
Mining High Utility Episodes in Complex Event Sequences
Cheng-Wei Wu1, Yu-Feng Lin1, Philip S. Yu2, Vincent S. Tseng1

1Department of Computer Science and Information Engineering, National Cheng Kung University, Taiwan, ROC
2Department of Computer Science, University of Illinois at Chicago, Chicago, Illinois, USA

{silvemoonfox, aorborcord}@gmail.com, psyu@cs.uic.edu, tsengsm@mail.ncku.edu.tw

ABSTRACT
Frequent episode mining (FEM) is an interesting research topic in
data mining with wide range of applications. However, the
traditional framework of FEM treats all events as having the same
importance/utility and assumes that a same type of event appears at
most once at any time point. These simplifying assumptions do not
reflect the characteristics of scenarios in real applications and thus
the useful information of episodes in terms of utilities such as profits
is lost. Furthermore, most studies on FEM focused on mining
episodes in simple event sequences and few considered the scenario
of complex event sequences, where different events can occur
simultaneously. To address these issues, in this paper, we
incorporate the concept of utility into episode mining and address a
new problem of mining high utility episodes from complex event
sequences, which has not been explored so far. In the proposed
framework, the importance/utility of different events is considered
and multiple events can appear simultaneously. Several novel
features are incorporated into the proposed framework to resolve the
challenges raised by this new problem, such as the absence of anti-
monotone property and the huge set of candidate episodes.
Moreover, an efficient algorithm named UP-Span (Utility ePisodes
mining by Spanning prefixes) is proposed for mining high utility
episodes with several strategies incorporated for pruning the search
space to achieve high efficiency. Experimental results on real and
synthetic datasets show that UP-Span has excellent performance
and serves as an effective solution to the new problem of mining
high utility episodes from complex event sequences.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications — Data
Mining

Keywords: Utility mining, episode mining, high utility episodes,
complex event sequences

1. INTRODUCTION
Frequent pattern mining (abbreviated as FPM) [1, 3, 4, 12, 24]

is a fundamental research topic in data mining, which refers to
discovering patterns that appear in a dataset with frequency no less
than a user-specified minimum support threshold. Many studies
have been dedicated to this research, including frequent itemset
mining [3, 12], sequential pattern mining [1, 4, 24] and frequent
episode mining [2, 9, 11, 16, 19, 20, 21, 22, 23, 30, 31]. However,
the classical framework of FPM may discover a large amount of
frequent but low revenue patterns and lose the information on
valuable patterns having low selling frequencies. Hence, the

traditional framework of FPM cannot satisfy the requirement of
users who desire to discover patterns with high utilities such as high
profits.

To address these issues, utility pattern mining (abbreviated as
UPM) [5, 6, 7, 8, 13, 14, 15, 17, 18, 25, 26, 27, 28, 29, 32] emerges
as an important topic in data mining. In utility pattern mining, each
item in the database has a weight (e.g. unit profit) and can appear
more than once during a time period (e.g. purchase quantity). The
utility of a pattern represents its importance, which can be measured
in terms of weight, profit, cost, quantity or other information
depending on the user preference. Mining high utility patterns refers
to discovering patterns that appear in a dataset with utility no less
than a user-specified minimum utility threshold. Utility pattern
mining is an important task and has a wide range of applications
such as website click stream analysis [5, 13, 6], cross-marketing in
retail stores [15, 17, 25, 28] and biomedical applications [8].

Although high utility pattern mining is essential to many
applications, it is not an easy task because the downward closure
property [1, 3, 4, 12, 24] in FPM does not hold in UPM. To
facilitate the task of high utility pattern mining, most studies [5, 13,
14, 18, 26, 27, 28, 29] incorporate the concept of TWU (Transaction
Weighted Utilization). In the TWU model, a pattern is considered as
a candidate or potential high utility pattern (abbreviated as PHUI) if
its TWU is no less than the minimum utility threshold, where the
TWU of a pattern represents the upper bound of its utility. A general
TWU model consists of phase I and phase II. In phase I, all the
potential high utility patterns are found. In phase II, high utility
patterns are identified from the set of PHUIs by calculating the
exact utilities of PHUPs.

Although many studies have been devoted to utility pattern
mining, most of them focus on mining high utility itemsets from
transactional databases [5, 13, 14, 15, 17, 18, 26, 27, 28, 29] or
mining high utility sequential patterns from sequence databases [6,
7, 25, 33]. The topic of discovering high utility episodes in complex
event sequences has not been explored so far. An event sequence is
a long sequence of events. Each event is described by its type and a
time of occurrence. An episode is a set of partially ordered events.
The traditional framework of frequent episode mining (abbreviated
as FEM) [2, 9, 11, 16, 19, 20, 21, 22, 23, 30, 31] is to find episodes
that frequently occur in an event sequence. However, the traditional
framework of FEM treats all events as having the same
weight/utility and assumes that events can only occur at most once
at any time point. These simplifying assumptions do not reflect the
characteristics of real-life applications. This may result in
discovering episodes having low utility (e.g. low profit).
Furthermore, most studies on FEM focused on mining episodes in
simple event sequences and few considered the scenario of complex
event sequences, where different events can occur simultaneously at
the same time point.

However, sequences containing such information are often
encountered in real-life applications. For instance, in customer
behavior analysis, a complex event sequence represents the
purchase behavior of a customer. Each time point represents the
items bought in a transaction (within a time period) by the customer.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from
permissions@acm.org..
KDD’13, August 11–14, 2013, Chicago, Illinois, USA.
Copyright © 2013 ACM 978-1-4503-2174-7/13/08…$15.00.

536

Each purchased item can be regarded as an event having a quantity
(internal utility) and a purchase price (external utility). Mining high
utility episodes from such sequences can find sequential
relationships between sets of items that contribute high profits,
which is very valuable for business. Although mining high utility
episodes from complex event sequences is desirable for many
applications, it is not an easy task to incorporate the concept of
utility mining with episode mining. It may pose the following
challenges.

First, the utility of an episode is neither monotone nor anti-
monotone [22]. In other words, the utility of an episode may be
equal to, higher or lower than that of its supersets and subsets.
Therefore, many techniques [2, 4, 12, 16, 22, 24, 31] developed in
FEM that rely on anti-monotonicity to prune the search space
cannot be directly applied to high utility episode mining.

Second, mining episodes from complex event sequences is not a
trivial task. In the complex event sequences, different events can
occur simultaneously at the same time point. This is substantially
different and much more challenging than mining episodes from
simple event sequences.

The third challenge is how to incorporate the concept of
episode mining with the TWU model [5, 13, 14, 18, 26, 27, 28, 29]
to facilitate the mining task. Although the TWU model is widely
used in utility pattern mining, it is difficult to adapt this model to
high utility episode mining because the dataset to be mined is a
single, very long event sequence, which is very different from the
transactional database [3, 12, 26] and sequence database [24, 32].

The forth challenge is how to reduce the number of candidates
produced in phase I as much as possible if the TWU model can be
applied to the high utility episode mining. A large number of
candidates produced in phased I may degrade the performance of
the mining task in terms of execution time and memory
consumption. Therefore, it is important to develop effective
strategies to prune the candidates and the search space.

In this paper, we address all of the above challenges by
proposing a new framework for mining high utility episodes in
complex event sequences. The major contributions of this work are
summarized as follows:

First, we incorporate the concept of utility into episode mining
and formalize the problem of high utility episode mining. An
efficient algorithm named UP-Span (Utility ePisodes mining by
Spanning prefixes) is proposed for mining the complete set of high
utility episodes from complex event sequences.

Second, we integrate the concept of TWU model into high
utility episode mining and propose EWU model (Episode-Weighted
Utilization model) to efficiently find high utility episodes. Several
strategies are proposed to prune the search space and reduce the
number of candidates in the mining processes. The proposed
strategies improve the overall performance of the mining task. In the
experiment, the number of candidates produced by the proposed
algorithm is much smaller than that of the baseline algorithm.

Third, we conduct a series of experiments with both synthetic
and real datasets. The results show that the proposed framework and
the UP-Span algorithm can efficiently discover high utility episodes
from large scale data. In particular, the proposed UP-Span algorithm
outperforms the baseline algorithm substantially (over two orders of
magnitude) and serves as an effective solution to the new problem
of mining high utility episodes from complex event sequences.

The remainder of this paper is organized as follows. Section 2
introduces the background for episode mining and utility mining.
Section 3 gives the formal definition of high utility episodes and
presents the proposed algorithms. Experiments are shown in Section
4. Conclusions and future work are given in Section 5.

2. BACKGROUND
This section introduces the preliminaries related to episode

mining and high utility pattern mining.

2.1 Episode Mining
We introduce definitions and properties related to episode

mining. For more details about episode mining, readers can refer to
[2, 9, 11, 16, 19, 20, 21, 22, 23, 30, 31].

Definition 1 (Simple event sequence). Let = {E1, E2,…,Em} be a
finite set of events and N+ be a set of time points. A simple event
sequence SS = <(E1, T1), (E2, T2),…, (En, Tn)> is an ordered
sequence of events, where each event Ei is associated with a time
point TiN+ and Ti < Tj, for all 1 ≤ i < j ≤ n. For example, Figure 1
shows a simple event sequence SS = <((A), T1), ((B), T2), ((C), T3),
((A), T5), ((D), T6), ((C), T7)>.

Definition 2 (Simple episode). A simple episode α is a non-empty
totally ordered set of events of the form <(E1), (E2),…, (Ek)>, where
the event Ei appears before the event Ej for all 1 ≤ i < j ≤ k. For
example, <(A), (C)> is a simple episode.

Definition 3 (Simultaneous event set). A simultaneous event set
SE = (E1, E2,…, Em) is composed of a set of events, where each
event Ei in SE occurs at the same time point t for all 1 ≤ i ≤ m.
The length of a SE is denoted by |SE| and is equal to the number of
events in SE. Given two simultaneous event sets SE1 = (E1, E2,…, En)
and SE2 = (E1’, E2’,…, Em’), where m ≤ n, SE2 is the subset of SE1
and SE1 is the superset of SE2 iff SE2 SE1.

Definition 4 (Complex event sequence). A complex event
sequence CS = <(SE1, T1), (SE2, T2),…, (SEn, Tn)> is an ordered
sequence of simultaneous event sets, where each simultaneous event
set SEi is associated with a time point TiN+ and Ti < Tj, for all 1 ≤ i
< j ≤ n. For example, Figure 2 shows a complex event sequence CS
= <((AB), T1), ((BC), T2), ((C), T3), ((AB), T5), ((CD), T6), ((C), T7)>.

Definition 5 (Episode containing simultaneous events). An
episode α is a non-empty totally ordered set of simultaneous events
of the form <(SE1), (SE2),…, (SEk)>, where SEi appears before SEj
for all 1 ≤ i < j ≤ k. For example, <(AB), (C)> is an episode
containing the simultaneous event set (AB).

Figure 1. A simple event sequence

Figure 2. A complex event sequence

Definition 6 (Length and Size). The length of an episode α =
<(SE1), (SE2),…, (SEk)> is defined as |α| = ∑ ||1=

k
i iSE and is equal to

the number of events in α. An episode α of length k is called k-
episode. The size of α is defined as the number of simultaneous
event sets in α. For example, <(AB), (C)> is a 3-episode of size 2.

Definition 7 (Occurrence). Given an episode α = <(SE1), (SE2),…,
(SEk)>, the time interval [Ts, Te] is called the occurrence of α if (1) α
occurs in [Ts, Te], (2) the first simultaneous event set SE1 of α occurs
at time Ts and the last simultaneous event set SEk of α occurs at time
Te. The set of all occurrences of α is denoted as occSet(α). For

537

example, the set of all the occurrences of <(AB), (C)> in Figure 2 is
occSet(<(AB), C>) = {[1, 2], [1, 3], [1, 6], [1, 7], [5, 6], [5, 7]}.

Definition 8 (Minimal occurrence). Given two time intervals [Ts,
Te] and [Ts’, Te’] of occurrences of episode α, [Ts’, Te’] is the sub-
time interval of [Ts, Te] if Ts ≤ Ts’ and Te’ ≤ Te. The time interval [Ts,
Te] is called a minimal occurrence of episode α if (1) [Ts, Te] is the
occurrence of episode α and (2) there is no alternative occurrence
[Ts’, Te’] of α such that [Ts’, Te’] is the sub-time interval of [Ts, Te].
A minimal occurrences of α is denoted as mo(α). The complete set
of minimal occurrences of α is denoted as moSet(α). For example,
the time interval [1, 2] is a minimal occurrence of <(AB), C> and
moSet(<(AB), C>) = {[1, 2], [5, 6]}.

Definition 9 (Support of an episode). The support count of an
episode α is defined as the number of minimal occurrences in
moSet(α) and denoted as SC(α). The support of α is defined as the
ratio of SC(α) to the number of time points in CS.

Definition 10 (Frequent episode). An episode is called frequent, iff
its support is no less than a user-specified minimum support
threshold min_sup. Otherwise, the episode is infrequent.

Definition 11 (Frequent episode mining). Given an event
sequence CS and a user-specified minimum support threshold
min_sup, the problem of frequent episode mining is to extract all the
episodes having a support no less than min_sup.

Definition 12 (Sub-episode and super-episode). Given two
episodes α = <SE1, SE2, …, SEn> and β = <SE1’, SE2’, …, SEm’>
where m ≤ n, the episode β is a sub-episode of α iff there exists m
integers 1 ≤ i1 < i2 <…< im ≤ n such that SEik’ SEk for 1 ≤ k ≤ m ≤
n. In addition, episode α is the super-episode of β.

Property 1 (Downward closure property for frequent episode
mining). The downward closure property states that: (1) For any
frequent episode, all its sub-episodes are frequent. (2) For any
infrequent episode, all is super-episodes are infrequent.
Proof. The reader is referred to [22] for the proof.

Episode mining is an interesting research topic in data mining
with wide range of applications. The topic of mining frequent
episodes in simple event sequences was first introduced by Mannila
et al. [22]. They proposed two algorithms named WINEPI and
MINEPI to find episodes that frequently occur in a simple event
sequence. Although WINEPI and MINEPI algorithms are the
pioneers in episode mining and perform well in some cases, they are
Apriori-based approaches and employee candidate-generation-and-
test mechanisms to find frequent episodes. Therefore, they often
generate a large number of candidates during the mining processes,
which may degrade the performance of the mining task in terms of
execution time and memory consumption. To improve the
performance of MINEPI algorithm, Ma et al. proposed the PPS
(Position pairs set) algorithm [31], which efficiently finds frequent
episodes without generating any candidate during the mining
processes. Based on [22], several studies were proposed for mining
various types of significant episodes or episode rules. In addition,
episode mining is essential to many applications such as event
detection in sensor network [30], occurrences of recurrent illnesses
[21, 23] and financial data [2].

Although many studies have been devoted to episode mining,
most studies on frequent episode mining focused on mining simple
episodes in simple event sequences and few considered the scenario
of complex event sequences, where different events can occur
simultaneously at the same time point. By considering complex
event sequences, the episode containing simultaneous events can be
discovered, which provides additional information about the

relationships between events. Besides, the traditional framework of
frequent episode mining treats all events as having the same
importance/utility and assumes that an event appears at most once at
any time point. These assumptions do not reflect the characteristics
in real scenario of several real-life applications and thus the useful
information of episodes with high utilities such as high profits is lost.
Although discovering episodes with high utility is desirable for
many applications, the topic of high utility episode mining has not
been addressed so far. In the next subsection, we study the related
works about utility mining.

2.2 Utility Pattern Mining
We introduce the preliminary works related to high utility

itemset mining, high utility sequential pattern mining and high
utility episode mining. For a recent overview of research on utility
mining, readers can refer to [5, 6, 7, 8, 13, 14, 15, 17, 18, 25, 26, 27,
28, 29, 32].

The concept of utility mining was first introduced in [8]. In
utility pattern mining, each item in a database is associated with an
additional value, called its external utility, which can be used to
indicate the importance/weight/unit profit of the item. Each item
appearing in a record of the database is attached with its internal
utility, which indicates the quality/appearance/quantity of the item
in the record. The utility of an itemset (a set of items) can be
measured by considering its external utility and internal utility. An
itemset is called high utility if its utility is no less than a minimum
utility threshold. Otherwise, the itemset is called low utility. Mining
high utility itemsets is much more challenging than mining frequent
itemsets, because the downward closure property [3, 12] in frequent
itemset mining does not hold in utility mining.

Several algorithms have been proposed for mining HUIs,
including IHUP [5], Two-Phase, IIDS [18], TWU-Mining [27], and
UP-Growth [26]. Most of them utilize the TWDC (Transaction-
Weighted Downward Closure) property and adopt the TWU
(Transaction-Weighted Utilization) model to find high utility
itemsets. In general, the general TWU model consists of two phases.
In phase I, potential high utility itemsets are found from the
database. In phase II, the exact utilities of the potential high utility
itemsets are computed by scanning the database and high utility
itemsets are identified from the set of potential high utility itemsets.

Although the above studies perform well in many applications,
they can only handle itemsets and do not consider the sequential
data and the ordering relationships between items. Mining high
utility patterns from sequential data is a more challenging task. The
integration of utility and sequential pattern mining has taken place
very recently. We only found four papers [5, 6, 27, 34] on this topic.
Ahmed et al. integrated the concept of utility mining with sequential
pattern mining and proposed US and UI algorithms for mining high
utility sequential patterns [7]. Shie et al. proposed the UMSP
algorithm [25] for mining high utility mobile sequential patterns in
mobile environment. Ahmed et al. designed an algorithm for mining
high utility access sequences from web log data [6]. Recently, Yin
et al. argued that the problem definition in [6] is rather specific and
they proposed a generic framework for high utility sequence
analysis and an efficient algorithm named USpan [32] for mining
high utility sequential patterns. From the above related works, we
can observe that only very preliminary works have been done on
mining high utility patterns from sequential data. For the topic of
high utility episode mining, we found that there is only one related
paper in the literature [10]. But it only considers the external utility
of the event (e.g. importance/weight/unit profit). It did not consider
the case of complex event sequence and the internal utility of the
event (e.g. quality/quantity/ appearance count).

538

3. HIGH UTILITY EPISODE MINING
In this subsection, we first explain how we incorporate the

concept of utility mining into episode mining and propose a new
framework for high utility episode mining. Then we present an
efficient algorithm named UP-Span (Utility ePisodes mining by
SPANning prefixes) and effective strategies for mining the complete
set of high utility episodes in complex event sequences.

3.1 High Utility Episode Mining
Let N+ be a set of time points and CS = <(tSE1, T1), (tSE2,

T2),…, (tSEn, Tn)> be a complex event sequence with n time points,
where each simultaneous event set tSEi is associated with a time
point TiN+ and Ti < Tj, for all 1 ≤ i < j ≤ n. In high utility episode
mining, each event Ei is associated with a positive number p(Ei,
CS), called its external utility. Each event Ej in a simultaneous event
set tSEi at the time point Ti is associated with a positive number q(Ej,
Ti), called its internal utility. For example, Figure 3 shows a
complex event sequence with internal utility and Table 1 shows the
external utilities of events.

Definition 13 (Utility of an event at a time point). The utility of an
event Ej at a time point Ti is defined as u(Ej, Ti) = p(Ej, CS) × q(Ej,
Ti). For example, the utility of the event (A) at the time point T1 is
u((A), T1) = p((A), CS) × q((A), T1) = (1×2) = 2.

Definition 14 (Utility of a simultaneous event set at a time point).
The utility of a simultaneous event set SE = (E1, E2,…, Ek) at a time
point Ti is defined as u(SE, Ti) = ∑),(1= ij

k
j TEu . For example, the

utility of the simultaneous event set (AB) at the time point T1 is
u((AB), T1) = u((A), T1)+ u((B), T1) = (2+2) =4.

Definition 15 (Total utility of database complex event sequence).
The total utility of a complex event sequence CS is defined as u(CS)
= ∑),(1=

n
i ii TSEu . For example, complex event sequence depicted

in Figure 3 is u(CS) = u((AB), T1) + u((BC), T2)+ u((C), T3)+ u((AB),
T5)+ u((CD), T6)+ u((C), T7) = (4 + 8 + 3 + 4 + 18 + 3) = 40.

Definition 16 (Utility value of an episode w.r.t its minimal
occurrence). Let mo(α) = [Ts, Te] be a minimal occurrence of the
episode α = <(SE1), (SE2),…, (SEk)>, where each simultaneous
event set SEi α is associated with a time point Ti. The utility of the
episode α w.r.t mo(α) is defined as u(α, mo(α)) = ∑),(1=

k
i ii TSEu .

For example, the utility of <(AB),(C)> w.r.t the mo(<(AB),(C)>) =
[1, 2] is (4 + 6) = 10.

Definition 17 (Utility of an episode in a complex event sequence).
Let moSet(α) = [TI1, TI2,…, TIk] be the set of all minimal
occurrences of the episode α, where TIi is a minimal occurrence of α
for 1 ≤ i ≤ k. The utility value of the episode α in a complex event
sequence CS is defined as uv(α, CS) = ∑),α(1=

k
i kTIu . The utility of

α is defined as u(α) = (uv(α)/ u(CS)). For example, the utility of the
episode <(AB),(C)> is u(<(AB),(C)>) = (uv(<(AB),(C)>) / u(CS)) =
(20/40) = 50%.

Definition 18 (High Utility Episode; HUE). An episode is a high
utility episode (abbreviated as HUE), iff its utility is no less than a
user-specified minimum utility threshold min_utility. Otherwise, the
episode is a low utility episode.

Problem statement. Given a user-specified minimum utility
threshold min_utility and a complex event sequence CS with
external utility and internal utility of events, the problem of high
utility episode mining is to discover all the episodes having a utility
no less than min_utility.

Definition 19 (Maximum time duration). Let MTD be a user-
specified maximum time duration and mo(α) = [Ts, Te] be a minimal
occurrence of the episode α. The minimal occurrence mo(α) is said
to satisfy the maximum time duration constraint iff (Te Ts + 1) ≤
MTD.

Definition 20 (Simultaneous and serial concatenations). Let α =
<(SE1), (SE2),…, (SEx)> and β = <(SE1’), (SE2’),…, (SEy’)> be
episodes. The simultaneous concatenation of α and β is defined as
simul-concat(α, β) = <(SE1), (SE2),…, (SEx∪SE1’), (SE2’),…,
(SEy’)>. The serial concatenation of α and β is defined as serial-
concat(α, β) = <(SE1), (SE2),…, (SEx), (SE1’), (SE2’),…, (SEy’)>.

Definition 21 (Episode-Weighted Utilization of an episode w.r.t a
minimal occurrence). Let mo(α) = [Ts, Te] be a minimal occurrence
of the episode α = <(SE1), (SE2),…, (SEk-1), (SEk)>, where each
simultaneous event set SEi α is associated with a time point Ti (1≤
i ≤ k) and mo(α) satisfies MTD. The episode-weighted utilization of
α w.r.t mo(α) is defined as EWU(α, mo(α))
=[∑),(+∑),()1-+(

=
)1-(

1=
MTDs

ei ii
k

i ii TtSEuTSEu]/u(CS), where tSEi is the

simultaneous event set at the time point Ti in CS.

For example, if MTD = 4, the EWU of the episode α = <(C),
(A)> w.r.t mo(<(C), (A)>) = [3, 5] is EWU(<(C),(A)>, [3, 5]) =
[u((C), T3)] + [u((AB), T5)) + u((CD), T6)] = 25.

Definition 22 (Episode-Weighted Utilization of an episode). Let
moSet(α) = [TI1, TI2,…, TIk] be the set of all the minimal
occurrences of α, where each minimal occurrence TIi moSet(α)
satisfies MTD for 1 ≤ i ≤ k. The episode-weighted utilization of α in
a complex event sequence CS is defined as EWU(α) =
((∑),α(1=

k
i iTIEWU) / u(CS)).

For example, when MTD = 3, the EWU of the episode α =
<(A),(C)> is EWU(<(A),(C)>) = [u((AB), T1) + u((BC), T2)+ u((C),
T3)] + [u((AB), T5) + u((CD), T6) + u((C), T7)]/u(CS) = 40/40.

Figure 3. Complex event sequence with internal utility

Table 1. External utilities of events

Event A B C D
External utility 2 1 3 4

Definition 23 (High Weighted Utilization Episode; HWUE). An
episode is called High Weighted Utilization Episode (abbreviated as
HWUE) iff its EWU is no less than the minimum utility threshold
min_utility.

Theorem 1 (Episode-Weighted Downward Closure property).
Let α and β be episodes, and γ = simult-concat(α, β) or serial-
concat(α, β). The Episode-Weighted Downward Closure
(abbreviated as EWDC) property states that if EWU(α) < min_utility,
γ is a low utility episode.
Proof. Let moSet(α) = [TI1, TI2,…, TIx], moSet(γ) = [TI1’, TI2’,…,
TIy’]. Because γ = simult-concat(α, β) or serial-concat(α, β),
|moSet(α)| |moSet(γ)| [21, 31]. According to the Definition 22,
EWU(α) = ((∑),α(1=

x
i iTIEWU) / u(CS)) EWU(γ) =

((∑),((1=
y
j jTIγEWU) / u(CS)) u(γ). If EWU(α) < min_utility, u(γ)

< min_utility, which yields that γ is low utility (Definition 18).

539

Table 2. Minimal occurrences, EWUs and utilities of
1-episodes in the complex event sequence of Figure 3

Global
Event

Minimal occurrences EWU Utility

A {[1,1], [5, 5]} 40/40 4/40
B {[1,1], [2,2], [5,5]} 51/40 6/40
C {[2,2], [3,3], [6,6], [7,7]} 42/40 18/40
D {[6,6]} 21/40 12/40

Table 3. Minimal occurrences, EWUs and utilities of
local 1-episodes in the <(A)>-projected database

<(A)>-projected database
Local
Event

Minimal occurrences EWU Utility

(_B) {[1,1], [5,5]} 40/40 8/40
B {[1,2]} 13/40 4/40
C {[1,2], [5,6]} 36/40 16/40
D {[5,6]} 23/40 14/40

3.2 Efficient Mining of High Utility Episodes
This subsection introduces an algorithm named UP-Span

(Utility ePisodes mining by Spanning prefixes) for efficiently
discover high utility episodes in a complex event sequence. The
proposed algorithm adopts the prefix-growth paradigm [12, 24].
Following that, two efficient strategies that greatly enhance the
performance are introduced.

Pseudo code 1 shows the main procedure of the UP-Span
algorithm. The inputs of the UP-Span algorithm are: (1) a complex
event sequence CS, (2) minimum utility threshold min_utility and
(3) maximum time duration MTD. The algorithm scans the complex
event sequence once to find 1-episodes and catching their associated
minimal occurrences (Line 1-2). The EWUs and exact utilities of 1-
episodes can be calculated according to the Definition 17 and 22.
For example, Table 2 shows the minimal occurrences, EWUs and
utilities of all 1-episodes in Figure 3 when MTD = 3.

For each 1-episode α (also called global event), if EWU(α) is
no less than min_utility, α is identified as a HWUE of length one
(Definition 23). Then, the algorithm explores the search space of
high utility episodes containing α as prefix. The prefix α is spanned
by executing the MiningHUE procedure (Line 3-5). There are two
sub-procedures MiningSimultHUE and MiningSerialHE in the
procedure MiningHUE. The sub-procedure MiningSimultHUE aims
at finding the simultaneous events that are related to α. The sub-
procedure MiningSerialHUE aims at finding the serial events related
to α (Line 7-9).

ALGORITHM: UP-Span
Input: (1) CS: complex event sequence;
 (2) min_utility: minimum utility threshold;
 (3) MTD: maximum time duration;
Output: HUE_Set: The complete set of high utility episodes;
01. Scan CS once to find high utility 1-epsiodes and calculate
02. their EWUs and catch the associated minimal occurrences;
03. for each global event α do
04. if (EWU(α) min_utility) then
05. { MiningHUE(α, moSet(α), MTD, min_utility);}
06.
Procedure MiningHUE(episode α, moSet(α), MTD, min_utility)
07. MiningSimultHUE(α, moSet(α), MTD, min_utility);
08. MiningSerialHUE(α, moSet(α), MTD, min_utility);
09.

Pseudo code 1. Algorithm UP-Span

ALGORITHM: MiningSimultHUE
Input: (1) α: episode;
 (2) moSet(α): all minimal occurrences of α
 (3) MTD: maximum time duration
 (4) min_utility: minimum utility threshold;
Output: The set of high utility simultaneous episodes w.r.t
 prefix α;
01. for each mo(α) = [Ts, Te]moSet(α) do
02. SES = {e|event e occurs at Te};
03. for each event e SES do
04. β = simult-concat(α, e);
05. Let occ(β) = [Ts, Te];
06. if (occ(β) is a minimal occurrence in moSet(β)) then
07. { moSet(β) = moSet(β) ∪ occ(β);}
08.
09. for each simultaneous event e in α-projected database do
10. β = simult-concat(α, e);
11. moSet(β): = Repair_moSet(moSet(β));
12. if (u(β) min_utility) then {HUE_Set = HUE_Set ∪β; }
13. if (EWU(β) min_utility) then
14. { MiningHUE(β, mo(β), MTD, min_utility); }

Pseudo code 2. Procedure MiningSimultHUE

ALGORITHM: MiningSerialHUE
Input: (1) α: episode;
 (2) moSet(α): all minimal occurrences of α
 (3) MTD: maximum time duration
 (4) min_utility: minimum utility threshold;
Output: The set of high utility serial episodes w.r.t
 prefix α;
01. for each mo(α) = [Ts, Te]moSet(α) do
02. for each time point t between [Te+1, Ts+MTD1] do
03. NES = {e|event e occurs at time point t};
04. for each event e NES do
05. β = serial-concat(α, e);
06. Let occ(β) = [Ts, t];
07. if (occ(β) is a minimal occurrence in moSet(β)) then
08. { moSet(β) = moSet(β) ∪ occ(β);}
09.
10. for each serial event e in projected database of α do
11. β = serial-concat(α, e);
12. moSet(β): = Repair_moSet(moSet(β));
13. if (u(β) min_utility) then {HUE_Set = HUE_Set ∪β; }
14. if (EWU(β) min_utility) then
15. { MiningHUE(β, moSet(β), MTD, min_utility); }

Pseudo code 3. Procedure MiningSerialHUE

Pseudo code 2 shows the procedure of the MiningSimultHUE,

which is performed as follows. For each minimal occurrence
mo(α) = [Ts, Te] in moSet(α), the algorithm collects all events that
occur at the time point Te into the set SES (Simultaneous Events
Set) (Line 1-2). For each event e in the set SES, the algorithm
performs the simultaneous concatenation of α and e to form an
episode β (Line 4). Then, the variable occ(β) is set to [Ts, Te]
(Line 5). If occ(β) is a minimal occurrence in the set of current
minimal occurrences, occ(β) is added into the set of minimal
occurrence of β (Line 6-7). After that, events that simultaneously
occur with α, their minimal occurrences are stored in the
projected database of α (abbreviated as α-PB). For each
simultaneous event e in α-PB, we perform simultaneous
concatenation operation on α and e to form the episode β (Line
11). For each such episode β, the function Repair_moSet is called
to find the complete set of minimal occurrences of β since the

540

current moSet(β) does not capture the complete set of minimal
occurrences of β. After that, all the minimal occurrences of β are
collected into moSet(β). Given the information contained in
moSet(β), the utility and EWU of β can be calculated according to
Definitions 17 and 21. For example, Table 3 shows the minimal
occurrences, EWU values and utility values of local 1-episodes in
the <(A)>-projected database when MTD = 3. The events in the
first row of Table 3 are simultaneous events of the episode <(A)>.
After the calculation, if the utility of β is no less than min_utility,
β is high utility and it is collected into the set HUE_Set. If EWU(β)
is no less than min_utility, the procedure MiningHUE is called to
find high utility episodes w.r.t. the prefix β.

Pseudo code 3 shows the procedure of the MiningSerialHUE,
which is performed as follows. For each minimal occurrence
mo(α) = [Ts, Te] in moSet(α), we collect all events that occur
between the time interval [Te+1, Ts+MTD-1] into the set NES
(Next Events Set) (Line 1-3). For each event e in the set NES, we
perform serial concatenation operation on α and e to form an
episode β = simult-concat(α, e) (Line 5). Then, the variable occ(β)
is set to [Ts, t], where t is a time point between the time interval
[Te+1, Ts+MTD-1] (Line 7). If occ(β) is a minimal occurrence in
the set of current minimal occurrences, occ(β) is added into the
set of minimal occurrences of β (Line 7-8). After that, events that
serially occur after α, and their current minimal occurrences are
stored in the α-PB. For each serial event e in the α-PB, the
algorithm performs serial concatenation of α and e to form an
episode β. For each such episode β, the algorithm calls the
function Repair_moSet to finds the complete set of minimal
occurrences of β. After that, all the minimal occurrences of β are
collected into the variable moSet(β). With the information of
moSet(β), the utility and EWU of β can be calculated according to
the Definitions 17 and 22. For example, the last three rows of
Table 3 shows minimal occurrences, EWUs and utilities of the
three serial events of the episode <(A)>. After the calculation, if
the utility of β is no less than the min_utility, β is a high utility
episode and it is collected into the set HUE_Set. If the EWU(β) is
no less than the min_utility, the procedure MiningHUE is called to
find the high utility episodes w.r.t. the prefix β.

Then, we present two effective strategies named DGE
(Discarding Global unpromising Events) and DLE (Discarding
Local unpromising Events), which are based on the following
definitions.

Definition 24 (Promising event). An event e is a promising event
iff EWU(e) min_utility. Otherwise it is an unpromising event.

Property 2. Let α be an unpromising event and β be an episode,
Any super-episode γ of α such that γ =simult-concat(α, β) or γ =
serial-concat(α, β) is low utility.
Rationale. The property holds by EWDC property (Theorem 1).

Strategy 1 (Discarding Global unpromising Events; DGE).
Discard global unpromising events and their exact utilities from
the complex event sequence and related EWUs.
Rationale. By the Theorem 1, unpromising events play no role in
high utility episodes. Therefore, global unpromising events can be
removed from the complex event sequence and their utilities can
be ignored in the calculation of the estimated utilities of episodes.

Strategy 2 (Discarding Local unpromising Events; DLE).
Discard local unpromising events and their exact utilities from the
projected database and related EWUs.
Rationale. By the Theorem 1, local unpromising events play no
role in high utility episodes. Therefore, local unpromising events

can be removed from the projected database and their utilities can
be ignored in the calculation of the estimated utilities of episodes.

4. EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of the proposed

algorithms. Experiments were performed on a computer with a
3.40 GHz Intel Core 2 Processor with 4 gigabytes of memory,
running on Windows 7. All of the algorithms are implemented in
Java. Both synthetic and real datasets are used to evaluate the
performance of the algorithms. Synthetic datasets were generated
by using the IBM data generator [3]. The parameters of the
generator are described as follows: D is the total number of time
points; T is the average size of a simultaneous event set at a time
point; N is the number of distinct events; I is the average size of
maximal potential episodes. The internal utility and external
utility values are generated using the settings used in [26, 28, 29].
Different types of real world datasets were used in the
experiments. Foodmart, a small sparse dataset, was acquired from
Microsoft foodmart 2000 database [35]; Retail was obtained from
FIMI Repository [34]. ChainStore, a large dataset, was obtained
from NU-MineBench 2.0 [36]. Note that these three datasets are
sometimes viewed as transaction databases but they can be
considered as a single complex sequence by regarding each item
as an event and each transaction as a simultaneous event set. The
Foodmart and ChainStore already contain unit profits (external
utility) and purchased quantities (internal utility). For the Retail
dataset, unit profits for items are generated between 1 and 1,000
by using a log-normal distribution and quantities of items are
generated randomly between 1 and 5, as in [26, 28, 29]. Table 4
shows the characteristics of the datasets in the experiments. To
evaluate the performance of the proposed algorithms, we compare
four versions of the algorithm named as follows. The baseline
algorithm without strategies DGE and DLE is denoted as UP-
Span(Baseline). The algorithm only applying the strategy DGE is
denoted as UP-Span(DGE). The algorithm only applying the
strategy DLE is denoted as UP-Span(DLE). Lastly, the algorithm
UP-Span(DGE+DLE) uses both DGE and DLE strategies.

Table 4. Statistical information about different datasets
Dataset #Trans #Items Avg. Length.

T12I8N1KQ5D10K 10,000 1,000 12
Foodmart 4,141 1,559 4.4

Retail 88,162 16,470 10.3
ChainStore 1,112,949 46,086 7.3

4.1 Evaluation on Synthetic Dataset
We first discuss the performance of the algorithms on the synthetic
dataset T12I8N1KQ5D10K. Figure 4 shows the number of
candidates and high utility episodes on T12I8N1KQ5D10K under
varied minimum utility thresholds when the maximum time duration
is set to eight. In Figure 4, there is no high utility episode produced
when the minimum utility threshold is lower than 30%.

Figure 4. The number of candidates on T12I8N1KQ5D10K

 dataset under different minimum utility thresholds

541

Figure 5. The execution time on T12I8N1KQ5D10K
 dataset under different minimum utility thresholds

Figure 6. Number of candidates and high utility episodes on
T12I8N1KQ5D10K under varied maximum time durations

Figure 7. The execution time on T12I8N1KQ5D10K dataset

under different maximum time durations

Figure 8. Execution time on T12I8N1KQ5DxK dataset

(x is varied from 20 to 100)

As shown in Figure 4, UP-Span(DGE+DLE) generates much fewer
candidates than UP-Span(Baseline). The reason is that strategy DGE
effectively reduces the number of candidates by removing global
unpromising events and their utilities from the complex event
sequence. Although both strategies reduce the number of candidates,
the effectiveness of the strategy DGE is better than that of the
strategy DLE on this dataset. In the Figure 4, when the minimum
utility threshold is less than 1%, the number of candidates generated
by UP-Span(DGE+DLE) is about 100 times smaller than the
number of candidates generated by UP-Span(Baseline).

Figure 5 shows the execution time on T12I8N1KQ5D10K
under varied minimum utility thresholds when the maximum time
duration is set to eight. As shown in Figure 5, UP-Span(Baseline) is
the worst and UP-Span(DGE+DLE) has the best performance. In
Figure 5, UP-Span(DLE) runs faster than UP-Span(Baseline) over
100 times when the minimum utility threshold is higher than 50%.
UP-Span(DLE) and UP-Span(Baseline) follow a similar trend when

the threshold is less than 10%. It is because the UP-Span(DLE)
performs additional processing to decrease the overestimated
utilities of the episodes but the there are few local unpromising
events in the projected databases. When the threshold is lower than
5%, UP-Span(DGE+DLE) runs faster than UP-Span(baseline) about
10 times. By the above observation, we show that the overall
performance of UP-Span(DGE+DLE) outperforms UP-
Span(Baseline).

Figure 6 shows the number of candidates and high utility
episodes of the algorithms on T12I8N1KQ5D10K under varied
maximum time durations. In this experiment, the threshold is set to
1%. As shown in Figure 6, the number of candidates grows rapidly
when the maximum time duration increases. In Figure 6, we can see
that UP-Span(DGE+DLE) generates much fewer candidates than
UP-Span(Baseline). When the maximum time duration is set to ten,
UP-Span(DGE+DLE) generates about 10 times less candidates than
UP-Span(Baseline). Figure 7 shows the execution time of the
algorithms on T12I8N1KQ5D10K under various maximum time
durations. As shown in Figure 7, UP-Span(DGE+DLE) and UP-
Span(DGE) run about 15 times faster than UP-Span(Baseline) and
UP-Span(DLE) because the former two algorithms produce much
fewer candidates than the later two algorithms.

Then, we test the scalability of the algorithms on different
lengths of complex event sequences. In this experiment, the
maximum time duration and the minimum utility threshold are set to
four and 10%. The number of time points in the complex event
sequence is varied from 20K to 100K. Figure 8 shows the execution
time for this experiment. As shown in Figure 8, UP-Span(DGE) and
UP-Span(DGE+DLE) have better scalability than UP-
Span(Baseline) and UP-Span(DLE) when the number of time points
increases. When the number of time points is 100K, UP-Span(DGE)
and UP-Span(DGE+DLE) run about 5 times faster than the UP-
Span(Baseline) and UP-Span(DLE).

4.2 Evaluation on Real Dataset
In this section, we compare the performance of the algorithms

on real datasets. We first show the evaluation on Foodmart, which is
a small dataset with 1,559 distinct events. Figure 9 shows the
execution time on the Foodmart dataset under different minimum
utility thresholds. As shown in Figure 9, all the algorithms have
good performance but UP-Span(Baseline) is the slowest and the
winner is UP-Span(DLE). On this dataset, the strategy DLE
performs better than the strategy DGE. The strategy DLE
effectively reduces the number of candidates by removing local
unpromising events and their utilities from the projected databases.
The execution time of UP-Span(DGE+DLE) is affected by the extra
operations performed by the strategy DGE, and thus it runs slower
than UP-Span(DLE). When the minimum utility threshold is set to
10%, the execution time of UP-Span(DGE) is close to that of UP-
Span(Baseline) since there are few global unpromising events that
can be discarded from the complex event sequence.

Figure 9. Execution time on Foodmart dataset under different

minimum utility thresholds

542

Figure 10. Execution time on Retail dataset under different

minimum utility thresholds

Figure 11. Execution time on ChainStore dataset under

different minimum utility thresholds

 (a) Foodmart dataset (b) Retail dataset
Figure 12. Memory consumptions of the algorithms

We then evaluate the performance of the algorithms on the
Retail dataset. There are 16,470 distinct events in the dataset and the
average length of the transactions is longer than that of the
Foodmart dataset. Figure 10 shows the execution time of the
algorithms on the Retail dataset under different minimum utility
thresholds. The results show that UP-Span(DGE+DLE) and UP-
Span(DGE) follow a similar trend and they run faster than the UP-
Span(Baseline) and UP-Span(DLE).

Figure 11 shows the execution time of the algorithms on the
ChainStore dataset under different minimum utility thresholds. In
this experiment, the maximum time duration is set to four. As
shown in Figure 11, UP-Span(DGE+DLE) is the winner and UP-
Span(Baseline) has the worst performance. When the threshold is
higher than 20%, UP-Span(DGE+DLE) runs faster than UP-
Span(Baseline) over 100 times. When the minimum utility threshold
is set to 10%, UP-Span incorporated with strategies run faster than
UP-Span(Baseline) over 10 times. Figure 11 also shows that UP-
Span incorporated with strategies has good scalability even for large
database with large number of events. The overall performance of
UP-Span with strategies is better than UP-Span(Baseline).

4.3 Memory Consumption
We evaluate the memory consumption of the algorithms on

Foodmart and Retail datasets. Figure 12(a) shows the memory
consumption of the algorithms on Foodmart dataset under different
minimum utility thresholds. We can observe that UP-Span with
strategies uses less memory than UP-Span(Baseline) since the
proposed strategies effectively reduce the number of candidates and
the number of projected databases. Figure 12(b) shows the memory
consumption of the algorithms on the Retail dataset under different

minimum utility thresholds. Overall, results show that the best
algorithm is UP-Span(DGE+DLE) and the worst one is UP-
Span(Baseline).

4.4 Summarization and Discussion
We summarize results of the above experiments and compare

characteristics of different algorithms. The experimental results
show that our approach outperforms the baseline approach on both
real and synthetic datasets. For example, UP-Span(DGE+DLE) runs
over 100 times faster than the baseline approach on the ChainStore
dataset when the minimum utility threshold is higher than 20%.
Depending upon the characteristics of the datasets, the most
effective pruning strategy can be different. For example, for the
Foodmart dataset, the pruning of local unpromising events (strategy
DLE) gives the best performance, while for Retail dataset, it is the
pruning of global unpromising events (strategy DGE). UP-
Span(DGE+DLE) provides the most consistent and robust
performance as it takes both types of pruning strategies into
considerations, while UP-Span(DGE) and UP-Span(DLE) perform
well only on one of the datasets as it incorporates just one type of
pruning strategies. UP-Span(Baseline) always has the worst
performance as it does not utilize the DGE and DLE pruning
strategies.

There are three reasons why our approach has good scalability
and high performance on large databases. First, our approach is not
Apriori-based. It discovers patterns by recursively growing patterns
one item/event at a time. This avoids well-known drawbacks of
Apriori-like approaches: (1) generating too many unnecessary
candidates and (2) repeatedly scanning the original
database. Second, our approach finds (k+1)-episodes and their
occurrences by using minimal occurrences of related k-episodes
instead of all the occurrences, which leads to faster calculation and
less memory consumption. Third, our approach finds high utility
episodes in only one phase, as opposed to most high utility pattern
mining algorithms [5, 7, 26, 33], which require collecting candidates
and performing an additional database scan to calculate their exact
utilities. This facilitates the performance of the mining task in terms
of time and space.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we incorporate the concept of utility mining into

episode mining and propose a novel framework for mining high
utility episodes in complex event sequences, which has not been
explored so far. In the proposed framework, we consider the
external utility and internal utility of events to measure the utility of
episodes. We take the scenario of the complex event sequences into
consideration for mining high utility episodes containing
simultaneous events, which not only provides users with episodes
with high utilities (e.g. high profits) but also more information about
the relationships between episodes. We proposed a new algorithm
named UP-Span (Utility ePisodes mining by Spanning prefixes) for
efficiently mining the complete set of the high utility episodes. We
successfully extend the TWU model to episode mining and propose
the EWU (Episode-Weighted Utilization) model to facilitate the
mining task of high utility episode mining. Two effective strategies,
namely DGE (Discarding Global unpromising Events) and DLE
(Discarding Local unpromising Events), are also proposed and
incorporated with the UP-Span algorithm, which not only reduce the
number of candidates produced in the mining processes but also
enhance the performance of them mining task in terms of execution
time and memory consumption. Experimental results on both real
and synthetic datasets show that UP-Span has good scalability and
outperforms the baseline approach substantially, especially under

543

higher minimum utility threshold (e.g. UP-Span runs faster than the
baseline approach over 100 times on ChainStore dataset when the
minimum utility threshold is higher than 20%).

Although we first incorporate the concept of utility mining
with episode mining and address the problem of high utility episode
mining in this work, it still leaves ample room for exploration in the
future work. For example, in this paper, we only consider serial
episodes containing simultaneous events and do not consider other
types of episode such as injective episodes [22], parallel episodes
[22], closed episodes [19] and so on. In addition, there are many
different ways to calculate the occurrence of episode, such as
window-based occurrence [11, 22], non-overlapped/overlapped
minimal occurrence ect., which can be addressed in the future work.
Mining high utility episodes from event sequences is a novel and
challenging problem. Related research topics ranging from problem
definition to algorithm improvement and applications are
worthwhile to be explored in the future.

ACKNOWLEDGMENTS
This work is supported in part by National Science Council,
Taiwan, R.O.C. under grant no. NSC101-2221-E-006-255-
MY3 and NSF through grants IIS-0905215, CNS-1115234, IIS-
0914934, DBI-0960443, and OISE-1129076, and US Department
of Army through grant W911NF-12-1-0066.

REFERENCES
[1] J. Ayres, J. Flannick, J. Gehrke and T. Yiu. Sequential PAttern Mining using

a bitmap representation. In Proc. of IEEE Int'l Conf. on Data Mining
(ICDM), pp. 429-435, 2002.

[2] A. Ng, and Ada Wai-Chee Fu, Mining Frequent Episodes for Relating
Financial Events and Stock Trends, In Proc. of the 7th Pacific-Asia
conference on Advances in knowledge discovery and data mining
(PAKDD), pp. 27-39, 2003.

[3] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In
Proc. of the 20th Int'l Conf. on Very Large Data Bases, pp. 487-499, 1994.

[4] R. Agrawal and R. Srikant, Mining Sequential Patterns. In Proc. of
Int’l Conf. on Data Engineering. (ICDE), pp. 3-14, 1995.

[5] C. F. Ahmed, S. K. Tanbeer, B.-S. Jeong and Y.-K. Lee. Efficient Tree
Structures for High-utility Pattern Mining in Incremental Databases. In
IEEE Transactions on Knowledge and Data Engineering, Vol. 21, Issue 12,
pp. 1708-1721, 2009.

[6] C. F. Ahmed, S. K. Tanbeer and B. Jeong. A Framework for Mining High
Utility Web Access Sequences. In IETE Journal, Vol. 28, Issue 1, pp. 3-16,
2011.

[7] C. F. Ahmed, S. K. Tanbeer and B. Jeong. A Novel Approach for Mining
High-Utility Sequential Patterns in Sequence Databases, ETRI Journal, Vol.
32, no.5, pp.676-686, 2010.

[8] R. Chan, Q. Yang and Y. Shen. Mining high-utility itemsets. In Proc. of
Third IEEE Int'l Conf. on Data Mining, pp. 19-26, Nov., 2003.

[9] R. Gwadera, M. J. Atallah, and W. Szpankowski. Reliable Detection of
Episodes in Event Sequences, Knowledge and Information System, Vol. 7,
pp. 415-437, 2005.

[10] T. Guo, S. Lin, Y. Wang and J. Qiao. A new Framework for Detecting
High-Utility Episodes in Event Sequence. In Proc. of the IEEE Int’l Conf.
on Oxide Materials for Electronic Engineering (OMEE), pp.370-373, 2012.

[11] K.-Y. Huang, and C.-H. Chang, Efficient Mining of Frequent Episodes from
Complex Sequences, Information Systems, Vol. 33, pp. 96-114, 2008.

[12] J. Han, J. Pei and Y. Yin. Mining frequent patterns without candidate
generation. In Proc. of the ACM-SIGMOD Int'l Conf. on Management of
Data, pp. 1-12, 2000.

[13] H.-F. Li, H.-Y. Huang, Y.-C. Chen, Y.-J. Liu, S.-Y. Lee. Fast and Memory
Efficient Mining of High Utility Itemsets in Data Streams. In Proc. of the
8th IEEE Int'l Conf. on Data Mining, pp. 881-886, 2008.

[14] Y. Liu, W. Liao, and A. Choudhary. A fast high-utility itemsets mining
algorithm. In Proc. of the Utility-Based Data Mining Workshop, 2005.

[15] M. Liu and J. Qu. Mining High Utility Itemsets without Candidate
Generation. In Proc. Of the ACM Int'l Conf. on Information and Knowledge
Management (CIKM), pp. 55-64, 2012.

[16] S. Laxman, P. S. Sastry, and K. P. Unnikrishnan, A Fast Algorithm for
Finding Frequent Episodes in Event Streams, In Proc. of ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining
(KDD), pp. 410-419, 2007.

[17] J. Liu, K. Wang, and B. C. M. Fung. Direct Discovery of High Utility
Itemsets without Candidate Generation. In Proc. of the IEEE Int'l Conf. on
Data Mining (ICDM), 6 pages, short paper, 2012.

[18] Y.-C. Li, J.-S. Yeh and C.-C. Chang. Isolated Items Discarding Strategy for
Discovering High-utility Itemsets. In Data & Knowledge Engineering, Vol.
64, Issue 1, pp. 198-217, 2008.

[19] N. Tatti, and B. Cule. Mining closed episodes with simultaneous events. In
Proc. of ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD), pp. 1172-1180, 2012.

[20] N. Tatti, and J. Vreeken, The Long and the Short of It: Summarizing Event
Sequences with Serial Episodes, In Proc. of ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD), 2012.

[21] N. Meger, C. Leschi, N. Lucas, and C. Rigotti, Mining episode rules in
STULONG dataset, In Proc. of the ECML/PKDD2004 Discovery
Challenge, 2004, pp. 1-12.

[22] H. Mannila , H. Toivonen, and A. I. Verkamo, Discovery of Frequent
Episodes in Event Sequences, Data Mining and Knowledge Discovery, Vol.
1(3), pp. 259-289, 1997.

[23] D. Patnaik, P. Butler, N. Ramakrishnan, L. Parida, B. J. Keller, and A.
Hanauer, Experiences with Mining Temporal Event Sequences from
Electroinic Medical Records, In Proc. of ACM SIGKDD conference on
Advances in knowledge discovery and data mining (KDD), pp. 360-368,
2011.

[24] J. Pei, J. Han, B. Mortazavi-Asl. J. Wang, H. Pinto, Q. Chen, U. Dayal and
M. C. Hsu. PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-
Projected Pattern Growth. In Proc. of the Int’l Conf. on Data Engineering
(ICDE), pp. 215-224, 2001.

[25] B. Shie, H. Hsiao, V. S. Tseng and P. S. Yu, Mining high utility mobile
sequential patterns in mobile commerce environments, DASFAA 2011,
pp.224-238.

[26] V. S. Tseng, C.-W. Wu, B.-E. Shie, and P. S. Yu. UP-Growth: an efficient
algorithm for high utility itemset mining. In Proc. of Int'l Conf. on ACM
SIGKDD, pp. 253–262, 2010.

[27] B. Vo, H. Nguyen, T. B. Ho, and B. Le. Parallel Method for Mining High-
utility Itemsets from Vertically Partitioned Distributed Databases. In KES
2009, Part I, LNAI 5711, pp. 251-260, 2009.

[28] C. Wu, B. Shie, V. S. Tseng, P. S. Yu. Mining top-K high utility itemsets. In
Proc. of ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD), pp. 78-86, 2012.

[29] C. Wu, P. Philippe, P. S. Yu and V. S. Tseng. Efficient Mining of a Concise
and Lossless Representation of High Utility Itemsets. In Proc. of IEEE Int'l
Conf. on Data Mining (ICDM), pp.824-833, 2011.

[30] L. Wan, J. Liao, and X. Zhu. A Frequent Pattern Based Framework for
Event Detection in Sensor Network Stream Data, Proc. of the Third
International Workshop on Knowledge Discovery from Sensor Data
(SensorKDD), pp. 87-96, 2009.

[31] X. Ma, H. Pang, K. Tan. Finding Constrained Frequent Episodes Using
Minimal Occurrences, In Proc. of the 8th IEEE Int'l Conf. on Data Mining,
pp. 471-474, 2004.

[32] J. Yin, Z. Zheng and L. Cao. USpan: An Efficient Algorithm for Mining
High Utility Sequential Patterns. In Proc. of ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD), pp. 660-
668, 2012.

[33] M. J. Zaki, SPADE: An Efficient Algorithm for Mining Frequent
Sequences. Machine Learning, Vol. 42, pp. 31-60, 2001.

[34] Frequent itemset mining implementations repository,
http://fimi.cs.helsinki.fi/

[35] FoodMart2000, Microsoft Developer Network (MSDN),
http://msdn.microsoft.com/enus/library/aa217032(v=sql.80).asp

[36] NU-MineBench version 2.0 dataset and technical report,
http://cucis.ece.northwestern.edu/projects/DMS/MineBench.html

544

