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ABSTRACT
Discovering frequent graph patterns in a graph database offers valu-
able information in a variety of applications. However, if the graph
dataset contains sensitive data of individuals such as mobile phone-
call graphs and web-click graphs, releasing discovered frequent
patterns may present a threat to the privacy of individuals. Dif-
ferential privacy has recently emerged as the de facto standard for
private data analysis due to its provable privacy guarantee. In this
paper we propose the first differentially private algorithm for min-
ing frequent graph patterns.

We first show that previous techniques on differentially private
discovery of frequent itemsets cannot apply in mining frequent graph
patterns due to the inherent complexity of handling structural infor-
mation in graphs. We then address this challenge by proposing a
Markov Chain Monte Carlo (MCMC) sampling based algorithm.
Unlike previous work on frequent itemset mining, our techniques
do not rely on the output of a non-private mining algorithm. In-
stead, we observe that both frequent graph pattern mining and the
guarantee of differential privacy can be unified into an MCMC sam-
pling framework. In addition, we establish the privacy and utility
guarantee of our algorithm and propose an efficient neighboring
pattern counting technique as well. Experimental results show that
the proposed algorithm is able to output frequent patterns with good
precision.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information Systems]:
Security and Protection

Keywords
Differential privacy; graph pattern mining

1. INTRODUCTION
Frequent graph pattern mining (FPM) is an important topic in

data mining research. It has been increasingly applied in a va-
riety of application domains such as bioinformatics, cheminfor-
matics and social network analysis. Given a graph dataset D =
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{D1, D2, . . . , Dn}, where each Di is a graph, let gid(G) be the
set of IDs of graphs in D which contain G as a subgraph. G is a
frequent pattern if its count |gid(G)| (also called support) is no less
than a user-specified support threshold f . Frequent subgraphs can
help the discovery of common substructures, and are the building
blocks of further analysis, including graph classification, clustering
and indexing. For instance, discovering frequent patterns in social
interaction graphs can be vital to understand functioning of the so-
ciety or dissemination of diseases.

Meanwhile, publishing frequent graph patterns may impose po-
tential threat to privacy, if the graph dataset contains private infor-
mation of individuals. In many applications, each graph (rather
than a node) is associated with an individual and may be sensi-
tive. For example, the click stream during a browser session of a
user is typically a sparse subgraph of the underlying web graph; in
location-based services, a database may consist of a set of trajecto-
ries, each of which corresponds to the locations of an individual in
a given period of time. Other scenarios of frequent pattern mining
with sensitive graphs may include mobile phone call graphs [23]
and XML representation of profiles of individuals. Therefore, ex-
tra care is needed when mining and releasing frequent patterns in
these graphs to prevent leakage of private information of individu-
als.

Recently, the model of differential privacy [9] was proposed to
restrict the inference of private information even in the presence of
a strong adversary. It requires that the output of a differentially pri-
vate algorithm is nearly identical (in a probabilistic sense), whether
or not a participant contributes her data to the dataset. For the prob-
lem of frequent graph mining, it means that even an adversary who
is able to actively influence the input graphs cannot infer whether
a specific pattern exists in a target graph. Although tremendous
progress has been made in processing flat data (e.g. relational and
transactional data) in a differentially private manner, there has been
very little work (discussed in Section 7) on differentially private
analysis of graph data, due to the inherent complexity in handling
the structural information in graphs.

In this paper we propose the first algorithm for privacy-preserving
mining of frequent graph patterns that guarantees differential pri-
vacy. Recently several techniques [3, 17] have been proposed to
publish frequent itemsets in a transactional database in a differ-
entially private manner. It would seem attractive to adapt those
techniques to address the problem of frequent subgraph1 mining.
Unfortunately, compared with private frequent itemset mining, the
private FPM problem imposes much more challenges. First, graph
datasets do not have a set of well-defined dimensions (i.e.,items),
which is required by the techniques in [17]. Second, counting graph
patterns is much more difficult than counting itemsets (due to graph

1We use ‘graph pattern’ and ‘subgraph’ interchangeably.
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isomorphism), which makes the size of the output space not imme-
diately available in our problem. This prevents us from applying
the techniques in [3]. We will explain the distinctions between [3,
17] and our work with more details in Section 2.3.

Contributions. The major contributions of this paper are summa-
rized as follows:

1. For the first time, we introduce a differentially private algo-
rithm for mining frequent patterns in a graph database. Our
algorithm, called Diff-FPM, makes novel use of a Markov
Chain Monte Carlo (MCMC) random walk method to by-
pass the roadblock of an output space with unknown size.
This enables us to apply the exponential mechanism, which
is an essential approach to achieving differential privacy.

2. Our approach provides provable privacy and utility guaran-
tee on the output of our algorithm. We first show that our
algorithm gives (ε, δ)-differential privacy, which is a relaxed
version of ε-differential privacy. We then show that when the
random walk has reached its steady state, Diff-FPM gives ε-
differential privacy.

3. In order to propose a neighboring pattern more efficiently in
MCMC sampling, we develop optimization techniques that
significantly reduce the number of invocations to the sub-
graph isomorphism test subroutine. Experiment shows that
our techniques can reduce the time to propose a neighboring
pattern by an order of magnitude.

4. We conduct an extensive experimental study on the effective-
ness and efficiency of our algorithm. With moderate amount
of privacy budget, Diff-FPM is shown to output private fre-
quent graph patterns with at least 80% precision.

2. PRELIMINARIES

2.1 Frequent Graph Pattern Mining
Frequent graph pattern mining (FPM) aims at discovering the

subgraphs that frequently appear in a graph dataset. Formally, let
D = {D1, D2, . . . , Dn} be a sensitive graph database which con-
tains a multiset of graphs. Each graph Di ∈ D has a unique
identifier that corresponds to an individual. Let G = (V,E) be
a (sub)graph pattern, the graph identifier set gid(G) = {i : G ⊆
Di ∈ D} includes all IDs of graphs in D that contain a subgraph
isomorphic to G. We call |gid(G)| the support of G in D. The
FPM algorithm can be defined either as returning all subgraph pat-
terns whose supports are no less than a user-specified threshold f ,
or as returning the top k frequent patterns given an integer k as in-
put. One can easily convert one version to the other. All graphs we
consider in this paper are undirected, connected and labeled. Note
that each node has a label and multiple nodes can have the same
label.

2.2 Differential Privacy
Differential privacy [9] is a recent privacy model which provides

strong privacy guarantee. Informally, a data mining or publishing
procedure is differentially private if the outcome is insensitive to
any particular record in the dataset. In the context of graph pattern
mining, letD,D′ be two neighboring datasets, i.e.,D andD′ differ
in only one graph (by adding or removing an individual), written as
||D − D′|| = 1. Let Dn be the space of graph datasets containing
n graphs.

DEFINITION 1 (ε-DIFFERENTIAL PRIVACY). A randomized al-
gorithm A is ε-differentially private if for all neighboring datasets
D,D′ ∈ Dn, and any set of possible output O ⊂ Range(A):

Pr[A(D) ∈ O] ≤ eε Pr[A(D′) ∈ O].

The parameter ε > 0 allows us to control the level of privacy. A
smaller ε suggests more limit posed on the influence of a single
graph. Typically, the value of ε should be small (ε < 1). ε is usu-
ally specified by the data owner and referred as the privacy budget.
In section 5.1 our discussion is related to a weaker notion called
(ε, δ)-differential privacy [8], which allows a small additive error
factor of δ.

DEFINITION 2 ((ε, δ)-DIFFERENTIAL PRIVACY). A random-
ized algorithm A is (ε, δ)-differential private if for all neighbor-
ing datasets D,D′ ∈ Dn, and any set of possible output O ⊂
Range(A):

Pr[A(D) ∈ O] ≤ eε Pr[A(D′) ∈ O] + δ.

A popular technique in applying differential privacy is the Laplace
mechanism [9], which adds noise following Laplace distribution to
the numeric output of a function. Applying the Laplace mechanism
in our problem means adding noise to the support of all possible
patterns and selecting the patterns with the highest noisy supports.
However, this would be infeasible since it is computationally pro-
hibitive to enumerate all possible patterns in any non-trivial sized
graph mining problem.

Exponential Mechanism. A general technique of applying dif-
ferential privacy is the exponential mechanism [20]. It not only
supports non-numeric output but also captures the full class of dif-
ferential privacy mechanisms. The exponential mechanism consid-
ers the whole output space and assumes that each possible output
is associated with a real-valued utility score. By sampling from
a distribution where the probability of the desired outputs are ex-
ponentially amplified, the exponential mechanism (approximately)
finds the desired outputs while ensuring differential privacy.

Formally, given input space Dn and output space X , a score
function u : Dn × X → R assigns each possible output x ∈ X
a score u(D, x) based on the input D ∈ Dn. The mechanism
then draws a sample from the distribution on X which assigns each
x a probability mass proportional to exp(εu(D, x)/2∆u), where
∆u = max∀x,D,D′ |u(D, x) − u(D′, x)| is the sensitivity of the
score function. Intuitively, the output with a higher score is expo-
nentially more likely to be chosen. It is shown that this mechanism
satisfies ε-differential privacy [20].

THEOREM 1. [20] Given a utility score function u : Dn×X →
R for a dataset D, the mechanism A,

A(D, x) , return x with probability ∝ exp(
εu(D, x)

2∆u
)

gives ε-differential privacy.

The exponential mechanism has been shown to be a powerful
technique in finding private medians [6], mining private frequent
itemset [3, 17] and more generally adapting a deterministic algo-
rithm to be differentially private [22]. Our Diff-FPM algorithm
works by carefully applying the exponential mechanism. In this
process we must overcome several critical challenges, which are
identified next.

2.3 Challenges and Strategies
There has been work [3, 17] on mining frequent itemsets in a

transaction dataset under differential privacy. However, the shift
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from transactions to graphs poses significant new challenges. In
[17], transaction datasets are viewed as high-dimensional tabular
data, and the proposed approach projects the input database onto
lower dimensions. However, graph datasets do not have a well de-
fined set of items, i.e., dimensions, which renders the approach in
[17] inapplicable in our FPM problem. In [3], two methods are pro-
posed which make use of a notion of truncated frequency. However,
those methods cannot be used in our problem due to the following
fundamental challenges:

Support Counting. Obtaining the support of a graph pattern is
much more difficult than counting itemsets. An itemset pattern can
be represented by an ordered list or a bitmap of item IDs Checking
the existence of an itemset in a transaction only takes O(1) time,
while checking whether a subgraph pattern exists in a graph is NP-
complete due to subgraph isomorphism.

Unknown Output Space. The output spaceX in our problem con-
tains a finite number of graph patterns which may or may not exist
in the input dataset. Under differential privacy, any pattern in the
output space should have non-zero probability to be in the final out-
put. The probability of sampling a pattern x from the output space
is

π(x) =
exp(εu(x)/2∆u)

C
, (1)

where C =
∑
x∈X exp(εu(x)/2∆u) is the normalizing constant

according to Theorem 1. The most straightforward way to compute
C requires enumerating all the patterns in the output space. In [3],
a technique is proposed to apply the exponential mechanism with-
out enumerating if the size of the output space is known. However,
unlike [3], in which the output space size can be obtained by sim-
ple combinatorics (i.e.,

(
m
l

)
patterns of size l given an alphabet of

size m), the size of the output space X in our problem is not im-
mediately available (due to graph isomorphism2), which prohibits
us from applying exponential mechanism directly. Therefore we
cannot apply the same techniques as in [3].

Given the analysis above, we need to develop new ways to over-
come the issue of an unknown |X |. Note that although the global
information on the output space is not accessible, we do have the
local information on any specific pattern – given any pattern x, we
can immediately calculate its utility score u(x). In addition, the
unknown normalizing constant C is common to all patterns. That
is, given any pair of patterns x1, x2, the ratio of probability mass
π(x1)/π(x2) is available without knowing the exact probabilities,
according to Eq.(1). Such scenarios, where one needs to draw sam-
ples from a probability distribution known up to a constant fac-
tor, also arise in statistical physics when analyzing dynamic sys-
tems, where Markov Chain Monte Carlo (MCMC) methods are of-
ten used. Inspired by that, our idea is to perform a random walk
based on locally computed probabilities. By carefully choosing
the neighbor and the probability of moving in each step using the
Metropolis-Hastings (MH) method [24], the random walk will con-
verge to the target distribution, from which we can output samples.
Next we discuss the details of our Diff-FPM algorithm.

3. PRIVATE FPM ALGORITHM

3.1 Overview
The key challenge of handling graph datasets is the unknown

output space when applying the exponential mechanism. The Diff-
FPM algorithm meets the challenge by unifying frequent pattern
2A detailed analysis on the size of the output space can be found in
the full version [26].

mining and applying differential privacy into an MCMC sampling
framework. The main idea of Diff-FPM is to simulate a Markov
chain by performing an MCMC random walk in the output space.
Our goal is that when the random walk reaches its steady state,
the stationary distribution of the Markov chain matches the target
distribution π in Eq.(1). In Section 3.2.1 we will explain in detail
how to apply the Metropolis-Hastings (MH) method in our problem
to achieve this goal. Before that, we need to define the state space
in which we perform the random walk.

Partial Order Full Graph. To facilitate the MH-based random
walk in the output space, we define the Partial Order Full Graph
(POFG) as the state space of the Markov chain on which the sam-
pling algorithm run the simulation. Each node in POFG corre-
sponds to a unique graph pattern and each edge in POFG represents
a possible ‘extension’ (add or remove one edge) to a neighboring
pattern. Naturally, each node in the POFG has three types of neigh-
bors: sub-neighbor (by removing an edge), super-backward neigh-
bor (by connecting two existing nodes) and super-forward neigh-
bor (by adding and connecting to a new node).

EXAMPLE 1. Figure 1 shows a simple graph dataset contain-
ing 3 graphs and its POFG. The dashed patterns have support
smaller than 2 in the dataset. Pattern A − A − C has two sub-
neighbors, one super-backward neighbor and several super-forward
neighbors (only one shown in Figure 1(b)). Self-loops and multi-
edges are not considered in this example and thus are excluded
from the output space.

At a higher level, the random walk starts with an arbitrary pattern
and proceeds to an adjacent pattern with certain probability in each
step. Since the transition decision is made solely based on local
information (related to the neighborhood of the current pattern),
there is no need to construct the global POFG explicitly. When the
random walk has reached its steady state, the probability of being in
state x follows exactly the target distribution π(x) in Eq.(1). Then
the current state is drawn as a sampled pattern. Since the frequent
patterns have larger probabilities in the target distribution, they are
more likely to appear in the final output.

3.2 Detailed Descriptions

3.2.1 The Diff-FPM Algorithm
The core of the Diff-FPM algorithm is a careful application of

the MH method. The MH method is a Markov Chain Monte Carlo
(MCMC) method for obtaining a sequence of random samples from
a target probability distribution for which direct sampling is diffi-
cult. It only requires that a function proportional to the probability
mass be calculable.

Suppose we want to generate a random variable X taking values
in X = {x1, . . . , x|X|}, according to a target distribution π, with

π(xi) =
b(xi)

C
, xi ∈ X

where all b(xi) are strictly positive, |X | is large, and the normal-
izing constant C =

∑|X|
i=1 b(xi) is difficult to calculate. The MH

method first constructs an |X |-state Markov chain {Xt, t = 0, 1, . . . }
onX whose evolution relies on an arbitrary proposal transition ma-
trix Q =

(
q(x, y)

)
in the following way:

1. When Xt = x, generate a random variable Y satisfying
P (Y = y) = q(x, y), y ∈ X

2. Given Y = y, let

Xt+1 =

{
y with probability αxy,
x with probability 1− αxy,
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Figure 1: Example graph database and POFG

where αxy = min

{
π(y)q(y,x)
π(x)q(x,y)

, 1

}
= min

{
b(y)q(y,x)
b(x)q(x,y)

, 1

}
. It

means that given a current state x, the next state is proposed ac-
cording to the proposal distribution Q. q(x, y) is the probability
mass of state y among all possible states given the current state is
x. With probability αxy , the proposal is accepted and the chain
moves to the new state y. Otherwise it remains at state x. It fol-
lows that {Xt, t = 0, 1, . . . } has a one-step transition probability
matrix P :

P (x, y) =

{
q(x, y)αxy, if x 6= y
1−

∑
z 6=x q(x, z)αxz, if x = y

It can be shown that for the above P , the Markov chain is re-
versible and has a stationary distribution π, equal to the target dis-
tribution. Therefore, once the chain has reached the steady state,
the sequence of samples we get from the MH method should fol-
low the target distribution.

EXAMPLE 2. Consider a random walk on the POFG illustrated
in Figure 1(b). Suppose the current state of the walk is ‘A-A-
D’ (pattern x). Following the MH method, one of pattern x’s
neighbors needs to be proposed according to a proposal distribu-
tion q(x, y). For simplicity, in this example each neighbor has an
equal probability to be proposed, i.e., q(x, y) = 1/|N(x)|, where
N(x) is the neighbor set of x. Assuming ‘A-D’ (pattern y) is pro-
posed and |N(x)| = 5, |N(y)| = 10, b(·) = exp(|gid(·)|/2),
the probability of accepting the proposal is calculated as αxy =

min{ exp(3/2)·(1/10)
exp(2/2)·(1/5)

, 1}= 0.82. We can then draw a random num-
ber between 0 and 1 to decide whether walking to pattern y or
staying at x.

The description of the Diff-FPM algorithm above can be summa-
rized in Algorithm 1. The input consists of the raw graph dataset
D, a support threshold f and the privacy budget ε = ε1 +ε2. If the
top-k frequent patterns are desired, we first run non-private FPM
algorithms such as gSpan [29] to get the support threshold f , i.e.,
the support of the kth frequent pattern. If one only needs k pat-
terns whose supports are no less than a threshold, f can be directly
provided to the algorithm. At a higher level, Algorithm 1 consists

Algorithm 1: Diff-FPM algorithm
input : Graph dataset D, threshold f , privacy budget ε1, ε2

output: A set S of k private frequent patterns
1 for i = 1 to k do
2 Choose any pattern in the output space as seed pattern;
3 while True do
4 Propose a neighboring pattern y of current pattern x

according to the proposal distribution (Eq. 2);
5 Accept the proposed pattern with probability

αxy = min
{ exp(ε1u(y)/2k∆u)qyx

exp(ε1u(x)/2k∆u)qxy
, 1
}

;
6 if convergence conditions are met then
7 Add current pattern to S and remove it from the

output space;
8 break;
9 (Optional) for each pattern in S, perturb its true support by

Laplace mechanism with privacy budget ε2/k;

of two phases: sampling and perturbation. The sampling phase in-
cludes k applications of the exponential mechanism via MH-based
random walk in the output space.

Initially, we select an arbitrary pattern in the output space to start
the walk (Line 2). At each step, we propose a neighboring pat-
tern y of the current pattern x according to a proposal distribution
(Line 4). The proposal distribution does not affect the correctness
of the MH method, so we defer the details to Section 3.2.3. The
proposed pattern is then accepted with probability αxy as in the
MH-algorithm (Line 5), where u(·) is the score function with ∆u
being the sensitivity of u(·). We explore the design space of the
score function in the next paragraph. When the Markov chain has
converged (see Section 3.3 for convergence diagnostic), we output
the current pattern and remove it from the output space (Line 6 to
8). We then start a new walk until k patterns have been sampled.
Finally, if one wants to include the support of each output pattern as
well, the count of each pattern is perturbed by adding Lap(k/ε2)
noise (Line 9).

3.2.2 Score Function Design
Choosing the utility score function is vital in our approach as it

directly affects the target distribution. A general guideline is that
the patterns with higher supports should have higher utility scores
in order to have larger probabilities to be chosen according to expo-
nential mechanism. Under this guideline, given an input database
D, the most straightforward choice is to let u(x,D) = |gid(x)|
for any pattern x. In this case, the sensitivity ∆u is exactly 1 since
the support of any subgraph pattern may vary by at most 1 with the
addition or removal of a graph in the dataset. This is also the score
function we use in the experiment.

3.2.3 Proposal Distribution
Although in theory the proposal distribution can be arbitrary, it

can significantly impact the efficiency of the MH method by affect-
ing the mixing time (time to reach steady state). A good proposal
distribution can improve the convergence speed by increasing the
accept rate αxy in the MH method. On the contrary, if the proposed
pattern is often rejected, the chain can hardly move forward. It has
been suggested that one should choose a proposal distribution close
to the target distribution [11]. In our problem setting, it is prefer-
able to make a distinction between the patterns having support no
less than f (referred as frequent patterns) and those whose supports
are lower (referred as infrequent patterns). Given a current state x,
we denote the set of frequent neighbors of x asN1(x) and the set of
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infrequent neighbors asN2(x). Since |N2(x)| is usually larger than
|N1(x)|, we will balance the probability mass assigned to N1(x)
andN2(x) by introducing a tunable parameter η (0 < η < 1). Our
heuristic based proposal distribution is formally described below:

Q(x, y) =

{
η × 1

|N1(x)| , if y ∈ N1(x)

(1− η)× 1
|N2(x)| , if y ∈ N2(x)

(2)

In the experiment we use η > 0.5 such that a frequent pattern has
a higher probability to be proposed than an infrequent pattern. If
any of N1(x) or N2(x) is empty, its probability mass will be re-
distributed (by setting η = 0 or η = 1 respectively). Note that the
choice of the proposal distribution does not impact the privacy and
utility guarantee of Diff-FPM.

3.2.4 Pattern Removal
In line 6 to 8 of Algorithm 1, after the convergence conditions

are met and a sample pattern g is outputted, we need to exclude g
from the output space by connecting g’s neighbors and removing
g in the POFG. In our implementation this is done by replacing
g by all the neighbors of g whenever g appears in some pattern’s
neighborhood. Note that we do not output multiple patterns when
the chain has converged. This is because once a pattern is sampled,
it should be excluded from the output space and thus have zero
probability to be chosen. Therefore adjustment to the output space
is necessary after each sample. For the same reason we do not run
multiple chains at once.

3.3 Convergence Diagnostics
The theory of MCMC sampling requires that samples are drawn

when the Markov chain has converged to the stationary distribution,
which is also our target distribution π. The most straightforward
way to diagnose convergence is to monitor the distance between the
target distribution π and the distribution of samples π̂. In practice,
however, π is often known only up to a constant factor. To deal with
this problem, several online diagnostic tests have been developed in
the MCMC literature [11] and used in random walk based sampling
of graphs [12].

Online diagnostics rely on detecting whether the chain has lost
its dependence on the starting point. We adopt a standard conver-
gence test called the Geweke diagnostic [10]. The Geweke diagnos-
tic takes two non-overlapping parts (usually the first 0.1 and last 0.5
proportions) of the Markov chain and see if they are from the same
distribution. Specifically, let X be a sequence of samples of our
metric of interest and X1, X2 be the two non-overlapping subse-
quences. Geweke computes theZ-score: Z = E(X1)−E(X2)√

V ar(X1)+V ar(X2)
.

With increasing number of iterations, X1 and X2 should move fur-
ther apart and become less and less correlated. When the chain
has converged, X1 and X2 should be identically distributed with
Z ∼ N(0, 1) by law of large numbers. We can declare conver-
gence when Z has continuously fallen in the [−1, 1] range. Since
the samples in our problem are graph patterns rather than a scalar,
we may need to monitor multiple scalar metrics related to different
properties of the sampled pattern and declare convergence when all
these metrics have converged.

We need to acknowledge that these convergence diagnostic tools
from the MCMC literature are heuristic per se. Verifying the con-
vergence remains an open problem if the distribution of samples
is not directly observable. Even so, Diff-FPM still achieves (ε, δ)-
differential privacy if there exists a small distance between the tar-
get and simulation distributions, as we will show in Lemma 2 in
Section 5.

Algorithm 2: The EEN algorithm
input : Pattern x, graph dataset D, support threshold f
output: N1(x), N2(x)

1 Initialize N1,N2 ← ∅ (x omitted for brevity);
2 Find membership bitmap Bx using VF2 isomorphism test;
3 Populate sub-neighbors Nb, super-back neighbors Np

back,
super-forward neighbors Np

fwd;

/* Explore sub-neighbors Nb
*/

4 if sum(Bx) ≥ f then N1 ← N1 ∪Nb;
5 else for x′ ∈ Nb do
6 if SUB_IS_FREQ (x′, Bx) then N1 ← N1 ∪ {x′};
7 else N2 ← N2 ∪ {x′};
/* Explore super-back neighbors Np

back */

8 if sum(Bx) < f then N2 ← N2 ∪Np
back;

9 else
10 ∀x′ ∈ Np

back, initialize dictionary H[x′] = 0;
11 for i← 1 to |D| do
12 Find setM of all mappings between Di and x;
13 for x′ ∈ Np

back do
14 if H[x′] < f and |D| − i+H[x′] ≥ f then
15 Let (u, v) be the back edge, i.e.,

x = x′ � (u, v);
16 for m ∈M do
17 if m(u),m(v) are adjacent in Di then
18 H[x′]← H[x′] + 1;
19 break;
20 for x′ ∈ Np

back do
21 if H[x′] ≥ f then N1 ← N1 ∪ {x′};
22 else N2 ← N2 ∪ {x′};
23 Explore super-forward neighbors Np

fwd similarly as Np
back,

details in [26];
24 return N1, N2;

4. EFFICIENT EXPLORATION OF NEIGH-
BORS (EEN)

We have discussed so far the core of the Diff-FPM algorithm and
seemingly it could be run straightforwardly. However, without cer-
tain optimization, the computation cost might render the algorithm
impractical to run. The most costly operation in the Diff-FPM algo-
rithm is proposing a neighbor of the current pattern x. According
to the proposal distribution in Eq.2, this requires knowledge on the
support of each pattern in x’s neighbors N(x). Due to the fact that
subgraph isomorphism test is NP-complete, obtaining the support
of each neighbor might become a computation bottleneck.

To overcome this problem, we have developed an efficient al-
gorithm (called EEN) to explore the neighborhood of a pattern by
observing the connection between neighboring patterns and their
isomorphic mappings.

4.1 The EEN Algorithm
The task of neighbors exploration can be described as: given a

pattern x, find the set of frequent neighbors N1(x) and infrequent
neighbors N2(x), as in the proposal distribution (Eq.2). A naive
way to populate N1(x) and N2(x) is to test each neighbor of x
against the graph dataset D. However, this is extremely inefficient
since |N(x)| · |D| isomorphism tests are required, where |D| is the
number of graphs in D. A basic optimization would be using the
monotonic property of frequent patterns: if x is a frequent pattern,
any subgraph of x should be frequent too; likewise, an infrequent
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pattern’s super-graph must be infrequent. However, explicit iso-
morphism testing is still required for exploring the super-neighbors
of x if x is frequent or x’s sub-neighbors if x is infrequent.

The EEN algorithm is able to further reduce the number of iso-
morphism tests. Observing that x and y only differ in one edge
for all y ∈ N(x), the main idea of is to re-use the isomorphic
mappings between x and Di ∈ D and examine whether any of
the isomorphic mappings can be retained after extending an edge.
The EEN algorithm is formally presented in Algorithm 2 and is
described in the following.

Algorithm 2 takes pattern x, graph datasetD and support thresh-
old f as input and returns N1(x) and N2(x). First, pattern x is
tested against each graph in D and the result is stored in Bx =
{i|x ⊆ Di, Di ∈ D}, which is the set of IDs of graphs containing
pattern x (line 2). The subgraph isomorphism algorithm we use is
the VF2 algorithm [5]. Next we populate three types of neighbors
of x: sub-neighbors Nb, super-back neighbors Np

back and super-
forward neighbors Np

fwd (line 3), and handle them differently.

Explore sub-neighbors (line 4 to 7). For Nb , if x is frequent, the
entire set Nb should be frequent. If x is infrequent, each pattern
in Nb is examined by the boolean sub-procedure SUB_IS_FREQ.
SUB_IS_FREQ takes a sub-neighbor x′ of x and Bx as input and
returns whether x′ is frequent. First we find BE =

⋂
e∈x′ Be, the

intersection of ID sets of all edges in pattern x′. Then subgraph
isomorphism test is only needed for the graphs Di ∈ BE\Bx.
The set of IDs of graphs that succeed the test together with Bx
comprise Bx′ . Finally the procedure returns the frequentness of x′

by comparing f and the size of Bx′ .

Explore super-back neighbors (line 8 to 22). For Np
back, if x is

infrequent, the entireNp
back must be infrequent. Otherwise, we test

whether x′ ∈ Np
back is a subgraph of Di for each Di. In this part,

the EEN algorithm does not require any additional subgraph iso-
morphism test at all. This is achieved by re-using the isomorphism
mappings between the base pattern x and Di and reasoning upon
that. In line 12 we find all the subgraph isomorphism mappings
M : V nx → V nDi

, which can be obtained at the same time when
computing Bx in line 2 as part of the VF2 algorithm. Note that
the subgraph isomorphism package we use is complete, i.e., it can
return all the mappings. Suppose x is extended to x′ by connect-
ing node u and v (line 15). If any of the isomorphism mappings
m ∈M is preserved with the edge extension (i.e., m(u) andm(v)
are adjacent in Di), x′ must be a subgraph of Di. Otherwise if
none of the mappings can be preserved, x′ is not a subgraph of Di.

In the above process, we use a dictionary H to keep track of the
number of graphs in D so far that contains x′ as a subgraph, i.e.,
H[x′] maintains |{Di|x′ ⊆ Di}| for the Di tested so far. Line
14 ensures that the isomorphism extension test is only performed
when H[x′] has not reached f .

Explore super-forward neighbors. For Np
fwd, the algorithm is

similar to the procedures of exploring super-back neighbors, except
that the extension test is now on a forward edge instead of a back
edge. The details are available in [26] due to space limit.

5. PRIVACY AND UTILITY ANALYSIS
The proof of the lemmas and theorems in this section can be

found in [26].

5.1 Privacy Analysis
In this part we establish the privacy guarantee of Diff-FPM. We

show both the sampling and perturbation phases preserve privacy,

and then we use the composition property of differential privacy to
show the privacy guarantee of the overall algorithm.

In the sampling phase, our target probability distribution π(D, ·)
equals exp(ε1u(D,·)/2k∆u)

C
for a given dataset D. If samples were

drawn directly from this distribution, it would achieve strict ε1
k

-
differential privacy due to the exponential mechanism. Since we
use MCMC based sampling, the distribution of the samples π̂(D, ·)
will approximate π(D, ·), i.e. the two distributions are asymptot-
ically identical. In real simulation, there may be a small distance
between the two distributions. To quantify the impact on privacy
when a small error is present, we use the total variation distance
[24] to measure the distance of the two distributions at a given time:

||π̂(·)− π(·)||TV ≡ max
T⊂X

|π̂(T )− π(T )| (3)

which is the largest possible difference between the probabilities
that π(·) and π̂(·) can assign to the same event.

Let A(D) denote the process of sampling one pattern according
to Algorithm 1 (Line 4 to 8). The privacy guarantee that A(D)
offers is described by the following lemma:

LEMMA 2. Let π(·) and π̂(·) denote the target distribution and
the distribution of samples fromA(D) respectively. Suppose ||π̂(·)−
π(·)||TV ≤ θ, procedure A(D) gives ( ε1

k
, δ)-differential privacy,

where δ = θ(1 + eε1/k).

Note that θ is a function of simulation time t. The following lemma
describes the asymptotic behavior and the speed of convergence of
the chain :

LEMMA 3. [24] If a Markov chain on a finite state space is
irreducible and aperiodic, and has a transition kernel P and sta-
tionary distribution π(·), then for x ∈ X ,

||P t(x, ·)− π(·)||TV ≤Mρt, t = 1, 2, 3, . . . (4)

for some ρ < 1 and M <∞. And

lim
t→∞

||P t(x, ·)− π(·)||TV = 0 (5)

It means θ is decreasing at least at a geometric speed and approx-
imates to zero when the simulation is running long enough.

Since the sampling process in Algorithm 1 consists of k succes-
sive applications of exponential mechanism based on random walk,
we need the following well-known composition lemma to provide
privacy guarantee for the entire sampling phase.

LEMMA 4. [19] Let A1, . . . ,At be t algorithms such that Ai
satisfies εi-differential privacy, 1 ≤ i ≤ t. Then their sequential
composition 〈A1, . . . ,At〉 satisfies ε-differential privacy, for ε =∑t
i=1 εi.

Equipped with the results in previous lemmas, we are able to
provide the privacy guarantee for Algorithm 1.

THEOREM 5. Algorithm 1 satisfies ε-differential privacy.

5.2 Utility Analysis
Because neighboring inputs must have similar output under dif-

ferential privacy, a private algorithm usually does not return the
exact answers. In the scenario of mining top-k frequent patterns,
the Diff-FPM algorithm returns a noisy list of patterns which is
close to the real top-k patterns. To quantify the quality of the out-
put of Diff-FPM, we first define two utility parameters, following
[3]. Recall that f is the support of the kth frequent pattern, and let
β be an additive error to f . Given 0 < γ < 1, we require that
with probability at least 1− γ, (1) no pattern in the output has true
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support less than f − β and (2) all patterns having support greater
than f + β exist in the output. The following theorems provide the
utility guarantee of Diff-FPM. A score function u(x) = |gid(x)| is
assumed.

THEOREM 6. At the end of the sampling phase in Algorithm 1,
for all 0 < γ < 1, with probability at least 1−γ, all patterns in set
S have support greater than f−β, where β = 2k

ε1
(ln(k/γ)+lnM)

and M is an upper bound on the size of output space.

The following theorem provides the upper bound of noise added to
the true support of each output pattern.

THEOREM 7. For all 0 < γ < 1, with probability of at least
1 − γ, the noisy support of a pattern differs by at most β, where
β = k

ε2
ln(1/γ).

6. EXPERIMENTAL STUDY
In this section, we evaluate the performance of Diff-FPM through

extensive experiments on various datasets. Since this is the first
work on differentially private mining of frequent graph patterns,
the quality of the output is compared with the result from a non-
private FPM algorithm and the accuracy is reported. In this section
we consider the scenario of mining the top-k frequent patterns.

6.1 Experiment Setup
Datasets. The following three datasets are used in our experiment:
DTP is a real dataset containing DTP AIDS antiviral screening
dataset3, which is frequently used in frequent graph pattern min-
ing study. It contains 1084 graphs, with an average graph size of
45 edges and 43 vertices. There are 14 unique node labels and all
edges are considered having the same label.

The click dataset consists of 20K small tree graphs (4 nodes and
3 edges on average) obtained by a graph generator developed by
Zaki [30]. To a certain extent, this synthetic dataset simulates user
click graphs from web server logs [30], which is a suitable type
of data requiring privacy-preserving mining. All the tree graphs in
this dataset are sampled from a master tree.

The above two datasets contain graphs that are relatively sparse.
To test our algorithm on dense graphs, we also use a dataset con-
taining 5K graphs, in which the average node degree is 7. Each
graph contains 10 vertices and 35 edges on average. The graph gen-
erator [4] we use is specially designed for generating graph datasets
for evaluation of frequent subgraph mining algorithms. The size of
this graph dataset is comparable to the largest datasets used in pre-
vious works [29, 15].

Utility metrics. We evaluate the quality of the output of Diff-
FPM by employing the following three utility metrics: Precision,
Support Accuracy and nDCG4. Precision is defined as the fraction
of identified top-k graph patterns that are in the true top-k, i.e.,
Precision = |True Positives|/k. This is the complementary mea-
sure of the false negative rate used in [3]. The true top-k patterns
are obtained by a non-private graph mining algorithm (gSpan [29]
in our experiment). The measure of precision reflects the percent-
age of desired/undesired patterns in the output, yet it cannot in-
dicate how good or bad the output patterns are in terms of their
supports. For example, if f = 1000, it is much more undesirable if
a pattern with support 10 appears in the output compared to a pat-
tern with support 980, even though the precision may be the same
in these two cases. We first define the relative support error (RSE)
3http://dtp.nci.nih.gov/docs/aids/aids_data.html
4http://en.wikipedia.org/wiki/Discounted_cumulative_gain

as RSE = (Strue−Sout)/kf , where Strue and Sout are the sum
of the supports of the real top-k patterns and sum of the supports of
the sampled patterns respectively. This measure reflects the average
deviation of an output pattern’s support with respect to the support
threshold f . In the plots, the support accuracy is reported, which
equals 1−RSE. nDCG is a commonly used metric to compare two
ranked lists. This metric is accumulated from the top of the result
list to the bottom with the weight of each result discounted at lower
ranks. In our problem setting, the top-k patterns are un-ordered.
Still, nDCG is able to reveal whether any important pattern is miss-
ing in the output.

All experiments were conducted on a PC with 3.40GHz CPU
with 8GB RAM. The random walk in the Diff-FPM algorithm has
a small memory footage due to its Markovian nature. We imple-
mented our algorithm in Python 2.7 with the JIT compiler PyPy5 to
speed up. The default parameters of ε = 0.5, η = 0.8 and k = 15
were used unless specified otherwise. In the experiment we do not
release the noisy supports of the patterns in the output (line 9 in Al-
gorithm 1), so all the privacy budget is used in the sampling phase.

6.2 Experiment Results

Comparison of neighbor exploration methods. In Section 4.1
we proposed the EEN algorithm to efficiently explore the neigh-
borhood of a pattern. We now compare it with two other meth-
ods: a naive approach which finds the support of each neighbor of
the current pattern x and a basic approach which uses the mono-
tonic property of frequent patterns (see Section 4.1). Figure 2(a)
shows the average iteration time in logarithm of the three meth-
ods over three datasets. In each iteration, a neighboring pattern is
proposed and then accepted or rejected according to the MH algo-
rithm. Clearly, EEN takes significantly less time in each iteration
than the other methods in both datasets, reducing the iteration time
by at least an order of magnitude compared to the naive approach.
Thus all subsequent results are presented with EEN enabled.

Run time and scalability. Figure 2(d) illustrates the average time
taken to output one frequent pattern as the size of the dataset in-
creases. For the full datasets, click takes 20 seconds, DTP takes
about 1 minute and dense sits in the middle, although the click
dataset contains 20K graphs compared to only 1K in the DTP. It
indicates that the size of each individual graph and the size of the
neighborhood have a larger impact on the run time than the total
number of graphs in the dataset (note that DTP has 14 labels and
thus a larger neighborhood of a pattern compared to dense). For
scalability, all datasets are observed to have linear scale-up in time
as the size of graph dataset increases.

Utility result. To test the quality of the output by Diff-FPM, we ex-
amine the utility metrics introduced above under various parameter
settings.

First, Figure 2(b) and Figure 2(c) show the precision and SA
when we increase the size of the graph dataset from 10% to 100%
6. An increasing trend of the output quality can be clearly observed
here. This is in line with our expectation because achieving dif-
ferential privacy is more demanding in a small dataset – the larger
the number of records in the database, the easier it is to hide an
individual record’s impact on the output. For all three full datasets,
Diff-FPM is able to achieve at least 80% on both precision and SA.

Figure 3(a) shows the precision when varying privacy budget ε.
With a very limited budget (ε = 0.1), only about 30% of samples
5http://pypy.org
6The data point for dense at 10% is absent since the smallest dataset
size can be generated is 1K.
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Figure 2: Effectiveness of EEN and impact of graph dataset size
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Figure 3: Precision and accuracy versus ε and k
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Figure 4: nDCG versus ε

are from the real top-k patterns for DTP and dense. This is in-
evitable due to the privacy-utility tradeoff. As more privacy budget
is given, the precision of Diff-FPM increases fast. At ε = 0.5, the
precisions from all datasets have reached 80%. Further increase
in privacy budget does not provide significant benefit on the pre-
cision. We observed a similar trend in the support accuracy plot
(Figure 3(b)), with less dramatic changes for ε from 0.1 to 0.5.

Figures 3(c) and 3(d) illustrate the impact of the number of pat-
terns in the output. Recall that in each round of sampling, a budget
of ε/k is consumed (cf. proof of Theorem 5). Given a certain
privacy budget, the more patterns to output, the less privacy bud-
get each sample can use. Thus we expect the average quality of
the output to drop as k increases, which is confirmed in the result.
Meanwhile, the support accuracy of the output holds well with the
increasing number of output, which can be seen in Figure 3(d).

We also report the nDCG of the output with respect to differ-
ent privacy levels in Figure 4. It can be seen that given moderate
amount of privacy budget, the nDCG of the output remains larger
than 0.8, suggesting close resemblance (especially on the several
most frequent patterns) between the true top-k and the top-k we
found.

Convergence analysis. A decision we have to make is when to
stop the random walk and output a sample. In Section 3.3 we in-

Figure 5: Convergence trace of 20 chains

troduced Z-score based Geweke diagnostic, which compares the
distribution at the beginning and end of the chain. Since MCMC is
typically used to estimate a function of the underlying random vari-
able instead of structural data like graphs, we need to choose some
properties of the patterns which we will monitor using the Geweke
test. The three metrics we use in the experiment are the number
of neighbors N(x), the number of frequent neighbors N1(x) and
the number of nodes in the pattern |x|. Figure 5 shows the conver-
gence traces of a sample run withK = 20 and ε = 0.5 on the DTP
dataset. Each curve corresponds to the Z-score of a chain over the
number of iterations. It can be seen that the Markov chain we de-
sign has pretty fast convergence rate thanks to the tuning of the pro-
posal distribution. For each chain, convergence is declared when
the Z-scores of all three metrics have fallen within the [−1, 1] range
for 20 iterations continuously. In Figure 5, this happens around 150
iterations for most chains.

7. RELATED WORK
Data Mining with Differential Privacy. There exist two ap-

proaches to differentially private data mining. In the first approach,
the data owner releases an anonymized version of the dataset under
differential privacy. And the user has the freedom of conducting
any data mining task on the anonymized dataset. We call this the
‘publishing model’. Examples include releasing anonymized ver-
sion of contingency tables [28], data cubes [7] and spatial data [6].
The general idea in these work is to release tables of noisy counts
(histograms) and study how to ensure they are sufficiently accurate
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for different query workloads. In the other approach, differential
privacy is applied to a specific data mining task, such as social rec-
ommendations [18] and frequent itemset mining [3]. The problem
addressed in this paper falls into this category.

Privacy-Protection of Graphs. The aforementioned works on
differentially private data mining all deal with structured data. For
graph data, there is plenty of research effort [1] to anonymize a so-
cial network graph to prevent node and edge re-identification. But
most of them focus on modifying the graph structure to satisfy k-
anonymity, which has been proved to be insufficient [1]. Recently,
several works [16, 13, 25, 14, 21] emerge to provide private anal-
ysis of graph data. Two types of differential privacy have been
introduced to handle graph data: node differential privacy and edge
differential privacy. It is still open whether any nontrivial graph
statistics can be released under node differential privacy due to its
inherent large sensitivity (e.g., removing a node in a star graph may
result in an empty graph). Hay et al. [13] consider the problem
of releasing the degree distribution of a graph under a variant of
edge differential privacy. More recently, Karwa et al. [16] pro-
pose algorithms to output approximate answers to subgraph count-
ing queries, i.e., given a query graph H (e.g. a triangle, a k-star),
returning the number of edge-induced isomorphic copies of H in
the input graph. Unfortunately, their work does not support the case
when H is an arbitrary subgraph yet.

In contrast, we have a different problem setting from [16]. First,
like [3], our privacy-preserving algorithm is associated with a spe-
cific and more complicated data mining task. Second, we consider
a graph database containing a collection of graphs related to indi-
viduals.

Graph Pattern Mining. Finally, we briefly discuss relevant
works on traditional non-private graph pattern mining. Earlier works
which aim at finding all the frequent patterns in a graph database
usually explore the search space in a certain manner. Represen-
tative approaches include a priori-based (e.g. [15]) and pattern
growth based (e.g. gSpan [29]). Recent works aim at mining signif-
icant or representative patterns with scalability. One way of achiev-
ing this is through random walk [2], which also motivates our use
of MCMC sampling for privacy preserving purpose. Another re-
motely related work is [27], which connects probabilistic inference
and differential privacy. It differs from this work by focusing on
inferencing on the output of a differentially private algorithm.

8. CONCLUDING REMARKS
In this paper we have presented a novel technique for differen-

tially private mining of frequent graph patterns. The proposed solu-
tion integrates the process of graph mining and privacy protection
into an MCMC sampling framework. Moreover, we have estab-
lished the theoretical privacy and utility guarantee of our algorithm.
Experiments on both synthetic and real datasets show good preci-
sion and support accuracy with moderate amount of privacy budget.
We also notice the drop in utility with the increase of the number
of outputs or the decrease in dataset size, which is inevitable under
the requirement of differential privacy.
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