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ABSTRACT 
Frequent episode mining (FEM) is an interesting research topic in 
data mining with wide range of applications. However, the 
traditional framework of FEM treats all events as having the same 
importance/utility and assumes that a same type of event appears at 
most once at any time point. These simplifying assumptions do not 
reflect the characteristics of scenarios in real applications and thus 
the useful information of episodes in terms of utilities such as profits 
is lost. Furthermore, most studies on FEM focused on mining 
episodes in simple event sequences and few considered the scenario 
of complex event sequences, where different events can occur 
simultaneously. To address these issues, in this paper, we 
incorporate the concept of utility into episode mining and address a 
new problem of mining high utility episodes from complex event 
sequences, which has not been explored so far. In the proposed 
framework, the importance/utility of different events is considered 
and multiple events can appear simultaneously. Several novel 
features are incorporated into the proposed framework to resolve the 
challenges raised by this new problem, such as the absence of anti-
monotone property and the huge set of candidate episodes. 
Moreover, an efficient algorithm named UP-Span (Utility ePisodes 
mining by Spanning prefixes) is proposed for mining high utility 
episodes with several strategies incorporated for pruning the search 
space to achieve high efficiency. Experimental results on real and 
synthetic datasets show that UP-Span has excellent performance 
and serves as an effective solution to the new problem of mining 
high utility episodes from complex event sequences. 

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications — Data 
Mining 

Keywords: Utility mining, episode mining, high utility episodes, 
complex event sequences 

1. INTRODUCTION 
Frequent pattern mining (abbreviated as FPM) [1, 3, 4, 12, 24] 

is a fundamental research topic in data mining, which refers to 
discovering patterns that appear in a dataset with frequency no less 
than a user-specified minimum support threshold.  Many studies 
have been dedicated to this research, including frequent itemset 
mining [3, 12], sequential pattern mining [1, 4, 24] and frequent 
episode mining [2, 9, 11, 16, 19, 20, 21, 22, 23, 30, 31]. However, 
the classical framework of FPM may discover a large amount of 
frequent but low revenue patterns and lose the information on 
valuable patterns having low selling frequencies. Hence, the 

traditional framework of FPM cannot satisfy the requirement of 
users who desire to discover patterns with high utilities such as high 
profits.  

To address these issues, utility pattern mining (abbreviated as 
UPM) [5, 6, 7, 8, 13, 14, 15, 17, 18, 25, 26, 27, 28, 29, 32] emerges 
as an important topic in data mining. In utility pattern mining, each 
item in the database has a weight (e.g. unit profit) and can appear 
more than once during a time period (e.g. purchase quantity). The 
utility of a pattern represents its importance, which can be measured 
in terms of weight, profit, cost, quantity or other information 
depending on the user preference. Mining high utility patterns refers 
to discovering patterns that appear in a dataset with utility no less 
than a user-specified minimum utility threshold. Utility pattern 
mining is an important task and has a wide range of applications 
such as website click stream analysis [5, 13, 6], cross-marketing in 
retail stores [15, 17, 25, 28] and biomedical applications [8]. 

Although high utility pattern mining is essential to many 
applications, it is not an easy task because the downward closure 
property [1, 3, 4, 12, 24] in FPM does not hold in UPM. To 
facilitate the task of high utility pattern mining, most studies [5, 13, 
14, 18, 26, 27, 28, 29] incorporate the concept of TWU (Transaction 
Weighted Utilization). In the TWU model, a pattern is considered as 
a candidate or potential high utility pattern (abbreviated as PHUI) if 
its TWU is no less than the minimum utility threshold, where the 
TWU of a pattern represents the upper bound of its utility. A general 
TWU model consists of phase I and phase II. In phase I, all the 
potential high utility patterns are found. In phase II, high utility 
patterns are identified from the set of PHUIs by calculating the 
exact utilities of PHUPs.  

Although many studies have been devoted to utility pattern 
mining, most of them focus on mining high utility itemsets from 
transactional databases [5, 13, 14, 15, 17, 18, 26, 27, 28, 29] or 
mining high utility sequential patterns from sequence databases [6, 
7, 25, 33]. The topic of discovering high utility episodes in complex 
event sequences has not been explored so far. An event sequence is 
a long sequence of events. Each event is described by its type and a 
time of occurrence. An episode is a set of partially ordered events. 
The traditional framework of frequent episode mining (abbreviated 
as FEM) [2, 9, 11, 16, 19, 20, 21, 22, 23, 30, 31] is to find episodes 
that frequently occur in an event sequence. However, the traditional 
framework of FEM treats all events as having the same 
weight/utility and assumes that events can only occur at most once 
at any time point. These simplifying assumptions do not reflect the 
characteristics of real-life applications. This may result in 
discovering episodes having low utility (e.g. low profit). 
Furthermore, most studies on FEM focused on mining episodes in 
simple event sequences and few considered the scenario of complex 
event sequences, where different events can occur simultaneously at 
the same time point.  

However, sequences containing such information are often 
encountered in real-life applications. For instance, in customer 
behavior analysis, a complex event sequence represents the 
purchase behavior of a customer. Each time point represents the 
items bought in a transaction (within a time period) by the customer. 
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Each purchased item can be regarded as an event having a quantity 
(internal utility) and a purchase price (external utility). Mining high 
utility episodes from such sequences can find sequential 
relationships between sets of items that contribute high profits, 
which is very valuable for business. Although mining high utility 
episodes from complex event sequences is desirable for many 
applications, it is not an easy task to incorporate the concept of 
utility mining with episode mining. It may pose the following 
challenges.  

First, the utility of an episode is neither monotone nor anti-
monotone [22]. In other words, the utility of an episode may be 
equal to, higher or lower than that of its supersets and subsets. 
Therefore, many techniques [2, 4, 12, 16, 22, 24, 31] developed in 
FEM that rely on anti-monotonicity to prune the search space 
cannot be directly applied to high utility episode mining.  

Second, mining episodes from complex event sequences is not a 
trivial task. In the complex event sequences, different events can 
occur simultaneously at the same time point. This is substantially 
different and much more challenging than mining episodes from 
simple event sequences. 

The third challenge is how to incorporate the concept of 
episode mining with the TWU model [5, 13, 14, 18, 26, 27, 28, 29] 
to facilitate the mining task. Although the TWU model is widely 
used in utility pattern mining, it is difficult to adapt this model to 
high utility episode mining because the dataset to be mined is a 
single, very long event sequence, which is very different from the 
transactional database [3, 12, 26] and sequence database [24, 32].   

The forth challenge is how to reduce the number of candidates 
produced in phase I as much as possible if the TWU model can be 
applied to the high utility episode mining. A large number of 
candidates produced in phased I may degrade the performance of 
the mining task in terms of execution time and memory 
consumption. Therefore, it is important to develop effective 
strategies to prune the candidates and the search space. 

In this paper, we address all of the above challenges by 
proposing a new framework for mining high utility episodes in 
complex event sequences. The major contributions of this work are 
summarized as follows: 

First, we incorporate the concept of utility into episode mining 
and formalize the problem of high utility episode mining. An 
efficient algorithm named UP-Span (Utility ePisodes mining by 
Spanning prefixes) is proposed for mining the complete set of high 
utility episodes from complex event sequences.   

Second, we integrate the concept of TWU model into high 
utility episode mining and propose EWU model (Episode-Weighted 
Utilization model) to efficiently find high utility episodes. Several 
strategies are proposed to prune the search space and reduce the 
number of candidates in the mining processes. The proposed 
strategies improve the overall performance of the mining task. In the 
experiment, the number of candidates produced by the proposed 
algorithm is much smaller than that of the baseline algorithm.  

Third, we conduct a series of experiments with both synthetic 
and real datasets. The results show that the proposed framework and 
the UP-Span algorithm can efficiently discover high utility episodes 
from large scale data. In particular, the proposed UP-Span algorithm 
outperforms the baseline algorithm substantially (over two orders of 
magnitude) and serves as an effective solution to the new problem 
of mining high utility episodes from complex event sequences. 

The remainder of this paper is organized as follows. Section 2 
introduces the background for episode mining and utility mining. 
Section 3 gives the formal definition of high utility episodes and 
presents the proposed algorithms. Experiments are shown in Section 
4. Conclusions and future work are given in Section 5.  

2. BACKGROUND 
This section introduces the preliminaries related to episode 

mining and high utility pattern mining.  

2.1 Episode Mining  
We introduce definitions and properties related to episode 

mining. For more details about episode mining, readers can refer to 
[2, 9, 11, 16, 19, 20, 21, 22, 23, 30, 31]. 

Definition 1 (Simple event sequence). Let  = {E1, E2,…,Em} be a 
finite set of events and N+ be a set of time points. A simple event 
sequence SS = <(E1, T1), (E2, T2),…, (En, Tn)> is an ordered 
sequence of events, where each event Ei is associated with a time 
point TiN+ and Ti < Tj, for all 1 ≤ i < j ≤ n. For example, Figure 1 
shows a simple event sequence SS = <((A), T1), ((B), T2), ((C), T3), 
((A), T5), ((D), T6), ((C), T7)>.  

Definition 2 (Simple episode). A simple episode α is a non-empty 
totally ordered set of events of the form <(E1), (E2),…, (Ek)>, where 
the event Ei appears before the event Ej for all  1 ≤ i < j ≤ k. For 
example, <(A), (C)> is a simple episode. 

Definition 3 (Simultaneous event set). A simultaneous event set 
SE = (E1, E2,…, Em) is composed of a set of events, where each 
event Ei in SE occurs at the same time point t for all 1 ≤ i ≤ m. 
The length of a SE is denoted by |SE| and is equal to the number of 
events in SE. Given two simultaneous event sets SE1 = (E1, E2,…, En) 
and SE2 = (E1’, E2’,…, Em’), where m ≤ n, SE2 is the subset of SE1 
and SE1 is the superset of SE2 iff SE2  SE1. 

Definition 4 (Complex event sequence). A complex event 
sequence CS = <(SE1, T1), (SE2, T2),…, (SEn, Tn)> is an ordered 
sequence of simultaneous event sets, where each simultaneous event 
set SEi is associated with a time point TiN+ and Ti < Tj, for all 1 ≤ i 
< j ≤ n. For example, Figure 2 shows a complex event sequence CS 
= <((AB), T1), ((BC), T2), ((C), T3), ((AB), T5), ((CD), T6), ((C), T7)>. 

Definition 5 (Episode containing simultaneous events). An 
episode α is a non-empty totally ordered set of simultaneous events 
of the form <(SE1), (SE2),…, (SEk)>, where SEi appears before SEj 
for all  1 ≤ i < j ≤ k. For example, <(AB), (C)> is an episode 
containing the simultaneous event set (AB). 

 
Figure 1. A simple event sequence  

 

 
Figure 2. A complex event sequence  

Definition 6 (Length and Size). The length of an episode α = 
<(SE1), (SE2),…, (SEk)> is defined as |α| = ∑ ||1=

k
i iSE  and is equal to 

the number of events in α. An episode α of length k is called k-
episode. The size of α is defined as the number of simultaneous 
event sets in α. For example, <(AB), (C)>  is a 3-episode of size 2. 

Definition 7 (Occurrence). Given an episode α = <(SE1), (SE2),…, 
(SEk)>, the time interval [Ts, Te] is called the occurrence of α if (1) α 
occurs in [Ts, Te], (2) the first simultaneous event set SE1 of α occurs 
at time Ts and the last simultaneous event set SEk of α occurs at time 
Te. The set of all occurrences of α is denoted as occSet(α). For 
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example, the set of all the occurrences of <(AB), (C)> in Figure 2 is 
occSet(<(AB), C>) = {[1, 2], [1, 3], [1, 6], [1, 7], [5, 6], [5, 7]}. 

Definition 8 (Minimal occurrence). Given two time intervals [Ts, 
Te] and [Ts’, Te’] of occurrences of episode α, [Ts’, Te’] is the sub-
time interval of [Ts, Te] if Ts ≤ Ts’ and Te’ ≤ Te. The time interval [Ts, 
Te] is called a minimal occurrence of episode α if (1) [Ts, Te] is the 
occurrence of episode α and (2) there is no alternative occurrence 
[Ts’, Te’] of α such that [Ts’, Te’] is the sub-time interval of [Ts, Te]. 
A minimal occurrences of α is denoted as mo(α). The complete set 
of minimal occurrences of α is denoted as moSet(α). For example, 
the time interval [1, 2] is a minimal occurrence of <(AB), C> and 
moSet(<(AB), C>) = {[1, 2], [5, 6]}. 

Definition 9 (Support of an episode). The support count of an 
episode α is defined as the number of minimal occurrences in 
moSet(α) and denoted as SC(α). The support of α is defined as the 
ratio of SC(α) to the number of time points in CS.  

Definition 10 (Frequent episode). An episode is called frequent, iff 
its support is no less than a user-specified minimum support 
threshold min_sup. Otherwise, the episode is infrequent.  

Definition 11 (Frequent episode mining). Given an event 
sequence CS and a user-specified minimum support threshold 
min_sup, the problem of frequent episode mining is to extract all the 
episodes having a support no less than min_sup.  

Definition 12 (Sub-episode and super-episode). Given two 
episodes α = <SE1, SE2, …, SEn> and β = <SE1’, SE2’, …, SEm’> 
where m ≤ n, the episode β is a sub-episode of α iff there exists m 
integers 1 ≤ i1 < i2 <…< im ≤ n such that SEik’ SEk for 1 ≤ k ≤ m ≤ 
n. In addition, episode α is the super-episode of β. 

Property 1 (Downward closure property for frequent episode 
mining). The downward closure property states that: (1) For any 
frequent episode, all its sub-episodes are frequent. (2) For any 
infrequent episode, all is super-episodes are infrequent.  
Proof. The reader is referred to [22] for the proof. 

Episode mining is an interesting research topic in data mining 
with wide range of applications. The topic of mining frequent 
episodes in simple event sequences was first introduced by Mannila 
et al. [22]. They proposed two algorithms named WINEPI and 
MINEPI to find episodes that frequently occur in a simple event 
sequence. Although WINEPI and MINEPI algorithms are the 
pioneers in episode mining and perform well in some cases, they are 
Apriori-based approaches and employee candidate-generation-and-
test mechanisms to find frequent episodes. Therefore, they often 
generate a large number of candidates during the mining processes, 
which may degrade the performance of the mining task in terms of 
execution time and memory consumption.  To improve the 
performance of MINEPI algorithm, Ma et al. proposed the PPS 
(Position pairs set) algorithm [31], which efficiently finds frequent 
episodes without generating any candidate during the mining 
processes. Based on [22], several studies were proposed for mining 
various types of significant episodes or episode rules. In addition, 
episode mining is essential to many applications such as event 
detection in sensor network [30], occurrences of recurrent illnesses 
[21, 23] and financial data [2].  

Although many studies have been devoted to episode mining, 
most studies on frequent episode mining focused on mining simple 
episodes in simple event sequences and few considered the scenario 
of complex event sequences, where different events can occur 
simultaneously at the same time point. By considering complex 
event sequences, the episode containing simultaneous events can be 
discovered, which provides additional information about the 

relationships between events. Besides, the traditional framework of 
frequent episode mining treats all events as having the same 
importance/utility and assumes that an event appears at most once at 
any time point. These assumptions do not reflect the characteristics 
in real scenario of several real-life applications and thus the useful 
information of episodes with high utilities such as high profits is lost. 
Although discovering episodes with high utility is desirable for 
many applications, the topic of high utility episode mining has not 
been addressed so far. In the next subsection, we study the related 
works about utility mining.  

2.2 Utility Pattern Mining 
We introduce the preliminary works related to high utility 

itemset mining, high utility sequential pattern mining and high 
utility episode mining. For a recent overview of research on utility 
mining, readers can refer to [5, 6, 7, 8, 13, 14, 15, 17, 18, 25, 26, 27, 
28, 29, 32]. 

The concept of utility mining was first introduced in [8]. In 
utility pattern mining, each item in a database is associated with an 
additional value, called its external utility, which can be used to 
indicate the importance/weight/unit profit of the item. Each item 
appearing in a record of the database is attached with its internal 
utility, which indicates the quality/appearance/quantity of the item 
in the record. The utility of an itemset (a set of items) can be 
measured by considering its external utility and internal utility. An 
itemset is called high utility if its utility is no less than a minimum 
utility threshold. Otherwise, the itemset is called low utility. Mining 
high utility itemsets is much more challenging than mining frequent 
itemsets, because the downward closure property [3, 12] in frequent 
itemset mining does not hold in utility mining.  

Several algorithms have been proposed for mining HUIs, 
including IHUP [5], Two-Phase, IIDS [18], TWU-Mining [27], and 
UP-Growth [26]. Most of them utilize the TWDC (Transaction-
Weighted Downward Closure) property and adopt the TWU 
(Transaction-Weighted Utilization) model to find high utility 
itemsets. In general, the general TWU model consists of two phases. 
In phase I, potential high utility itemsets are found from the 
database. In phase II, the exact utilities of the potential high utility 
itemsets are computed by scanning the database and high utility 
itemsets are identified from the set of potential high utility itemsets.  

Although the above studies perform well in many applications, 
they can only handle itemsets and do not consider the sequential 
data and the ordering relationships between items. Mining high 
utility patterns from sequential data is a more challenging task. The 
integration of utility and sequential pattern mining has taken place 
very recently. We only found four papers [5, 6, 27, 34] on this topic. 
Ahmed et al. integrated the concept of utility mining with sequential 
pattern mining and proposed US and UI algorithms for mining high 
utility sequential patterns [7]. Shie et al. proposed the UMSP 
algorithm [25] for mining high utility mobile sequential patterns in 
mobile environment. Ahmed et al. designed an algorithm for mining 
high utility access sequences from web log data [6]. Recently, Yin 
et al. argued that the problem definition in [6] is rather specific and 
they proposed a generic framework for high utility sequence 
analysis and an efficient algorithm named USpan [32] for mining 
high utility sequential patterns. From the above related works, we 
can observe that only very preliminary works have been done on 
mining high utility patterns from sequential data. For the topic of 
high utility episode mining, we found that there is only one related 
paper in the literature [10]. But it only considers the external utility 
of the event (e.g. importance/weight/unit profit). It did not consider 
the case of complex event sequence and the internal utility of the 
event (e.g. quality/quantity/ appearance count).   
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3. HIGH UTILITY EPISODE MINING 
In this subsection, we first explain how we incorporate the 

concept of utility mining into episode mining and propose a new 
framework for high utility episode mining. Then we present an 
efficient algorithm named UP-Span (Utility ePisodes mining by 
SPANning prefixes) and effective strategies for mining the complete 
set of high utility episodes in complex event sequences.  

3.1 High Utility Episode Mining  
Let N+ be a set of time points and CS = <(tSE1, T1), (tSE2, 

T2),…, (tSEn, Tn)> be a complex event sequence with n time points, 
where each simultaneous event set tSEi is associated with a time 
point TiN+ and Ti < Tj, for all 1 ≤ i < j ≤ n. In high utility episode 
mining, each event Ei is associated with a positive number p(Ei, 
CS), called its external utility. Each event Ej in a simultaneous event 
set tSEi at the time point Ti is associated with a positive number q(Ej, 
Ti), called its internal utility. For example, Figure 3 shows a 
complex event sequence with internal utility and Table 1 shows the 
external utilities of events.  

Definition 13 (Utility of an event at a time point). The utility of an 
event Ej at a time point Ti is defined as u(Ej, Ti) = p(Ej, CS) × q(Ej, 
Ti). For example, the utility of the event (A) at the time point T1 is 
u((A), T1) = p((A), CS) × q((A), T1) = (1×2) = 2. 

Definition 14 (Utility of a simultaneous event set at a time point). 
The utility of a simultaneous event set SE = (E1, E2,…, Ek)  at a time 
point Ti is defined as u(SE, Ti) = ∑ ),(1= ij

k
j TEu . For example, the 

utility of the simultaneous event set (AB) at the time point T1 is 
u((AB), T1)  = u((A), T1)+ u((B), T1) = (2+2) =4.  

Definition 15 (Total utility of database complex event sequence). 
The total utility of a complex event sequence CS is defined as u(CS) 
= ∑ ),(1=

n
i ii TSEu . For example, complex event sequence depicted 

in Figure 3 is u(CS) = u((AB), T1) + u((BC), T2)+ u((C), T3)+ u((AB), 
T5)+ u((CD), T6)+ u((C), T7) = (4 + 8 + 3 + 4 + 18 + 3) = 40.  

Definition 16 (Utility value of an episode w.r.t its minimal 
occurrence). Let mo(α) = [Ts, Te] be a minimal occurrence of the 
episode α = <(SE1), (SE2),…, (SEk)>, where each simultaneous 
event set SEi  α is associated with a time point Ti. The utility of the 
episode α w.r.t mo(α) is defined as u(α, mo(α)) = ∑ ),(1=

k
i ii TSEu . 

For example, the utility of <(AB),(C)> w.r.t the mo(<(AB),(C)>) = 
[1, 2] is (4 + 6) = 10.  

Definition 17 (Utility of an episode in a complex event sequence). 
Let moSet(α) = [TI1, TI2,…, TIk] be the set of all minimal 
occurrences of the episode α, where TIi is a minimal occurrence of α 
for 1 ≤ i ≤ k. The utility value of the episode α in a complex event 
sequence CS is defined as uv(α, CS) = ∑ ),α(1=

k
i kTIu . The utility of 

α is defined as u(α) = (uv(α)/ u(CS)). For example, the utility of the 
episode <(AB),(C)> is  u(<(AB),(C)>) = (uv(<(AB),(C)>) / u(CS)) = 
(20/40) = 50%.  

Definition 18 (High Utility Episode; HUE). An episode is a high 
utility episode (abbreviated as HUE), iff its utility is no less than a 
user-specified minimum utility threshold min_utility. Otherwise, the 
episode is a low utility episode.  

Problem statement. Given a user-specified minimum utility 
threshold min_utility and a complex event sequence CS with 
external utility and internal utility of events, the problem of high 
utility episode mining is to discover all the episodes having a utility 
no less than min_utility.  

Definition 19 (Maximum time duration). Let MTD be a user-
specified maximum time duration and mo(α) = [Ts, Te] be a minimal 
occurrence of the episode α. The minimal occurrence mo(α) is said 
to satisfy the maximum time duration constraint iff (Te  Ts + 1) ≤ 
MTD.  

Definition 20 (Simultaneous and serial concatenations). Let α = 
<(SE1), (SE2),…, (SEx )> and β = <(SE1’), (SE2’),…, (SEy’)> be 
episodes. The simultaneous concatenation of α and β is defined as 
simul-concat(α, β) = <(SE1), (SE2),…, (SEx∪SE1’), (SE2’),…, 
(SEy’)>. The serial concatenation of α and β is defined as serial-
concat(α, β) = <(SE1), (SE2),…, (SEx ), (SE1’), (SE2’),…, (SEy’)>. 

Definition 21 (Episode-Weighted Utilization of an episode w.r.t a 
minimal occurrence). Let mo(α) = [Ts, Te] be a minimal occurrence 
of the episode α = <(SE1), (SE2),…, (SEk-1), (SEk)>, where each 
simultaneous event set SEi  α is associated with a time point Ti (1≤ 
i ≤ k) and mo(α) satisfies MTD. The episode-weighted utilization of 
α w.r.t mo(α) is defined as EWU(α, mo(α)) 
=[ ∑ ),(+∑ ),( )1-+(

=
)1-(

1=
MTDs

ei ii
k

i ii TtSEuTSEu ]/u(CS), where tSEi is the 

simultaneous event set at the time point Ti in CS.  

For example, if MTD = 4, the EWU of the episode α = <(C), 
(A)> w.r.t mo(<(C), (A)>) = [3, 5] is EWU(<(C),(A)>, [3, 5]) =  
[u((C), T3)] + [u((AB), T5)) + u((CD), T6)] = 25. 

Definition 22 (Episode-Weighted Utilization of an episode). Let 
moSet(α) = [TI1, TI2,…, TIk] be the set of all the minimal 
occurrences of α, where each minimal occurrence TIi  moSet(α) 
satisfies MTD for 1 ≤ i ≤ k. The episode-weighted utilization of α in 
a complex event sequence CS is defined as EWU(α) = 
((∑ ),α(1=

k
i iTIEWU ) / u(CS)).  

For example, when MTD = 3, the EWU of the episode α = 
<(A),(C)> is EWU(<(A),(C)>) = [u((AB), T1) + u((BC), T2)+ u((C), 
T3)] + [u((AB), T5) + u((CD), T6) + u((C), T7)]/u(CS) = 40/40. 

 
Figure 3. Complex event sequence with internal utility 

Table 1. External utilities of events 

Event A B C D 
External utility  2 1 3 4 

 
Definition 23 (High Weighted Utilization Episode; HWUE). An 
episode is called High Weighted Utilization Episode (abbreviated as 
HWUE) iff its EWU is no less than the minimum utility threshold 
min_utility.  

Theorem 1 (Episode-Weighted Downward Closure property). 
Let α and β be episodes, and γ = simult-concat(α, β) or serial-
concat(α, β). The Episode-Weighted Downward Closure    
(abbreviated as EWDC) property states that if EWU(α) < min_utility, 
γ is a low utility episode. 
Proof. Let moSet(α) = [TI1, TI2,…, TIx], moSet(γ) = [TI1’, TI2’,…, 
TIy’]. Because γ = simult-concat(α, β) or serial-concat(α, β), 
|moSet(α)|  |moSet(γ)| [21, 31]. According to the Definition 22, 
EWU(α) = (( ∑ ),α(1=

x
i iTIEWU ) / u(CS))  EWU(γ) = 

((∑ ),((1=
y
j jTIγEWU ) / u(CS))  u(γ). If EWU(α) < min_utility, u(γ) 

< min_utility, which yields that γ is low utility (Definition 18).  
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Table 2. Minimal occurrences, EWUs and utilities of  
1-episodes in the complex event sequence of Figure 3 

Global 
Event 

Minimal occurrences EWU Utility 

A {[1,1], [5, 5]} 40/40 4/40 
B {[1,1], [2,2], [5,5]} 51/40 6/40 
C {[2,2], [3,3], [6,6], [7,7]} 42/40 18/40 
D {[6,6]} 21/40 12/40 

Table 3. Minimal occurrences, EWUs and utilities of  
local 1-episodes in the <(A)>-projected database 

<(A)>-projected database 
Local 
Event 

Minimal occurrences EWU Utility 

(_B) {[1,1], [5,5]} 40/40 8/40 
B {[1,2]} 13/40 4/40 
C {[1,2], [5,6]} 36/40 16/40 
D {[5,6]} 23/40 14/40 

3.2 Efficient Mining of High Utility Episodes 
This subsection introduces an algorithm named UP-Span 

(Utility ePisodes mining by Spanning prefixes) for efficiently 
discover high utility episodes in a complex event sequence. The 
proposed algorithm adopts the prefix-growth paradigm [12, 24]. 
Following that, two efficient strategies that greatly enhance the 
performance are introduced.  

Pseudo code 1 shows the main procedure of the UP-Span 
algorithm. The inputs of the UP-Span algorithm are: (1) a complex 
event sequence CS, (2) minimum utility threshold  min_utility and 
(3) maximum time duration MTD. The algorithm scans the complex 
event sequence once to find 1-episodes and catching their associated 
minimal occurrences (Line 1-2). The EWUs and exact utilities of 1-
episodes can be calculated according to the Definition 17 and 22. 
For example, Table 2 shows the minimal occurrences, EWUs and 
utilities of all 1-episodes in Figure 3 when MTD = 3. 

For each 1-episode α (also called global event), if EWU(α) is 
no less than min_utility, α is identified as a HWUE of length one 
(Definition 23). Then, the algorithm explores the search space of 
high utility episodes containing α as prefix. The prefix α is spanned 
by executing the MiningHUE procedure (Line 3-5). There are two 
sub-procedures MiningSimultHUE and MiningSerialHE in the 
procedure MiningHUE. The sub-procedure MiningSimultHUE aims 
at finding the simultaneous events that are related to α. The sub-
procedure MiningSerialHUE aims at finding the serial events related 
to α (Line 7-9).  

ALGORITHM: UP-Span 
Input: (1) CS: complex event sequence;  
            (2) min_utility: minimum utility threshold; 
            (3) MTD: maximum time duration; 
Output: HUE_Set: The complete set of high utility episodes; 
01.   Scan CS once to find high utility 1-epsiodes and calculate  
02.    their EWUs and catch the associated minimal occurrences;  
03.  for each global event α do 
04.                  if (EWU(α)  min_utility ) then 
05.            { MiningHUE(α, moSet(α), MTD, min_utility);} 
06. 
Procedure MiningHUE(episode α, moSet(α), MTD, min_utility) 
07.               MiningSimultHUE(α, moSet(α), MTD, min_utility); 
08.               MiningSerialHUE(α, moSet(α), MTD, min_utility); 
09. 

Pseudo code 1. Algorithm UP-Span 

 

ALGORITHM: MiningSimultHUE   
Input: (1) α: episode;  
            (2) moSet(α): all minimal occurrences of α 
            (3) MTD: maximum time duration  
            (4) min_utility: minimum utility threshold; 
Output: The set of high utility simultaneous episodes w.r.t 
                prefix α;   
01.  for each mo(α) = [Ts, Te]moSet(α) do 
02.        SES = {e|event e occurs at Te}; 
03.        for each event e  SES do 
04.              β = simult-concat(α, e); 
05.              Let occ(β) = [Ts, Te]; 
06.              if (occ(β) is a minimal occurrence in moSet(β)) then 
07.                  { moSet(β) = moSet(β) ∪ occ(β);} 
08.        
09.   for each simultaneous event e in α-projected database do 
10.        β = simult-concat(α, e); 
11.                moSet(β): = Repair_moSet(moSet(β)); 
12.          if (u(β)  min_utility) then {HUE_Set = HUE_Set ∪β; } 
13.        if (EWU(β)  min_utility) then   
14.              { MiningHUE(β, mo(β), MTD, min_utility); } 
 

Pseudo code 2. Procedure MiningSimultHUE 

ALGORITHM: MiningSerialHUE   
Input: (1) α: episode;  
            (2) moSet(α): all minimal occurrences of α 
            (3) MTD: maximum time duration  
            (4) min_utility: minimum utility threshold; 
Output: The set of high utility serial episodes w.r.t             
                prefix α;   
01.  for each mo(α) = [Ts, Te]moSet(α) do 
02.     for each time point t between [Te+1, Ts+MTD1] do  
03.  NES = {e|event e occurs at time point t}; 
04.           for each event e  NES do 
05.                 β = serial-concat(α, e); 
06.                 Let occ(β) = [Ts, t]; 
07.                 if (occ(β) is a minimal occurrence in moSet(β)) then 
08.                     { moSet(β) = moSet(β) ∪ occ(β);} 
09. 
10.   for each serial event e in projected database of α do 
11.        β = serial-concat(α, e); 
12.                moSet(β): = Repair_moSet(moSet(β)); 
13.          if (u(β)  min_utility) then {HUE_Set = HUE_Set ∪β; } 
14.        if (EWU(β)  min_utility) then   
15.              { MiningHUE(β, moSet(β), MTD, min_utility); } 

Pseudo code 3. Procedure MiningSerialHUE 

 
Pseudo code 2 shows the procedure of the MiningSimultHUE, 

which is performed as follows. For each minimal occurrence 
mo(α) = [Ts, Te] in moSet(α), the algorithm collects all events that 
occur at the time point Te into the set SES (Simultaneous Events 
Set) (Line 1-2). For each event e in the set SES, the algorithm 
performs the simultaneous concatenation of α and e to form an 
episode β (Line 4). Then, the variable occ(β) is set to [Ts, Te] 
(Line 5). If occ(β) is a minimal occurrence in the set of current 
minimal occurrences, occ(β) is added into the set of minimal 
occurrence of β (Line 6-7). After that, events that simultaneously 
occur with α, their minimal occurrences are stored in the 
projected database of α (abbreviated as α-PB). For each 
simultaneous event e in α-PB, we perform simultaneous 
concatenation operation on α and e to form the episode β (Line 
11). For each such episode β, the function Repair_moSet is called 
to find the complete set of minimal occurrences of β since the 
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current moSet(β) does not capture the complete set of minimal 
occurrences of β. After that, all the minimal occurrences of β are 
collected into moSet(β). Given the information contained in 
moSet(β), the utility and EWU of β can be calculated according to 
Definitions 17 and 21. For example, Table 3 shows the minimal 
occurrences, EWU values and utility values of local 1-episodes in 
the <(A)>-projected database when MTD = 3. The events in the 
first row of Table 3 are simultaneous events of the episode <(A)>. 
After the calculation, if the utility of β is no less than min_utility, 
β is high utility and it is collected into the set HUE_Set. If EWU(β) 
is no less than min_utility, the procedure MiningHUE is called to 
find high utility episodes w.r.t. the prefix β.  

Pseudo code 3 shows the procedure of the MiningSerialHUE, 
which is performed as follows. For each minimal occurrence 
mo(α) = [Ts, Te] in moSet(α), we collect all events that occur 
between the time interval [Te+1, Ts+MTD-1] into the set NES 
(Next Events Set) (Line 1-3). For each event e in the set NES, we 
perform serial concatenation operation on α and e to form an 
episode β = simult-concat(α, e) (Line 5). Then, the variable occ(β) 
is set to [Ts, t], where t is a time point between the time interval 
[Te+1, Ts+MTD-1]  (Line 7). If occ(β) is a minimal occurrence in 
the set of current minimal occurrences, occ(β) is added into the 
set of minimal occurrences of β (Line 7-8). After that, events that 
serially occur after α, and their current minimal occurrences are 
stored in the α-PB. For each serial event e in the α-PB, the 
algorithm performs serial concatenation of α and e to form an 
episode β. For each such episode β, the algorithm calls the 
function Repair_moSet to finds the complete set of minimal 
occurrences of β. After that, all the minimal occurrences of β are 
collected into the variable moSet(β). With the information of 
moSet(β), the utility and EWU of β can be calculated according to 
the Definitions 17 and 22. For example, the last three rows of 
Table 3 shows minimal occurrences, EWUs and utilities of the 
three serial events of the episode <(A)>. After the calculation, if 
the utility of β is no less than the min_utility, β is a high utility 
episode and it is collected into the set HUE_Set. If the EWU(β) is 
no less than the min_utility, the procedure MiningHUE is called to 
find the high utility episodes w.r.t. the prefix β.  

Then, we present two effective strategies named DGE 
(Discarding Global unpromising Events) and DLE (Discarding 
Local unpromising Events), which are based on the following 
definitions. 

Definition 24 (Promising event). An event e is a promising event 
iff EWU(e) min_utility. Otherwise it is an unpromising event.  

Property 2. Let α be an unpromising event and β be an episode, 
Any super-episode γ of α such that γ =simult-concat(α, β) or γ = 
serial-concat(α, β) is low utility. 
Rationale. The property holds by EWDC property (Theorem 1).  

Strategy 1 (Discarding Global unpromising Events; DGE). 
Discard global unpromising events and their exact utilities from 
the complex event sequence and related EWUs.  
Rationale. By the Theorem 1, unpromising events play no role in 
high utility episodes. Therefore, global unpromising events can be 
removed from the complex event sequence and their utilities can 
be ignored in the calculation of the estimated utilities of episodes.  

Strategy 2 (Discarding Local unpromising Events; DLE). 
Discard local unpromising events and their exact utilities from the 
projected database and related EWUs.  
Rationale. By the Theorem 1, local unpromising events play no 
role in high utility episodes. Therefore, local unpromising events 

can be removed from the projected database and their utilities can 
be ignored in the calculation of the estimated utilities of episodes. 

4. EXPERIMENTAL EVALUATION  
In this section, we evaluate the performance of the proposed 

algorithms. Experiments were performed on a computer with a 
3.40 GHz Intel Core 2 Processor with 4 gigabytes of memory, 
running on Windows 7. All of the algorithms are implemented in 
Java. Both synthetic and real datasets are used to evaluate the 
performance of the algorithms. Synthetic datasets were generated 
by using the IBM data generator [3]. The parameters of the 
generator are described as follows: D is the total number of time 
points; T is the average size of a simultaneous event set at a time 
point; N is the number of distinct events; I is the average size of 
maximal potential episodes. The internal utility and external 
utility values are generated using the settings used in [26, 28, 29]. 
Different types of real world datasets were used in the 
experiments. Foodmart, a small sparse dataset, was acquired from 
Microsoft foodmart 2000 database [35]; Retail was obtained from 
FIMI Repository [34]. ChainStore, a large dataset, was obtained 
from NU-MineBench 2.0 [36]. Note that these three datasets are 
sometimes viewed as transaction databases but they can be 
considered as a single complex sequence by regarding each item 
as an event and each transaction as a simultaneous event set. The 
Foodmart and ChainStore already contain unit profits (external 
utility) and purchased quantities (internal utility). For the Retail 
dataset, unit profits for items are generated between 1 and 1,000 
by using a log-normal distribution and quantities of items are 
generated randomly between 1 and 5, as in [26, 28, 29]. Table 4 
shows the characteristics of the datasets in the experiments. To 
evaluate the performance of the proposed algorithms, we compare 
four versions of the algorithm named as follows. The baseline 
algorithm without strategies DGE and DLE is denoted as UP-
Span(Baseline). The algorithm only applying the strategy DGE is 
denoted as UP-Span(DGE). The algorithm only applying the 
strategy DLE is denoted as UP-Span(DLE). Lastly, the algorithm 
UP-Span(DGE+DLE) uses both DGE and DLE strategies. 

Table 4. Statistical information about different datasets 
Dataset #Trans #Items Avg. Length.

T12I8N1KQ5D10K 10,000 1,000 12
Foodmart 4,141 1,559 4.4

Retail 88,162 16,470 10.3
ChainStore 1,112,949 46,086 7.3

 

4.1   Evaluation on Synthetic Dataset  
We first discuss the performance of the algorithms on the synthetic 
dataset T12I8N1KQ5D10K. Figure 4 shows the number of 
candidates and high utility episodes on T12I8N1KQ5D10K under 
varied minimum utility thresholds when the maximum time duration 
is set to eight. In Figure 4, there is no high utility episode produced 
when the minimum utility threshold is lower than 30%.  

  
Figure 4. The number of candidates on T12I8N1KQ5D10K 

 dataset under different minimum utility thresholds 
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Figure 5. The execution time on T12I8N1KQ5D10K 
 dataset under different minimum utility thresholds 

 
Figure 6. Number of candidates and high utility episodes on 
T12I8N1KQ5D10K under varied maximum time durations 

 
Figure 7. The execution time on T12I8N1KQ5D10K dataset 

under different maximum time durations 

 
Figure 8. Execution time on T12I8N1KQ5DxK dataset  

(x is varied from 20 to 100) 

As shown in Figure 4, UP-Span(DGE+DLE) generates much fewer 
candidates than UP-Span(Baseline). The reason is that strategy DGE 
effectively reduces the number of candidates by removing global 
unpromising events and their utilities from the complex event 
sequence. Although both strategies reduce the number of candidates, 
the effectiveness of the strategy DGE is better than that of the 
strategy DLE on this dataset. In the Figure 4, when the minimum 
utility threshold is less than 1%, the number of candidates generated 
by UP-Span(DGE+DLE) is about 100 times smaller than the 
number of candidates generated by UP-Span(Baseline).  

Figure 5 shows the execution time on T12I8N1KQ5D10K 
under varied minimum utility thresholds when the maximum time 
duration is set to eight. As shown in Figure 5, UP-Span(Baseline) is 
the worst and UP-Span(DGE+DLE) has the best performance. In 
Figure 5, UP-Span(DLE) runs faster than UP-Span(Baseline) over 
100 times when the minimum utility threshold is higher than 50%. 
UP-Span(DLE) and UP-Span(Baseline) follow a similar  trend when 

the threshold is less than 10%. It is because the UP-Span(DLE) 
performs additional processing to decrease the overestimated 
utilities of the episodes but the there are few local unpromising 
events in the projected databases. When the threshold is lower than 
5%, UP-Span(DGE+DLE) runs faster than UP-Span(baseline) about 
10 times. By the above observation, we show that the overall 
performance of UP-Span(DGE+DLE) outperforms UP-
Span(Baseline).  

Figure 6 shows the number of candidates and high utility 
episodes of the algorithms on T12I8N1KQ5D10K under varied 
maximum time durations. In this experiment, the threshold is set to 
1%. As shown in Figure 6, the number of candidates grows rapidly 
when the maximum time duration increases. In Figure 6, we can see 
that UP-Span(DGE+DLE) generates much fewer candidates than 
UP-Span(Baseline). When the maximum time duration is set to ten, 
UP-Span(DGE+DLE) generates about 10 times less candidates than 
UP-Span(Baseline). Figure 7 shows the execution time of the 
algorithms on T12I8N1KQ5D10K under various maximum time 
durations. As shown in Figure 7, UP-Span(DGE+DLE) and UP-
Span(DGE) run about 15 times faster than UP-Span(Baseline)  and 
UP-Span(DLE) because the former two algorithms produce much 
fewer candidates than the later two algorithms.  

Then, we test the scalability of the algorithms on different 
lengths of complex event sequences. In this experiment, the 
maximum time duration and the minimum utility threshold are set to 
four and 10%. The number of time points in the complex event 
sequence is varied from 20K to 100K. Figure 8 shows the execution 
time for this experiment. As shown in Figure 8, UP-Span(DGE) and 
UP-Span(DGE+DLE) have better scalability than UP-
Span(Baseline) and UP-Span(DLE) when the number of time points 
increases. When the number of time points is 100K, UP-Span(DGE) 
and UP-Span(DGE+DLE) run about 5 times faster than the UP-
Span(Baseline) and UP-Span(DLE).  

4.2   Evaluation on Real Dataset 
In this section, we compare the performance of the algorithms 

on real datasets. We first show the evaluation on Foodmart, which is 
a small dataset with 1,559 distinct events. Figure 9 shows the 
execution time on the Foodmart dataset under different minimum 
utility thresholds. As shown in Figure 9, all the algorithms have 
good performance but UP-Span(Baseline) is the slowest and the 
winner is UP-Span(DLE). On this dataset, the strategy DLE 
performs better than the strategy DGE. The strategy DLE 
effectively reduces the number of candidates by removing local 
unpromising events and their utilities from the projected databases. 
The execution time of UP-Span(DGE+DLE) is affected by the extra 
operations performed by the strategy DGE, and thus it runs slower 
than UP-Span(DLE). When the minimum utility threshold is set to 
10%, the execution time of UP-Span(DGE) is close to that of UP-
Span(Baseline) since there are few global unpromising events that 
can be discarded from the complex event sequence.   

 
Figure 9. Execution time on Foodmart dataset under different 

minimum utility thresholds 
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Figure 10. Execution time on Retail dataset under different 

minimum utility thresholds 

 
Figure 11. Execution time on ChainStore dataset under 

different minimum utility thresholds 

 
 (a) Foodmart dataset (b) Retail dataset 
Figure 12. Memory consumptions of the algorithms 

We then evaluate the performance of the algorithms on the 
Retail dataset. There are 16,470 distinct events in the dataset and the 
average length of the transactions is longer than that of the 
Foodmart dataset. Figure 10 shows the execution time of the 
algorithms on the Retail dataset under different minimum utility 
thresholds. The results show that UP-Span(DGE+DLE) and UP-
Span(DGE) follow a similar trend and they run faster than the UP-
Span(Baseline) and UP-Span(DLE).  

Figure 11 shows the execution time of the algorithms on the 
ChainStore dataset under different minimum utility thresholds. In 
this experiment, the maximum time duration is set to four. As 
shown in Figure 11, UP-Span(DGE+DLE) is the winner and UP-
Span(Baseline) has the worst performance. When the threshold is 
higher than 20%, UP-Span(DGE+DLE) runs faster than UP-
Span(Baseline) over 100 times. When the minimum utility threshold 
is set to 10%, UP-Span incorporated with strategies run faster than 
UP-Span(Baseline) over 10 times. Figure 11 also shows that UP-
Span incorporated with strategies has good scalability even for large 
database with large number of events. The overall performance of 
UP-Span with strategies is better than UP-Span(Baseline).   

4.3   Memory Consumption 
We evaluate the memory consumption of the algorithms on 

Foodmart and Retail datasets. Figure 12(a) shows the memory 
consumption of the algorithms on Foodmart dataset under different 
minimum utility thresholds. We can observe that UP-Span with 
strategies uses less memory than UP-Span(Baseline) since the 
proposed strategies effectively reduce the number of candidates and 
the number of projected databases. Figure 12(b) shows the memory 
consumption of the algorithms on the Retail dataset under different 

minimum utility thresholds. Overall, results show that the best 
algorithm is UP-Span(DGE+DLE) and the worst one is UP-
Span(Baseline). 

4.4   Summarization and Discussion 
We summarize results of the above experiments and compare 

characteristics of different algorithms. The experimental results 
show that our approach outperforms the baseline approach on both 
real and synthetic datasets. For example, UP-Span(DGE+DLE) runs 
over 100 times faster than the baseline approach on the ChainStore 
dataset when the minimum utility threshold is higher than 20%. 
Depending upon the characteristics of the datasets, the most 
effective pruning strategy can be different. For example, for the 
Foodmart dataset, the pruning of local unpromising events (strategy 
DLE) gives the best performance, while for Retail dataset, it is the 
pruning of global unpromising events (strategy DGE). UP-
Span(DGE+DLE) provides the most consistent and robust 
performance as it takes both types of pruning strategies into 
considerations, while UP-Span(DGE) and UP-Span(DLE) perform 
well only on one of the datasets as it incorporates just one type of 
pruning strategies. UP-Span(Baseline) always has the worst 
performance as it does not utilize the DGE and DLE pruning 
strategies.  

There are three reasons why our approach has good scalability 
and high performance on large databases. First, our approach is not 
Apriori-based. It discovers patterns by recursively growing patterns 
one item/event at a time. This avoids well-known drawbacks of 
Apriori-like approaches: (1) generating too many unnecessary 
candidates and (2) repeatedly scanning the original 
database.  Second, our approach finds (k+1)-episodes and their 
occurrences by using minimal occurrences of related k-episodes 
instead of all the occurrences, which leads to faster calculation and 
less memory consumption. Third, our approach finds high utility 
episodes in only one phase, as opposed to most high utility pattern 
mining algorithms [5, 7, 26, 33], which require collecting candidates 
and performing an additional database scan to calculate their exact 
utilities. This facilitates the performance of the mining task in terms 
of time and space.  

5. CONCLUSIONS AND FUTURE WORK 
In this paper, we incorporate the concept of utility mining into 

episode mining and propose a novel framework for mining high 
utility episodes in complex event sequences, which has not been 
explored so far. In the proposed framework, we consider the 
external utility and internal utility of events to measure the utility of 
episodes. We take the scenario of the complex event sequences into 
consideration for mining high utility episodes containing 
simultaneous events, which not only provides users with episodes 
with high utilities (e.g. high profits) but also more information about 
the relationships between episodes. We proposed a new algorithm 
named UP-Span (Utility ePisodes mining by Spanning prefixes) for 
efficiently mining the complete set of the high utility episodes. We 
successfully extend the TWU model to episode mining and propose 
the EWU (Episode-Weighted Utilization) model to facilitate the 
mining task of high utility episode mining. Two effective strategies, 
namely DGE (Discarding Global unpromising Events) and DLE 
(Discarding Local unpromising Events), are also proposed and 
incorporated with the UP-Span algorithm, which not only reduce the 
number of candidates produced in the mining processes but also 
enhance the performance of them mining task in terms of execution 
time and memory consumption. Experimental results on both real 
and synthetic datasets show that UP-Span has good scalability and 
outperforms the baseline approach substantially, especially under 
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higher minimum utility threshold (e.g. UP-Span runs faster than the 
baseline approach over 100 times on ChainStore dataset when the 
minimum utility threshold is higher than 20%). 

Although we first incorporate the concept of utility mining 
with episode mining and address the problem of high utility episode 
mining in this work, it still leaves ample room for exploration in the 
future work. For example, in this paper, we only consider serial 
episodes containing simultaneous events and do not consider other 
types of episode such as injective episodes [22], parallel episodes 
[22], closed episodes [19] and so on. In addition, there are many 
different ways to calculate the occurrence of episode, such as 
window-based occurrence [11, 22], non-overlapped/overlapped 
minimal occurrence ect., which can be addressed in the future work.  
Mining high utility episodes from event sequences is a novel and 
challenging problem. Related research topics ranging from problem 
definition to algorithm improvement and applications are 
worthwhile to be explored in the future. 
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