
multi-level hierarchical model provides significant improve-
ment in performance.

• Our method of combining information from both sources is
particularly effective in cold-start scenarios, i.e., for predict-
ing reputation of users who have not shared in the unbiased
context. This is especially encouraging since we can use our
method to increase coverage of reputation scores.

• It is interesting to see the role the co-sharing Markov random
field prior plays in estimation. When the unbiased user action
data is sparse, the additional smoothing provided by this prior
leads to significant improvement in performance. This is good
news since in practice, it is not always easy to obtain a large
amount of data from an unbiased context.

5. CONCLUSION
We proposed a novel multi-level hierarchical model that esti-

mates unbiased reputation scores by augmenting social response
data that has selection and response bias with aggregated data from
an unbiased context. Our method provides significant improvement
over existing methods to estimate social influence. We show that it
is indeed possible to correct for the biases in social response data by
benchmarking it with reasonable amount of data from an unbiased
context. Furthermore, the co-sharing Markov random field prior
helps in providing reliable estimates even with small amount of un-
biased data. Our research has opened up avenues for future work.
While we illustrated our method with only two sources of data, one
can generalize the method to multiple “misaligned” data sources;
some of them may be unbiased but available at different levels of
aggregation, while others could be more granular but biased. For
instance, one can obtain aggregated unbiased data from different
kinds of recommendation modules. It is even possible to obtain
some measures of article quality through offsite reading and shar-
ing data obtained from external publishers that are instrumented
with “social share buttons”. Developing a principled framework
to combine multiple misaligned social response data available at
different levels of aggregations with different kinds of biases is a
challenging problem we plan to address in the future.
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