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ABSTRACT

A sketch of a matrix A is another matrix B which is signifi-
cantly smaller than A, but still approximates it well. Find-
ing such sketches efficiently is an important building block
in modern algorithms for approximating, for example, the
PCA of massive matrices. This task is made more challeng-
ing in the streaming model, where each row of the input
matrix can be processed only once and storage is severely
limited.

In this paper, we adapt a well known streaming algorithm
for approximating item frequencies to the matrix sketching
setting. The algorithm receives n rows of a large matrix
A ∈ R

n×m one after the other, in a streaming fashion. It
maintains a sketch B ∈ R

ℓ×m containing only ℓ ≪ n rows
but still guarantees that ATA ≈ BTB. More accurately,

∀x, ‖x‖ = 1 0 ≤ ‖Ax‖2 − ‖Bx‖2 ≤ 2‖A‖2f/ℓ
Or

BTB ≺ ATA and ‖ATA−BTB‖ ≤ 2‖A‖2f/ℓ .

This algorithm’s error decays proportionally to 1/ℓ using
O(mℓ) space. In comparison, random-projection, hashing
or sampling based algorithms produce convergence bounds
proportional to 1/

√
ℓ. Sketch updates per row in A require

amortized O(mℓ) operations and the algorithm is perfectly
parallelizable. Our experiments corroborate the algorithm’s
scalability and improved convergence rate. The presented
algorithm also stands out in that it is deterministic, simple
to implement, and elementary to prove.

Categories and Subject Descriptors

G.1.2 [Numerical Analysis]: Approximation
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Modern large data sets are often viewed as large matri-
ces. For example, textual data in the bag-of-words model
is represented by a matrix whose rows correspond to docu-
ments. In large scale image analysis, each row in the matrix
corresponds to one image and contains either pixel values
or other derived feature values. Other large scale machine
learning systems generate such matrices by converting each
example into a list of numeric features. Low rank approxi-
mations for such matrices are used in common data mining
tasks such as Principal Component Analysis (PCA), Latent
Semantic Indexing (LSI), and k-means clustering. Regard-
less of the data source, the optimal low rank approximation
for any matrix is obtained by its truncated Singular Value
Decompositions (SVD).

Data matrices, as above, are often extremely large and
distributed across many machines. This renders standard
SVD algorithms infeasible. Given a very large matrix A, a
common approach is to compute a sketch matrix B that is
significantly smaller than the original. A good sketch matrix
B is such that computations can be performed on B rather
than on A without much loss in precision.

Matrix sketching methods are, therefore, designed to be
pass-efficient, i.e., the data is read at most a constant num-
ber of times. If only one pass is required, the computa-
tional model is also referred to as the streaming model. The
streaming model is especially attractive since a sketch can
be obtained while the data is collected. In that case, storing
the original matrix becomes superfluous, see [17] for more
motivations and examples of streaming algorithms for data
mining applications.

There are three main matrix sketching approaches, pre-
sented here in an arbitrary order. The first generates a
sparser version of the matrix. Sparser matrices are stored
more efficiently and can be multiplied faster by other matri-
ces [4][2][15]. The second approach is to randomly combine
matrix rows [25][28][27][21]. The proofs for these rely on
subspace embedding techniques and strong concentration of
measure phenomena. The above methods will be collectively
referred to as random-projection in the experimental section.
A recent result along these lines [8], gives simple and efficient
subspace embeddings that can be applied in time O(nnz(A))
for any matrix A. We will refer to this result as hashing

in the experimental section. While our algorithm requires
more computation than hashing, it will produce more ac-
curate sketches given a fixed sketch size. The third sketch-
ing approach is to find a small subset of matrix rows (or
columns) that approximate the entire matrix. This problem
is known as the Column Subset Selection Problem and has
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been thoroughly investigated, [16][12][6][11][14][5]. Recent
results offer algorithms with almost matching lower bounds,
[11][5][7]. Alas, it is not immediately clear how to compare
some of these methods’ results to ours since their objectives
are different. They aim to recover a low rank matrix whose
column space contains most of the space spanned by the
matrix top k singular vectors. Moreover, most of the above
algorithms are quite intricate and require several passes over
the input matrix.

A simple streaming solution to the Column Subset Selec-
tion problem is obtained by sampling rows from the input
matrix. The rows are sampled with probability proportional
to their squared ℓ2 norm. Despite this algorithm’s appar-
ent simplicity, providing tight bounds for its performance
required over a decade of research [16][3][12][26][29][24][14].
We will refer to this algorithm as sampling. Algorithms such
as CUR utilize the leverage scores of the rows [13] and not
their squared ℓ2 norms. The discussion on matrix leverage
scores goes beyond the scope of this paper, see [22] for more
information and references.

This manuscript proposes a fourth approach. It draws
on the similarity between the matrix sketching problem and
the item frequency estimation problem. In the following, we
shortly describe the item frequency approximation problem,
as well as a well known algorithm for it.

1.1 Frequent-items
In the item frequency approximation problem there is a

universe of m items a1, . . . , am and a stream A1, . . . , An of
item appearances. The frequency fi of item ai stands for the
number of times ai appears in the stream. It is trivial to pro-
duce all item frequencies using O(m) space simply by keep-
ing a counter for each item. Our goal is to use O(ℓ) space and
produce approximate frequencies gj such that |fj−gj | ≤ n/ℓ
for all j simultaneously.

This problem received an incredibly simple and elegant
solution in [23]. It was later independently rediscovered by
[10] and [19], who also improved its update complexity. The
algorithm simulates a process of ‘deleting’ from the stream ℓ
appearances of different items. This is performed repeatedly
for as long as possible, namely, until there are less than ℓ
unique items left. This trimmed stream is stored concisely in
O(ℓ) space. The claim is that, if item aj appears in the final
trimmed stream gj times, then gj is a good approximation
for its true frequency fj (even if gj = 0). This is because
fj − gj ≤ t, where t is the number of times items were
deleted. Each item type is deleted at most once in each
deletion batch. Moreover, we delete ℓ items in every batch
and at most n items can be deleted altogether. Thus, tℓ ≤ n
or t ≤ n/ℓ, which completes the proof. The reader is referred
to [19] for an efficient streaming implementation. From this
point on, we refer to this algorithm as Frequent-items.

The following is a description of the item frequency prob-
lem as a matrix sketching problem. Let A be a matrix
that is given to the algorithm as a stream of its rows. For
now, let us constrain the rows of A to be indicator vec-
tors. In other words, we have Ai ∈ {e1, . . . , em}, where ej
is the j’th standard basis vector. Note that such a matrix
can encode a stream of items (as above). If the i’th ele-
ment in the stream is aj , then the i’th row of the matrix
is set to Ai = ej . The frequency fj can be expressed as
fj = ‖Aej‖2. Moreover, a good sketch B would be one such
that gj = ‖Bej‖2 is a good approximation to fj . Replacing

n = ‖A‖2f , we get that the condition |fj−gj| ≤ n/ℓ is equiv-

alent to |‖Aej‖2 − ‖Bej‖2| ≤ ‖A‖2f/ℓ. From the above, it is

clear that for ‘item indicator’ matrices, a sketch B ∈ R
ℓ×m

can be obtained by the Frequent-items algorithm.

1.2 Frequent-directions
In this paper we describe Frequent-directions, an extension

of Frequent-items to general matrices. Given any matrix
A ∈ R

n×m, the algorithm processes the rows of A one by
one and produces a sketch matrix B ∈ R

ℓ×m, such that

BTB ≺ ATA and ‖ATA−BTB‖ ≤ 2‖A‖2f/ℓ .

The intuition behind Frequent-directions is surprisingly simi-
lar to that of Frequent-items: In the same way that Frequent-
items periodically deletes ℓ different elements, Frequent-dire-
ctions periodically ‘shrinks’ ℓ orthogonal vectors by roughly
the same amount. This means that during shrinking steps,
the squared Frobenius norm of the sketch reduces ℓ times
faster than its squared projection on any single direction.
Since the Frobenius norm of the final sketch is non nega-
tive, we are guaranteed that no direction in space is reduced
by “too much”. This intuition is made exact below. As
a remark, when presented with an item indicator matrix,
Frequent-directions exactly mimics a variant of Frequent-

items.
As its name suggests, the Frequent-items algorithm is of-

ten used to uncover frequent items in an item stream. Namely,
if one sets ℓ > 1/ε, then any item that appears more than
εn times in the stream must appear in the final sketch. Sim-
ilarly, Frequent-directions can be used to uncover any unit
vector (direction) in space x for which ‖Ax‖2 ≥ ε‖A‖22 by
taking ℓ > 2r/ε.1

This property makes Frequent-directions very useful in
practice. In data-mining, it is common to represent data
matrices by low rank matrices. Typically, one computes the
SVD of A and approximates it using the first k singular vec-
tors and values. The value k is such that the k’th singular
value is larger than some threshold value t. In other words,
we only “care about” unit vectors such that ‖Ax‖ ≥ t. Us-
ing Frequent-directions we can invert this process. We can
prescribe t in advance and find the space of all vectors x
such that ‖Ax‖ ≥ t directly while circumventing the SVD
computation altogether.

1.3 Connection to sampling
Here we point out another similarity between item fre-

quency estimation and matrix sketching. It is simple to
see that all item frequencies can be approximated from a
uniform sample of the stream. Using Chernoff’s bound (and
then applying the union bound carefully) one concludes that
O(r log(r)/ε2) samples suffice to ensure that |fi − gi| ≤
εfmax. In this context we define r = n/fmax. Similarly, ma-
trix sketching by row sampling [24][14] requiresO(r log(r)/ε2)
row samples where r = ‖A‖2f/‖A‖22 to ensure that ‖ATA −
BTB‖ ≤ ε‖ATA‖. From the above discussion, it is evi-
dent that the matrix sampling result implies the item sam-
pling algorithm. This is because running the matrix sam-
pling algorithm on an item indicator matrix (as before) pro-
duces uniform random samples. Moreover, for such matri-

1Here r = ‖A‖2f/‖A‖22 denotes the numeric rank of A. For

any matrix A ∈ R
n×m the numeric rank r = ‖A‖2f/‖A‖22 is

a smooth relaxation of the algebraic rank Rank(A).
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ces, r = ‖A‖2f/‖A‖22 = fmax/n and fmax = ‖ATA‖. We
argue that Frequent-directions improves on matrix sampling
in the same way that Frequent-items improves on item sam-
pling.

1.4 Connection to low rank approximation
Low rank approximation of matrices is a well studied prob-

lem. The goal is to obtain a small matrix B, containing ℓ
rows, that contains in its row space a projection matrix ΠA

B,ξ

of rank k such that ‖A−AΠA
B,ξ‖ξ ≤ (1+ε)‖A−Ak‖ξ . Here,

Ak is the best rank k approximation of A and ξ is either
2 (spectral norm) or f (Frobenius norm). It is difficult to
compare our algorithm to this line of work since the types of
bounds obtained are qualitatively different. We note, how-
ever, that it is possible to use Frequent-directions to produce
a low rank approximation result.
Lemma 4 from a version of [12] (modified). Let PB

k

denote the projection matrix on the right k singular vectors
of B corresponding to its largest singular values. Then the
following holds: ‖A − APB

k ‖2 ≤ σ2
k+1 + 2‖ATA − BTB‖,

where σk+1 is the (k + 1)’th singular value of A.
Let r = ‖A‖2f/‖A‖22 denote the numeric rank of A and

let ℓ ≥ 4rσ2
1/εσ

2
k+1. Using Frequent-directions and letting

the sketch B maintain ℓ columns, we get that 2‖ATA −
BTB‖ ≤ εσ2

k+1 and therefore ‖A − APB
k ‖ ≤ σk+1(1 + ε),

which is a 1+ε approximation to the optimal solution. Since
rσ2

1/σ
2
k+1 ∈ Ω(k), this is asymptotically inferior to the space

requirement of [5]. That said, if rσ2
1/σ

2
k+1 ∈ O(k), Frequent-

directions is also optimal due to [7].

2. FREQUENT-DIRECTIONS
The algorithm keeps an ℓ × m sketch matrix B that is

updated every time a new row from the input matrix A is
added. Rows from A simply replace all-zero valued rows of
the sketch B. The algorithm maintains the invariant that
all-zero valued rows always exist. Otherwise, half the rows
in the sketch are nullified by a two-stage process. First, the
sketch is rotated (from the left) using its SVD such that
its rows are orthogonal and in descending magnitude order.
Then, the sketch rows norms are “shrunk” so that at least
half of them are set to zero. In the algorithm, we denote
by [U,Σ, V ] ← SVD(B) the Singular Value Decomposition
of B. We use the convention that UΣV T = B, UTU =
V TV = V V T = Iℓ, where Iℓ stands for the ℓ × ℓ identity
matrix. Moreover, Σ is a non-negative diagonal matrix such
Σ = diag([σ1, . . . , σℓ]), σ1 ≥ . . . ≥ σℓ ≥ 0. We also assume
that ℓ/2 is an integer.

Claim 1. If B is the result of applying Algorithm 1 to

matrix A, then:

0 � BTB � ATA

Proof. First, 0 � BTB becauseBTB is positive semidef-
inite for any matrix B. Second, BTB � ATA is a conse-
quence of the fact that ∀x ‖Ax‖2−‖Bx‖2 ≥ 0. Let Bi and
Ci denote the values of B and C after the main loop in the
algorithm has been executed i times. For example, B0 is an
all zeros matrix and Bn = B is the returned sketch.

‖Ax‖2 − ‖Bx‖2 =

n
∑

i=1

[〈Ai, x〉2 + ‖Bi−1x‖2 − ‖Bix‖2]

=
n
∑

i=1

[‖Cix‖2 − ‖Bix‖2] ≥ 0

Algorithm 1 Frequent-directions

Input: ℓ, A ∈ R
n×m

B ← all zeros matrix ∈ R
ℓ×m

for i ∈ [n] do
Insert Ai into a zero valued row of B
if B has no zero valued rows then

[U,Σ, V ]← SVD(B)
C ← ΣV T # Only needed for proof notation
δ ← σ2

ℓ/2

Σ̌←
√

max(Σ2 − Iℓδ, 0)

B ← Σ̌V T # At least half the rows of B are all zero
end if

end for
Return: B

The statement that 〈Ai, x〉2 + ‖Bi−1x‖2 = ‖Cix‖2 holds
true because Ai is inserted in a zero valued row of Bi−1.
Also, note that Ci is an isometric left rotation of a matrix
containing the rows of Bi−1 and the new row Ai. Finally,

‖Cix‖2 − ‖Bix‖2 ≥ 0 because CiTCi � BiTBi by the defi-
nition of the shrinking step.

Claim 2. If B is the result of applying Algorithm 1 to

matrix A with prescribed sketch size ℓ, then:

‖ATA−BTB‖ ≤ 2‖A‖2f/ℓ

Proof. Let δi denote the value of δ at time step i. If
the algorithm does not enter the ‘if’ section in the i’th step,
then δi = 0. Similarly, let Bi, Ci, and V i be the values of
B, C and V after the main loop in the algorithm is executed
i times.

We start by bounding the value of ‖ATA − BTB‖ as a
function of δi. In what follows, x is the eigenvector of ATA−
BTB corresponding to its largest eigenvalue.

‖ATA−BTB‖ = ‖Ax‖2 − ‖Bx‖2

=

n
∑

i=1

[〈Ai, x〉2 + ‖Bi−1x‖2 − ‖Bix‖2]

=
n
∑

i=1

[‖Cix‖2 − ‖Bix‖2]

≤
n
∑

i=1

‖CiTCi −BiTBi‖

=
n
∑

i=1

‖(Σi)2 − (Σ̌i)2‖ =
n
∑

i=1

δi

The second transition is correct because 〈Ai, x〉2+‖Bi−1x‖2 =
‖Cix‖2 which is explained in the proof of Claim 1. The last
step is obtained by replacing Ci and Bi by their definitions.
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We now turn to bounding the value of
∑n

i=1 δi by com-
puting the Frobenius norm of the resulting sketch B:

‖Bn‖2f =

n
∑

i=1

[‖Bi‖2f − ‖Bi−1‖2f ]

=

n
∑

i=1

[(‖Ci‖2f − ‖Bi−1‖2f )− (‖Ci‖2f − ‖Bi‖2f )]

=
n
∑

i=1

‖Ai‖2 − tr(CiTCi −BiTBi)

= ‖A‖2f −
n
∑

i=1

tr((Σi)2 − (Σ̌i)2)

≤ ‖A‖2f − (ℓ/2) ·
n
∑

i=1

δi .

The reason that ‖Ci‖2f−‖Bi−1‖2f = ‖Ai‖2 is, again, because

Ci is, up to a unitary left rotation, a matrix that contains
both Bi−1 and Ai. The last transition is correct because
tr((Σi)2 − (Σ̌i)2) ≥ (ℓ/2)δi, which in turn is true because
the matrix ((Σi)2− (Σ̌i)2) contains ℓ non-negative elements
on its diagonal at least half of which are equal to δi. We
conclude that

∑n
i=1 δi ≤ 2(‖A‖2f −‖B‖2f )/ℓ. Combining this

with our earlier observation that ‖ATA−BTB‖ ≤∑n
i=1 δi,

we obtain that ‖ATA − BTB‖ ≤ 2(‖A‖2f − ‖B‖2f )/ℓ. This
fact will be used in Section 2.2. By the simple fact that
‖B‖2f ≥ 0, we obtain ‖ATA − BTB‖ ≤ 2‖A‖2f/ℓ. This
completes the proof of the claim.

2.1 Running time
Let TSVD(ℓ,m) stand for the number of operations re-

quired to obtain the Singular Value Decomposition of an
ℓ by m matrix. The worst case update time of Frequent-

directions is therefore O(TSVD(ℓ,m)), which is also O(mℓ2).
That said, the SVD of the sketch is computed only once ev-
ery ℓ/2 iterations. This is because the shrinking step in the
algorithm nullifies at least ℓ/2 rows in B. When the SVD
is not computed, the addition running time is O(m). The
total running time is therefore bounded by O(nmℓ). This
gives an amortized update time of O(mℓ) per row in A.

2.2 Parallelization and sketching sketches
A convenient property of this sketching technique is that

it allows for combining sketches. Let A = [A1;A2] such that
A consists of the rows of A1 and A2 stacked on top of one
another. Also, let B1 and B2 be the sketches computed by
the above technique for A1 and A2 respectively. Now let the
final sketch, C, be the sketch of a matrix B = [B1;B2] that
contains the two sketches B1 and B2 vertically stacked. We
show below that ‖ATA − CTC‖ ≤ 2‖A‖2f/ℓ. This means
that sketching each half of A separately and then sketching
the resulting sketches is as good as sketching A directly. To

see this, we compute ‖Cx‖2 for a test vector ‖x‖ = 1:

‖Cx‖2 ≥ ‖Bx‖2 − (2/ℓ)(‖B‖2f − ‖C‖2f )
= ‖B1x‖2 + ‖B2x‖2

−(2/ℓ)(‖B1‖2f + ‖B2‖2f ) + (2/ℓ)‖C‖2f
≥ ‖A1x‖2 − (2/ℓ)(‖A1‖2f − ‖B1‖2f )

+‖A2x‖2 − (2/ℓ)(‖A2‖2f − ‖B2‖2f )
−(2/ℓ)(‖B1‖2f + ‖B2‖2f ) + (2/ℓ)‖C‖2f

= ‖A1x‖2 + ‖A2x‖2

−(2/ℓ)(‖A1‖2f + ‖A2‖2f ) + (2/ℓ)‖C‖2f
= ‖Ax‖2 − (2/ℓ)(‖A‖2f − ‖C‖2f ) .

Here we use the fact that ‖B1x‖2 ≥ ‖A1x‖2 − ε(‖A1‖2f −
‖B1‖2f ) for ‖x‖ = 1, which is shown in the proof of Claim 2.
This property trivially generalizes to any number of parti-
tions of A. It is especially useful when the matrix (or data)
is distributed across many machines. In this setting, each
machine can independently compute a local sketch. These
sketches can then be combined in an arbitrary order using
Frequent-directions.

3. EXPERIMENTS
We compare Frequent-directions to five different algorithms.

The first two constitute brute force and näıve baselines. The
other three are common algorithms that are used in prac-
tice: sampling, hashing, and random-projection. References
can be found in the introduction. All tested methods re-
ceive the rows of an n × m matrix A one by one. They
are all limited in storage to an ℓ ×m sketch matrix B and
additional o(ℓm) space for any auxiliary variables. This is
with the exception of the brute force algorithm that requires
Θ(m2) space. For a given input matrix A we compare the
computational efficiency of the different methods and their
resulting sketch accuracy. The computational efficiency is
taken as the time required to produce B from the stream of
A’s rows. The accuracy of a sketch matrix B is measured
by ‖ATA −BTB‖. Since some of the algorithms below are
randomized, each algorithm was executed 5 times for each
input parameter setting. The reported results are median
values of these independent executions.

The experiments were conducted on a FreeBSD machine
with 48GB of RAM and a 12MB cache using a single Intel(R)
Xeon(R) X5650 CPU. All experimental results, from which
the plots below are obtained, are available for download as
json formatted records at [20].

3.1 Competing algorithms
Brute Force: The brute force approach produces the opti-
mal rank ℓ approximation of A. It explicitly computes the
matrix ATA =

∑n
i AT

i Ai by aggregating the outer prod-
ucts of the rows of A. The final ‘sketch’ consists of the top
ℓ right singular vectors and values (square rooted) of ATA
which are obtained by computing its SVD. The update time
of Brute Force is Θ(m2) and its space requirement is Θ(m2).
Näıve: Upon receiving a row in A the näıve method does
nothing. The sketch it returns is an all zeros ℓ by m matrix.
This baseline is important for two reasons: First, it can ac-
tually be more accurate than random methods due to under
sampling scaling issues. Second, although it does not per-
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form any computation, it does incur computation overheads
such as I/O exactly like the other methods.
Sampling: Each row in the sketch matrix Bsamp is chosen
i.i.d. from A and rescaled. More accurately, each row Bsamp

j

takes the value Ai/
√
ℓpi with probability pi = ‖Ai‖2/‖A‖2f .

The space it requires is O(mℓ) in the worst case but it can
be much lower if the chosen rows are sparse. Since the value
of ‖A‖f is not a priori known, the streaming algorithm is
implemented by ℓ independent reservoir samplers, each sam-
pling a single row according to the distribution. The update
running time is therefore O(m) per row in A. For a the-
oretical analysis of this algorithm the reader is referred to
[12][26][24].
Hashing: The matrix Bhash is generated by adding or sub-
tracting the rows of A from random rows of Bhash. More
accurately, Bhash is initialized to be an ℓ × m all zeros
matrix. Then, when processing Ai we perform Bhash

h(i) ←
Bhash

h(i) + s(i)Ai. Here h : [n]→ [ℓ] and s : [n]→ {−1, 1} are
perfect hash functions. There is no harm in assuming such
functions exist since complete randomness is näıvely possi-
ble without dominating either space or running time. This
method is often used in practice by the machine learning
community and is referred to as “feature hashing” or “hash-
ing trick” [31]. For a surprising new analysis of this method
see [8].
Random-projection: The matrix Bproj is equivalent to the
matrix RA where R is an ℓ × n matrix such that Ri,j ∈
{−1/

√
ℓ, 1/
√
ℓ} uniformly. Since R is a random projection

matrix [1], Bproj contains the m columns of A randomly
projected from dimension n to dimension ℓ. This is easily
computed in a streaming fashion, while requiring at most
O(mℓ) space and O(mℓ) operation per row updated. For
proofs of correctness and usage see [25][28][27][21]. Sparser
constructions of random projection matrices are known to
exist [9][18]. These, however, were not implemented since
the running time of applying random projection matrices is
not the focus of this experiment.

3.2 Synthetic data
Each row of the generated input matrices, A, consists of

a d dimensional signal and m dimensional noise (d ≪ m).
More accurately, A = SDU + N/ζ. The signal coefficients
matrix S ∈ R

n×d is such that Si,j ∼ N (0, 1) i.i.d. The diag-
onal matrix D is Di,i = 1 − (i − 1)/d, which gives linearly
diminishing signal singular values. The signal row space
matrix U ∈ R

d×m contains a random d dimensional sub-
space in R

m, for clarity, UUT = Id. The matrix SDU is
exactly rank d and constitutes the signal we wish to recover.
The matrix N ∈ R

n×m contributes additive Gaussian noise
Ni,j ∼ N (0, 1). Due to [30], the spectral norms of SDU and
N are expected to be the same up to some universal constant
c1. Experimentally, c1 ≈ 1. Therefore, when ζ ≤ c1 we can-
not expect to recover the signal because the noise spectrally
dominates it. On the other hand, when ζ ≥ c1 the spectral
norm is dominated by the signal which is therefore recover-
able. Note that the Frobenius norm of A is dominated by the
noise for any ζ ≤ c2

√

m/d, for another constant close to 1,

c2. Therefore, in the typical case where c1 ≤ ζ ≤ c2
√

m/d,
the signal is recoverable by spectral methods even though
the vast majority of the energy in each row is due to noise.
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Figure 1: Accuracy vs. sketch size. The y-axis in-
dicates the accuracy of the sketches. If a method
returns a sketch matrix B, the accuracy is measured
by ‖ATA − BTB‖. The size of the sketch is fixed
for all methods and is B ∈ R

ℓ×m. The value of ℓ
is indicated on the x-axis. The form of the input
matrix is explained in Section 3.2. Here the sig-
nal dimensions are d = 10, 20, 50 ordered from top to
bottom. The signal to noise ratio is kept constant
at ζ = 10. Each plot line corresponds to one of the
sketching techniques explained in Section 3.1. The
only plot line that does not correspond to an algo-
rithm is denoted by Frequent-directions bound. This is
the theoretical worst case performance guaranteed
by Frequent-directions.
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3.3 Results
The performance of Frequent-directions was measured both

in terms of accuracy and running time compared to the
above algorithms. In the first experiment, a moderately
sized matrix (10, 000 × 1, 000) was approximated by each
algorithm. The moderate input matrix size is needed to
accommodate the brute force algorithm and to enable the
exact error measure. The results are shown in Figure 1 and
give rise to a few interesting observations. First, all three
random techniques actually perform worse than näıve for
small sketch sizes. This is a side effect of under-sampling
which causes overcorrection. This is not the case with Frequent-

directions. Second, the three random techniques perform
equally well. This might be a result of the chosen input.
Nevertheless, practitioners should consider these as poten-
tially comparable alternatives. Third, the curve indicated
by “Frequent Direction Bound” plots the accuracy guaran-

teed by Frequent-directions. Note that “Frequent Direction
Bound”is consistently lower than the randommethods. This
means that the worst case performance guarantee is lower
than the actual performance of the competing algorithms.
Finally, Frequent-directions produces significantly more ac-
curate sketches than predicted by its worst case analysis.

The running time of Frequent-directions, however, is not
better than its competitors. This is clearly predicted by
their asymptotic running times. In Figure 2, the running
times (in seconds) of the sketching algorithms are plotted as
a function of their sketch sizes. Clearly, the larger the sketch,
the higher the running time. Note that hashing is extremely
fast. In fact, it is almost as fast as näıve, which does nothing!
Sampling is also faster than Frequent-directions but only by
a factor of roughly 2. This is surprising because it should be
faster by a factor of ℓ. Frequent-directions, however, executes
faster than random-projection although they share the same
asymptotic running time (O(ndℓ)). It is important to stress
that the implementations above are not very well optimized.
Different implementations might lead to different results.

Nevertheless, we will claim that Frequent-directions scales
well. Its running time is O(nmℓ), which is linear in each
of the three terms. In Figure 3, we fix the sketch size to
be ℓ = 100 and increase n and m. Note that the running
time is indeed linear in both n and m as predicted. More-
over, sketching an input matrix of size 105 × 104 requires
roughly 3 minutes. Assuming 4 byte floating point num-
bers, this matrix occupies roughly 4Gb of disk space. More
importantly though, Frequent-directions is a streaming algo-
rithm. Thus, its memory footprint is fixed and its running
time is exactly linear in n. For example, sketching a 40Gb
matrix of size 106 × 104 terminates in half an hour. The
fact that Frequent-directions is also perfectly parallelizable
(Section 2.2) makes Frequent-directions applicable to truly
massive and distributed matrices.

4. FUTURE WORK
Note that Frequent-directions does not take advantage of

any possible sparsity of the input matrix. Designing a better
version of this algorithm that utilizes the input matrix spar-
sity should be possible. One possible direction is to replace
the SVD step with a light-weight orhogonalization step. An-
other improvement might enable a Frequent-directions-like
algorithm that can process the entries of the matrix in an
arbitrary order and not only row by row. This is impor-
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Figure 2: Running time in seconds vs. sketch size.
Each method produces a sketch matrix B of size
ℓ × m for a dense n × m matrix. Here, n = 10, 000,
m = 1, 000 and the value of ℓ is indicated on the
x-axis. The total amount of computation time re-
quired to produce the sketch is indicated on the y-
axis in seconds. The brute force method computes
the complete SVD of A, and therefore its running
time is independent of ℓ. Note that hashing is al-
most as fast as the näıve method and independent
of ℓ which is expected. The rest of the methods ex-
hibit a linear dependence on ℓ which is also expected.
Surprisingly though, Frequent-directions is more com-
putationally efficient than random-projection although
both asymptotically require O(nmℓ) operations.
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Figure 3: Running time in seconds vs. input ma-
trix size. Here, we measure only the running time
of Frequent-directions. The sketch size is kept fixed
at ℓ = 100. The size of the input matrix is n × m.
The value of n is indicated on the x-axis. Differ-
ent plot lines correspond to different values of m
(indicated in the legend box). The running time is
measured in seconds and is indicated on the y-axis.
It is clear from this plot that the running time of
Frequent-directions is linear in both n and m. Note
also that sketching a 105 × 104 dense matrix termi-
nates in roughly 3 minutes.
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tant for recommendation systems. In this setting, user ac-
tions correspond to single non-zeros in the matrix and are
presented to the algorithm one by one in an arbitrary or-
der. New concentration results show that sampling entries
(correctly) yields good matrix sketches, but no deterministic
streaming algorithm is known.
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