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ABSTRACT
Mining probabilistic frequent patterns from uncertain data
has received a great deal of attention in recent years due
to the wide applications. However, probabilistic frequent
pattern mining suffers from the problem that an exponen-
tial number of result patterns are generated, which seriously
hinders further evaluation and analysis. In this paper, we
focus on the problem of mining probabilistic representa-
tive frequent patterns (P-RFP), which is the minimal set
of patterns with adequately high probability to represent
all frequent patterns. Observing the bottleneck in checking
whether a pattern can probabilistically represent another,
which involves the computation of a joint probability of the
supports of two patterns, we introduce a novel approxima-
tion of the joint probability with both theoretical and em-
pirical proofs. Based on the approximation, we propose an
Approximate P-RFP Mining (APM) algorithm, which effec-
tively and efficiently compresses the set of probabilistic fre-
quent patterns. To our knowledge, this is the first attempt
to analyze the relationship between two probabilistic fre-
quent patterns through an approximate approach. Our ex-
periments on both synthetic and real-world datasets demon-
strate that the APM algorithm accelerates P-RFP mining
dramatically, orders of magnitudes faster than an exact so-
lution. Moreover, the error rate of APM is guaranteed to
be very small when the database contains hundreds transac-
tions, which further affirms APM is a practical solution for
summarizing probabilistic frequent patterns.

Categories and Subject Descriptors
H.2.8 [DATABASE MANAGEMENT]: Database Ap-
plications—Data Mining

General Terms
Algorithms
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1. INTRODUCTION
Data uncertainty is inherent in various applications such

as sensor network monitoring, moving object tracking, and
protein-protein interaction data [6]. It could be induced
by different reasons including experimental error, artificial
noise, and data incompleteness.Rather than cleaning the un-
certain data using domain-specific rules, modeling the un-
certainty of data is more rational in many applications, such
as medical diagnosis and risk assessment. As a consequence,
data mining over uncertain data has become an active re-
search area recently. A survey of state-of-the-art uncertain
data mining techniques may be found in [1].

As one of the most fundamental data mining tasks, fre-
quent pattern mining has also been introduced into uncer-
tain databases [3] and received a great deal of research atten-
tion [4, 5, 6, 10, 11, 12]. Generally, there exist two different
definitions of frequent patterns in the context of uncertain
data: expected support-based frequent patterns [3, 11], and
probabilistic frequent patterns [4, 5]. Both definitions con-
sider the support of a pattern as a discrete random variable.
The former uses the expectation of the support as the mea-
surement, while the latter considers the probability that the
support of a pattern is no less than some specified mini-
mum support threshold. Despite the different frequentness
metrics employed, both the expected support-based frequent
patterns and the probabilistic frequent patterns enjoy the
anti-monotonic property [3, 4]. That is, if a pattern is fre-
quent in an uncertain database, then all of its sub-patterns
are frequent as well. This property leads to the generation
of an exponential number of result patterns. The large num-
ber of discovered frequent patterns makes the understanding
of, and further analysis of generated patterns troublesome.
Therefore, similar to the counterpart of the problem in de-
terministic data, it is indeed important to find a small num-
ber of representative patterns to best approximate all other
probabilistic frequent patterns.

Some initial research work has been undertaken to find
a small set of representative patterns. For example, min-
ing probabilistic frequent closed patterns over uncertain data
has been studied in [7, 8, 9]. However, the number of prob-
abilistic frequent closed patterns is still large because of the
restrictive condition for a pattern being closed. For instance,
in [9], the closed probability of a pattern is computed as the
sum of the probabilities of the possible worlds of an uncer-
tain database where the pattern is closed.
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In the context of deterministic data, Xin et al. [20] has
proposed the notion of a ε-covered relationship between pat-
terns as a generalization of the concept of frequent closed
patterns to further reduce the size of closed patterns. A
pattern X1 is ε-covered by another pattern X2 if X1 is a
subset of X2 and (Supp(X1) − Supp(X2))/Supp(X1) ≤ ε.
The goal is then to find a minimal set of representative pat-
terns that can ε-cover all frequent patterns.

Motivated by this idea in deterministic data, in our previ-
ous work, we have proposed to relax the restrictive condition
of probabilistic frequent closed patterns to mine probabilis-
tic representative frequent patterns (P-RFP) [25]. In par-
ticular, we extend the concept of ε-cover to define the (ε, δ)-
covered relationship between probabilistic frequent patterns,
addressing the fact that the support of a pattern becomes
a discrete random variable in an uncertain database. Infor-
mally, a pattern X1 is (ε, δ)-covered by another pattern X2

in an uncertain database if X1 is a subset of X2, and the
probability that the support distance between X1 and X2 is
no greater than ε is no less than δ.
We have devised a dynamic programming-based approach

to discover the minimal set of P-RFPs. Although this ap-
proach can compute exactly the probability that the sup-
port distance between two patterns is no greater than ε, it
is not sufficiently efficient due to the bottleneck in examin-
ing whether a pattern (ε, δ)-covers another, which involves
the computation of a joint probability of the supports of
the two patterns. In this work, we analyze that the joint
support probability follows a joint Poisson binomial distri-
bution with both theoretical and empirical proofs. Based
on the analysis, we propose an Approximate P-RFP Mining
(APM) algorithm that performs outstandingly faster than
the dynamic programming-based exact approach.

To our knowledge, this is the first attempt to analyze
the relationship between two probabilistic frequent patterns
through an approximate approach. Our experimental results
show that our approach summarizes frequent patterns effi-
ciently and effectively, and restores the patterns and their
original frequency probability information with a guaran-
teed error bound. To summarize, our contributions are as
follows.

• We construct a mathematical model for the joint prob-
ability of the supports of a pattern pair and study an
approximation of the joint support probability.

• We develop an efficient algorithm to discover the mini-
mal set of P-RFPs using accurate approximation tech-
niques to estimate the probability that one pattern
represents another.

• We conduct extensive experiments on both real-world
and synthetic data to evaluate the performance of the
proposed approach by comparing against an exact so-
lution.

The remainder of the paper is structured as follows. The
next section reviews existing works related to this paper. We
define important concepts and provide the problem state-
ment in Section 3. Section 4 describes the proposed data
mining approach. The theoretical proof of the approxima-
tion of the joint support probability is demonstrated in Sec-
tion 5. We evaluate the performance of the proposed ap-
proach in Section 6 and close this paper with some conclu-
sive remarks in Section 7.

2. RELATED WORK
In this section, we review related research from two sub-

areas: frequent pattern mining over uncertain data and fre-
quent pattern summarization.

Frequent pattern mining over uncertain data. Min-
ing frequent patterns from uncertain databases has been
studied extensively in the past years. Existing work on fre-
quent pattern mining from uncertain data falls into two cat-
egories: expected support-based frequent pattern mining [3,
10, 11] and probabilistic frequent pattern mining [4, 5]. The
former utilizes the expectation of support as the frequentness
metric. That is, a pattern is frequent only if its expected
support is no less than a specified minimum expected sup-
port. The latter considers the frequency probability as the
measurement, which refers to the probability that a pattern
appears no less than a specified minimum support times.
Thus, a pattern is frequent only if its frequency probabil-
ity is no less than a specified minimum probability (i.e.
Pr(Supp(X) ≥ minsup) ≥ minprob).

There are three representative algorithms for mining ex-
pected support-based frequent patterns: UApriori [3], UFP-
growth [10] and UH-Mine [11]. UApriori is the uncertain
version of the well-known Apriori algorithm. Both UFP-
growth and UH-Mine employ the divide-and-conquer frame-
work that searches frequent patterns with depth-first strat-
egy. For mining probabilistic frequent patterns, there are
two representative algorithms: DP− dynamic programming-
based Apriori algorithm [4], and DC − divide-and-conquer-
based Apriori algorithm [5]. Recently, Tong et al. [6] verified
that the two types of definitions of frequent patterns mined
from uncertain data are closely related from a mathemati-
cal perspective and can be unified when the size of data is
sufficiently large.

Considering that the support of a pattern in an uncertain
database follows a Poisson binomial distribution, some ap-
proximate algorithms for mining probabilistic frequent pat-
terns have been proposed as well. For example, both the
Normal and Poisson distribution have been used to approx-
imate the frequency probabilities of patterns [12, 13]. Com-
pared with our work, existing approximate approaches focus
on the approximation of the support probability of only one
pattern. The approximation of joint probability of the sup-
ports of two patterns is much more challenging because the
dependency of two random variables needs to be taken into
account.

Frequent pattern summarization. Motivated by the
fact that frequent pattern mining may generate an expo-
nential number of patterns due to the anti-monotonicity,
numerous research work has been dedicated to frequent pat-
tern summarization, which aims to obtain a much smaller
set of patterns to represent the complete set of frequent pat-
terns. A variety of definitions have been proposed, such as
maximal patterns [14], frequent closed patterns [15] and non-
derivable patterns [16]. While all frequent patterns can be
recovered from maximal patterns, the loss of support infor-
mation is unacceptable in some circumstances. For frequent
closed patterns, although the exact support of all frequent
patterns can be preserved, the number of frequent closed
patterns can still be tens of thousands, or even more. There
are several generalizations of closed patterns, such as the
pattern profiling-based approaches [17, 18, 19] and the sup-
port distance-based approaches [20, 21]. It was observed
in [21] that the profile-based approaches [17, 18] have some
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drawbacks, such as no error guarantee on restored support.
Hence, in our work, we borrow the framework of the support
distance-based approaches to find probabilistic representa-
tive frequent patterns.

Recently, some research work has been undertaken to sum-
marize frequent patterns in the context of uncertain data.
Tang and Peterson [8] proposed mining probabilistic fre-
quent closed patterns, based on the concept called probabilis-
tic support. Tong et al. [9] pointed out that frequent closed
patterns defined on probabilistic support cannot guarantee
the patterns are closed in possible worlds which contribute
to their probabilistic supports. Instead, they defined the
threshold-based frequent closed patterns over probabilistic
data, which considers the probabilities of possible worlds
where a pattern is closed. Our research relaxes the condi-
tion to further reduce the size of patterns by considering the
probabilities of possible worlds where a pattern can ε-cover
another one.

3. BACKGROUND AND PRELIMINARY
In this section, we review the relevant concepts introduced

in previous work and formally state the problem of proba-
bilistic representative frequent pattern (P-RFP) mining.

Xin et al. [20] defined a robust distance measure between
patterns in deterministic data.

definition 1. (distance measure) Given two patterns X1

and X2, the distance between them, denoted as dist(X1, X2),
is defined as 1 − |T (X1) ∩ T (X2)|/|T (X1) ∪ T (X2)|, where
T (Xi) is the set of transactions supporting pattern Xi.

Then, an ε-covered relationship is defined on two patterns
where one subsumes another.

definition 2. (ε-covered) Given a real number ε ∈ [0, 1]
and two patterns X1 and X2, we say X1 is ε-covered by X2

if X1 ⊆ X2 and dist(X1, X2) ≤ ε.

It can be proved easily that, if X2 ε-covers X1, then
(Supp(X1) − Supp(X2))/Supp(X1) ≤ ε. The goal of repre-
sentative frequent pattern mining then becomes finding the
minimal set of patterns that ε-cover all frequent patterns.

In the context of uncertain data, the support of a pattern,
Supp(Xi), becomes a discrete random variable. Therefore,
we cannot directly apply the ε-cover relationship to proba-
bilistic frequent patterns. Before explaining how to extend
the concept of ε-covered in the context of uncertain data,
we examine an uncertain database where attributes are as-
sociated with existential probabilities.

Table 1 shows an uncertain transaction database where
each transaction consists of a set of probabilistic items. For
example, the probability that item a appears in the first
transaction T1 is 0.7. Possible world semantics are com-
monly used to explain the existence of data in an uncertain
database. For example, the database in Table 1 has eight
possible worlds, which are listed in Table 2. Each possible
world is associated with an existential probability. For in-
stance, the probability that the first possible world w1 exists
is (1− 0.7)× (1− 0.2)× 1× (1− 0.5) = 0.12.
Considering that the occurrences of items in every possi-

ble world are deterministic, we can define the probabilistic
distance between two probabilistic frequent patterns based
on their distance in possible worlds.

definition 3. (probabilistic distance measure) Given an
uncertain database D, and two patterns X1 and X2, let

ID Transactions
T1 a:0.7 b:0.2
T2 a:1.0 c:0.5

Table 1: An example of attribute uncertainty.

ID Possible World Prob.
w1 {T1 : φ, T2 : {a}} 0.12
w2 {T1 : {a}, T2 : {a}} 0.28
w3 {T1 : {b}, T2 : {a}} 0.03
w4 {T1 : {a, b}, T2 : {a}} 0.07
w5 {T1 : φ, T2 : {a, c}} 0.12
w6 {T1 : {a}, T2 : {a, c}} 0.28
w7 {T1 : {b}, T2 : {a, c}} 0.03
w8 {T1 : {a, b}, T2 : {a, c}} 0.07

Table 2: An example of possible worlds.

PW= {w1, . . . , wm} be the set of possible worlds derived
from D, the distance between X1 and X2 in a possible world
wj ∈ PW is

dist(X1, X2;wj) = 1− |T (X1;wj) ∩ T (X2;wj)|
|T (X1;wj) ∪ T (X2;wj)| (1)

where T (Xi;wj) is the set of transactions containing pattern
Xi in the possible world wj. Then, the probabilistic distance
between X1 and X2, denoted by dist(X1, X2), is a random
variable. The probability mass function of dist(X1, X2) is:

Pr(dist(X1, X2) = d) =
∑

wj∈PW
dist(X1,X2;wj)=d

Pr(wj) (2)

That is, the probability that the distance between two prob-
abilistic frequent patterns is d can be computed by the sum
of the probabilities of corresponding possible worlds.

For example, consider the uncertain database in Table 1.
Let X1 = {a} and X2 = {a, b}. The probability that the dis-
tance between X1 and X2 is equal to 0.5, Pr(dist(X1, X2) =
0.5), can be computed by adding the probabilities of the
possible worlds w4 and w8. This is because only in the two
possible worlds, the distance between the two patterns is
0.5. Therefore, Pr(dist(X1, X2) = 0.5) = 0.14.

Based on the probabilistic distance measure, we define the
ε-cover probability as follows.

definition 4. (ε-cover probability) Given an uncertain
database D, two patterns X1 and X2, and a distance thresh-
old ε, the ε-cover probability of X1 and X2 is defined as
Prcover(X1, X2; ε) = Pr(dist(X1, X2) ≤ ε).

definition 5. ((ε, δ)-covered) Given an uncertain database
D, two patterns X1 and X2, a distance threshold ε and a ε-
cover probability threshold δ, X2 (ε, δ)-covers X1 if and only
if X1 ⊆ X2 and Prcover(X1, X2; ε) ≥ δ.

Our goal is then to obtain the minimal set of patterns that
will (ε, δ)-cover all the probabilistic frequent patterns. The
formal statement of the probabilistic representative frequent
pattern (P-RFP) mining is as follows.

definition 6. (Problem Statement) Given an uncertain
database D, a set of probabilistic frequent patterns F , a prob-
abilistic distance threshold ε and a ε-cover probability thresh-
old δ, the problem of probabilistic representative frequent pat-
tern (P-RFP) mining is to find the minimal set of patterns
R so that, for any frequent pattern X ∈ F , there exists a
representative pattern X ′ ∈ R where X ′ (ε, δ)-covers X.
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It is obvious that when ε = 0, the probabilistic represen-
tative pattern set is equivalent to the set of probabilistic
closed patterns, and when ε = 1, it is the same as proba-
bilistic maximal pattern set.

4. APPROXIMATE P-RFP MINING
This section first describes the framework of our proposed

approach. Then, we explain the details of the main steps of
the Approximate P-RFP Mining (APM) algorithm.

4.1 Framework of APM
Before presenting the framework of our approximate ap-

proach for P-RFP mining, we develop some important lem-
mas between two patterns where one (ε, δ)-covers another.

Lemma 1. Given an uncertain database D and two pat-
terns X1 and X2 s.t. X2 (ε, δ)-covers X1, the distance be-
tween X1 and X2 in the possible world wj can be represented
by the support of the patterns in wj :

dist(X1, X2;wj) = 1− Supp(X2;wj)

Supp(X1;wj)
(3)

Lemma 2. Given an uncertain database D and two pat-
terns X1 and X2 s.t. X2 (ε, δ)-covers X1, the probabilistic
distance dist(X1, X2) can be represented by the support dis-
tribution of X1 and X2:

dist(X1, X2) = 1− Supp(X2)

Supp(X1)
(4)

Lemma 3. Given an uncertain database D and two pat-
terns X1 and X2 s.t. X2 (ε, δ)-covers X1, we have

Pr (Supp(X2) ≥ (1− ε)Supp(X1)) ≥ δ (5)

These lemmas are obvious expansions of the concepts in de-
terministic data. The detailed proofs are stated in [25].

Lemma 4. Given an uncertain database D, two patterns
X1 and X2, a support threshold minsup and a frequency
probability threshold minprob, if X2 (ε, δ)-covers X1, and
X1 is a probabilistic frequent pattern w.r.t. minsup and
minprob, then X2 is a probabilistic frequent pattern w.r.t.
(1− ε)minsup and (δ ·minprob).

Proof. Since X1 is a probabilistic frequent pattern w.r.t.
minsup and minprob, we have Pr (Supp(X1) ≥ minsup)≥
minprob, which infers,

Pr((1− ε)Supp(X1) ≥ (1− ε)minsup) ≥ minprob (6)

From Lemma 3, we have,

Pr(Supp(X2) ≥ (1− ε)Supp(X1)) ≥ δ (7)

Consider that the events in equation 6 and 7 are indepen-
dent, we have Pr (Supp(X2) ≥ (1− ε)minsup) ≥ δ·minprob.
That is, X2 is a probabilistic frequent pattern w.r.t. ((1 −
ε)minsup) and (δ ·minprob).

Denoting the set of probabilistic frequent patterns as F ,
lemma 4 indicates that if pattern X can (ε, δ)-cover another
pattern Y in F , then X must be probabilistic frequent w.r.t.
(1− ε)minsup and minprob. We call such a pattern pseudo
probabilistic frequent and denote the set of pseudo proba-
bilistic frequent patterns as F̂ . In order to achieve the mini-
mal set of probabilistic representative frequent patterns, we
have to find a subset of F̂ that can (ε, δ)-cover all patterns

of F . Given the two sets F and F̂ , our approach for P-RFP
mining consists of the following two steps.

1. Generate the cover set for every pattern in F̂ . For each
pattern X in F̂ , the cover set of X, denoted as C(X),
is a set of probabilistic frequent patterns in F that can
be (ε, δ)-covered by X. That is, C(X) ⊆ F .

2. Find the minimal pattern set R ⊆F̂ to (ε, δ)-cover all
probabilistic frequent patterns in F .

After finding the cover sets for patterns in F̂ in the first
step, the second step is equivalent to finding a minimal num-
ber of cover sets that cover all patterns in F . This is known
as a set-covering problem, which is NP-hard. Similar to [21]
and [25], we adopt a well-known greedy set-covering algo-
rithm [22], which achieves polynomial complexity. There-
fore, in the following, we focus on describing the first step,
which generates the cover set for each pseudo probabilistic
frequent pattern in F̂ .

4.2 Cover Set Generation
To generate the cover set for a pattern X2 in F̂ , for each

pattern X1 in F such that X1 ⊆ X2, we need to check if X2

(ε, δ)-covers X1. That is, we need to examine whether the
ε-cover probability between X1 and X2 is no less than δ (i.e.,
Pr(dist(X1, X2) ≤ ε) ≥ δ). According to Lemma 3, the ε-
cover probability Prcover(X1, X2; ε)=Pr(dist(X1, X2) ≤ ε)
is equivalent to Pr(Supp(X2) ≥ (1 − ε)Supp(X1)). Then,
the ε-cover probability between X1 and X2 is equal to the
following sum.

|D|∑
l=minsup

l∑
k=�(1−ε)l�

Pr(Supp(X1) = l, Supp(X2) = k) (8)

To compute the ε-cover probability to find out whether it
is no less than δ, we introduce the joint support probability
distribution as follows.

definition 7. (joint support probability) Given an uncer-
tain database D and patterns X1 and X2, the joint support
probability mass function is

Pr (Supp(X1) = l,Supp(X2) = k) =
∑

wi∈PW,
Supp(X1;wi)=l
Supp(X2;wi)=k

Pr(wi)

Although definition 7 implies a brute-force solution, it is
not feasible to implement because the number of possible
worlds is exponential. Therefore, we establish the following
approximation of joint support probability.

Theorem 1. Given an uncertain database D and pat-
terns X1 and X2, the joint support probability can be ap-
proximated by a bivariate normal distribution, which means

Pr(Supp(X1) = l,Supp(X2) = k) ≈ φ
(
Σ− 1

2 (X− µ)
)

(9)

where X =
[
l k

]T
, µ is the vector of mean values of Supp(X1)

and Supp(X2), and Σ is the covariance matrix of X1 and
X2.

Theorem 1 provides a solution to compute the joint sup-
port probability of a pair of patterns via normal distribution,
rather than mining in the complete database. The detailed
theoretical proof is elaborated in Section 5, and the empirical
simulation is illustrated in Section 6. Similar to univariate
normal distribution, we can optimize our approach with the
well-known 3σ property [23].
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Corollary 1. Given an uncertain database D, and pat-
terns X1 and X2, let the mean value and variance of Supp(Xj)
be μj, σ2

j , j = 1, 2, l1 = max{minsup, μ1 − 3σ1}, l2 =
min{|D|, μ1 + 3σ1}, k1 = max{
(1 − ε)l�, μ2 − 3σ2}, and
k2 = min{l, μ2 + 3σ2}, then

|D|∑
l=minsup

l∑
k=�(1−ε)l�

Pr(Supp(X1) = l, Supp(X2) = k)

≈
l2∑

l=l1

k2∑
k=k1

Pr(Supp(X1) = l,Supp(X2) = k) (10)

Note that for better precision, we use σ1 to calculate the
support lower bound and upper bound for both X1 and X2

because the contour of bivariate normal distribution is an
ellipse, and σ1 is the length of semi major axis. Based on
corollary 1, we can reduce the computational complexity of
ε-cover probability from O(|D|2) to O(9σ2

1) significantly. To
accelerate the progress of cover set generation further, we
also take advantage of some optimization strategies in [25].

Lemma 5. Given an uncertain database D, two patterns
X1 and X2 s.t. X1 ⊆ X2, and a probabilistic distance thresh-
old ε, Prcover(X1, X2; ε) computed on D is equal to that on
D(X1), where D(X1) is {t|P (X1 ⊆ t) > 0, t ∈ D} ⊆ D.

Lemma 5 is intuitive because only the transactions support-
ing at least the sub-pattern X1 will contribute to the value
of probabilistic distance, which in turn affects the ε-cover
probability. This lemma allows us to compute the ε-cover
probability on a projected sub-database, which significantly
reduces the runtime of computation.

Lemma 6. Given an uncertain database D and two pat-
terns X1 and X2 s.t. X1 ⊆ X2, if X2 (ε, δ)-covers X1, then
∀X s.t. X1 ⊆ X ⊆ X2, we have X2 (ε, δ)-covers X.

According to Lemma 6, we have the following corollary.

Corollary 2. Given an uncertain database D and two
patterns X1 and X2, X1 ⊆ X2, if X2 cannot (ε, δ)-cover X1,
then ∀X ⊆ X1, X2 cannot (ε, δ)-cover X.

Lemma 6 and corollary 2 reduce the number of pattern pairs,
for which the ε-cover probability needs to be computed. The
complete proofs of lemma 5, lemma 6 and corollary 2 are
stated in [25].

4.3 APM Algorithm
The overall framework of our APM algorithm is shown in

Algorithm 1. From line 3 to line 9, we find the cover set
for each pseudo probabilistic frequent pattern X2 in F̂ . The
most important step is to check whether X2 covers X1 in F
(line 6). The details of the function isCover is illustrated in
Algorithm 2, where lines 1 − 3 implement the optimization
stated by Lemma 6, and lines 4−6 apply the Corollary 2. Fi-
nally, from line 7 to line 12, we use the approximation-based
scheme to compute the ε-cover probability. As mentioned
before, the function setCover in Algorithm 1 is solved using
the greedy algorithm in [22].

5. APPROXIMATION OF JOINT SUPPORT
PROBABILITY

In this section, we present the detailed proof of the bi-
variate normal distribution-based approximation of the joint
support probability of two patterns. Given an uncertain
database D, two patterns X1 and X2, s.t. X1 ⊆ X2, and the

Algorithm 1 APM Algorithm Framework

Input: D, F , F̂ , ε and δ
Output: Minimal P-RFP Set R
1: R← Φ
2: CoverSets← Φ
3: for all X2 ∈ F̂ do
4: NoCoverSet← Φ
5: for all X1 ∈ F such that X1 ⊆ X2 do
6: if isCover(X1, X2) = True then
7: CoverSets[X2].add(X1)
8: else
9: NoCoverSet.add(X1)
10: R = setCover(CoverSets, F )
11: return R

Algorithm 2 Function isCover

Input: X1, X2,
Output: If X2 (ε, δ)-covers X1, then return True, else

False
1: for all X ∈ CoverSets[X2] do
2: if X ⊆ X1 then
3: return True
4: for all X ∈ NoCoverSet[X2] do
5: if X ⊇ X1 then
6: return False
7: l1 = max{minsup, μ1 − 3σ1}
8: l2 = min{|D(X1)|, μ1 + 3σ1}
9: k1 = max{
(1− ε)l�, μ2 − 3σ2}
10: k2 = min{l, μ2 + 3σ2}
11: for l = l1 to l2 do
12: for k = k1 to k2 do
13: Pcover+ = Pr(Supp(X1) = l, Supp(X2) = k)
14: if Pcover ≥ δ then
15: return True
16: return False

corresponding support random variables, denoted as Xn(1)

and Xn(2)
hereafter, where n is the size of D, our goal is to

prove that [Xn(1)
Xn(2)

]T converges to a bivariate normal
distribution when n→∞.

5.1 Preparation
Suppose the existence probabilities of patterns X1 and X2

in the ith transaction ti are pni(1) and pni(2) , then

Xni(j) ∼ Bern
(
pni(j)

)
, j = 1, 2

because Xni(j) follows Bernoulli distribution.
The support of pattern Xj , Xn(j)

, can be computed as

Xn(j)
=
∑n

i=1 Xni(j) , j = 1, 2. Since both Xn(1)
and Xn(2)

follow Poisson binomial distribution, the mean value and
variance of Xn(j)

are

μn(j)
=

n∑
i=1

pni(j) , σ2
n(j)

=

n∑
i=1

pni(j)

(
1− pni(j)

)
, j = 1, 2

The covariance of Xn(1)
and Xn(2)

is

Cov
(
Xn(1)

, Xn(2)

)
=

N∑
i=1

N∑
j=1

Cov(Xni(1) , Xni(2))
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Situation Probability
X1 � ti, X2 � ti 1− pni(1)

X1 ⊆ ti, X2 � ti pni(1) − pni(2)

X1 ⊆ ti, X2 ⊆ ti pni(2)

Table 3: All possible situations of X1 and X2 in ti.

Table 3 illustrates all possible existence situations of pat-
terns X1 and X2 in transaction ti. Assuming for any i
and j such that i �= j, Xni(1) and Xnj(2) are indepen-

dent, we have Cov(Xni(1) , Xnj(2)) = 0. Table 3 indicates

that E(Xni(1) · Xni(2)) = pni(2) and Cov
(
Xn(1)

, Xn(2)

)
=∑N

i=1

((
1− pni(1)

)
pni(2)

)
For brevity, let Xni =

[
Xni(1) Xni(2)

]T
and denote the

sum of Xni over database as

Xn =

n∑
i=1

Xni =
[
Xn(1)

Xn(2)

]T
(11)

Then, {Xn}, n = 1, 2, · · · is a sequence of random vectors:

X1 = X11

X2 = X21 +X22

· · ·
Xk = Xk1 +Xk2 +Xk3 + · · ·+Xkk

· · ·
{Xni} is called a triangular array, which is manipulated com-
monly in the study of sum of independent vectors.

Until now, we have laid the groundwork in preparation of
the proof that {Xn} holds asymptotic normality in the next
subsection.

5.2 Proof of Approximation
With the aforementioned concepts, we propose the follow-

ing theorem, from which Theorem 1 can be induced directly.

Theorem 2. Let {Xni ∈ R2}, n = 1, 2, · · · , i = 1, 2, · · · , n
be a triangular array of random vectors such that: (1) for
all n ≥ 1, Xn1, · · · ,Xnn are independent, (2) for all 1 ≤
i ≤ n, Xni follows a bivariate Bernoulli distribution, Xn =∑n

i=1 Xni, then

Σ
− 1

2
n (Xn − µn)

d→ N(0, I) (12)

where µn and Σn are the mean nd covariance of Xn, re-
spectively.

Theorem 2 provides an important bridge between the joint
support distribution of a pair of patterns and the bivariate
normal distribution. Noting that suppose the cumulative

density functions of Xn and X are Fn and F , Xn
d→ X if

and only if for any continuous point x of F , limn→∞ Fn(x) =
F (x). Before giving the detailed proof of theorem 2, two
necessary lemmas should be presented first.

Lemma 7. Let Xni ∈ Rmi , i = 1, · · · , kn, be indepen-
dent random vectors with mi ≤ m (a fixed integer), n =
1, 2, · · · , kn → ∞ as n → ∞, and infi,n λmin[Cov(Xni)] >
0, where λmin[A] is the smallest eigenvalue of A. Let cni ∈
Rmi be vectors such that

lim
n→∞

(
max1≤i≤kn ‖cni‖2∑kn

i=1 ‖cni‖2

)
= 0 (13)

If supi,n E‖Xni‖2+δ <∞ for some δ > 0, then∑kn
i=1 c

T
ni(Xni − EXni)[∑kn

i=1 Cov(c
T
niXni)

]1/2 d→ N(0, I) (14)

More details of lemma 7 are stated in [23]. Given a sequence
of random vectors {Xn}, Lemma 7 provides a solution to
prove the convergence of all possible linear combinations of
{Xn}. Nevertheless, it is not equivalent to the convergence
of the random vector itself. Hence, we refer to the next
lemma to bridge the gap.

Lemma 8 (Cramér-Wold Theorem[26]). Suppose that

Xn and X are k-dimensional random vectors. Then Xn
d→ X

if and only if

tTXn
d→ tTX (15)

for all vectors t ∈ Rk.

The Cramér-Wold theorem states that the convergence
of a k-dimensional random vector is closely related to the
totality of its one-dimensional projections. With lemma 7
and lemma 8, the complete proof of theorem 2 is as follows.

Proof of theorem 2. Let kn = n, and ∀i, 1 ≤ i ≤
n,mi = 2.

The determinant of covariance matrix is

det[Cov(Xni)] = (1− ρ)σ2
ni(1)

σ2
ni(2)

(16)

Considering that X1 and X2 are two patterns with different
parameters, the correlation coefficient between their support
distribution satisfies 0 < ρ < 1. Consequently, Cov(Xni) is
a positive definite matrix and infi,n λmin[Cov(Xni)] > 0.

Let δ = 2, since all components of Xni are no greater than
the size of database n, we have

‖Xni‖4 =

[(
Xni(1)

)2
+
(
Xni(2)

)2]2
≤ 4n4 ≤ ∞ (17)

For all i = 1, 2, · · · , n, assume cni =
[
c1 c2

]T
, where

c1, c2 ∈ R. Then,

lim
n→∞

(
max1≤i≤n ‖cni‖2∑n

i=1 ‖cni‖2
)

= lim
n→∞

(
1

n

)
= 0

Therefore, lemma 7 indicates that∑kn
i=1 c

T
ni(Xni − EXni)[∑kn

i=1 Cov(c
T
niXni)

] 1
2

d→ N(0, I)

With lemma 8, finally we have

Σ
− 1

2
n (Xn − µn)

d→ X

To further improve the accuracy of our approximation,
we should take the continuity correction [24] into account,
because we are using a continuous distribution to approxi-
mate a discrete distribution. The final equation needs to be
changed slightly as follows.

Pr (Supp(X1) = l, Supp(X2) = k) ≈ φ

(
X+ 0.5− µ√|Σ|

)

where X =
[
l k

]T
, µ is the vector of mean values of

Supp(X1) and Supp(X2), and Σ is the corresponding co-
variance matrix. Since theorem 2 is equivalent to theorem
1, it is served as a solid theoretical background to support
our algorithm. We will demonstrate the empirical proof and
assess our approach subsequently.
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6. PERFORMANCE STUDY
In this section, we first empirically study the performance

of the joint support probability approximation, then evalu-
ate the effectiveness and efficiency of the APM algorithm.

6.1 Empirical study of approximation
We evaluate the accuracy of the approximation of joint

support probability with simulation. Two probability sup-
port vectors of a pattern X1 and its super pattern X2 are
constructed from a synthetic uncertain database with N =
100, 200, · · · , 1000 transactions. The uncertainty is incorpo-
rated according to the standard normal distribution. Then,
we perform both the exact and approximate algorithms to
obtain all joint support probability on the sample space.

For each setting ofN , we run the experiment for 500 times.
Figure 1 (a) shows the average and maximum absolute er-
ror (e.g., |Pra(x, y)− Pre(x, y)|, where Pra and Pre are the
approximate and exact probability ) w.r.t. the variation of
the database size. Figure 1 (b) demonstrates the average,
minimum and maximum error (e.g., Pra(x, y) − Pre(x, y) )
between the real and approximate value w.r.t. the variation
of the database size. It is shown that the error decreases
rapidly when N is increasing. When N = 500, which is
much less than the size of a regular database, the average
absolute error is less than 10−7.

Figure 1: Empirical proof of approximation.

6.2 Result analysis

6.2.1 Data sets
Three datasets have been used in our experiments. Two

of them, the Retail dataset and the Chess dataset, are from
the Frequent Itemset Mining(FIMI) Dataset Repository 1.
These are standard datasets used for frequent pattern min-
ing in deterministic databases. In order to bring uncertainty
into the datasets, we synthesize an existential probability for
each item based on a Gaussian distribution with the mean
of 0.9 and the variance of 0.125. The two datasets are uncer-
tain databases with uncertainties associated with attributes.

The other one is the iceberg sighting record from 1993 to
1997 on the North Atlantic from the International Ice Patrol
(IIP) Iceberg Sightings Database 2. Each transaction in the
database contains the information of date, location, size,
shape, reporting source and a confidence level. There are

1http://fimi.cs.helsinki.fi/data/
2http://nsidc.org/data/g00807.html

Dataset #Transactions #Items Avg. Length
IIP 35161 467 4.0

Retail 88162 16470 10.3
Chess 3196 75 6.7

Table 4: Statistics of Datasets.

six possible attributes of the confidence level, R/V(Radar
and visual), R(Radar only), V(Visual), MEA(Measured),
EST(Estimated) and GBL(Garbled), which indicate differ-
ent reliabilities. We convert the confidence levels to prob-
abilities 0.8, 0.7, 0.6, 0.5, 0.4 and 0.3, respectively. This
dataset forms an uncertain database that associates uncer-
tainties to tuples. The statistics of the datasets are shown
in Table 4.

6.2.2 Performance of APM algorithm
To analyze the performance of the APM algorithm, we

carry out two sets of experiments. In the first set, we com-
pare the effectiveness and efficiency of the APM against
the dynamic programming-based exact method [25]. Due
to the low efficiency of the exact method, we randomly se-
lect 500 transactions respectively from two datasets, Retail
and IIP. The sizes of FP - the set of probabilistic frequent
patterns, DP - the set of P-RFPs mined by the dynamic
programming-based approach, and APM - the set of P-
RFPs produced by the APM algorithm with respect to the
variations of minsup, minprob, ε and δ, on the two datasets
are shown respectively in Figures 2 and 3. The default val-
ues of the four parameters are set to 0.5%, 0.8, 0.2 and 0.5,
respectively. It can be observed that the result of the APM
algorithm is very close to that of the exact method, while
both of them are able to reduce the size of the probabilistic
frequent pattern set effectively. The runtime of two methods
are demonstrated in Figures 4 and 5. It is impressive that
the APM algorithm accelerates P-RFP mining significantly.

Then, we examine the performance of the APM algorithm
on the complete database of IIP, Retail, and Chess datasets.
The comparisons between the number of P-RFPs and the
number of frequent patterns are illustrated in Figures 6, 7
and 8. These charts indicate that the APM algorithm can
reduce the size of frequent pattern set effectively. Figures 9,
10 and 11 show the runtime vs. minsup, minprob, ε, and δ
curves of the APM algorithm without and with the 3σ prun-
ing technique, which are called APM and APM+Pruning,
on the three datasets, respectively. The default values of the
four parameters for the IIP and Retail datasets are 0.5%,
0.8, 0.2, and 0.5. For the chess dataset, the default param-
eters are 0.6%, 0.5, 0.15, and 0.8. It is intuitive that, when
ε is increasing or minsup, minprob and δ are decreasing,
the runtime will increase because more pattern pairs are en-
gaged in the cover probability checking. We can find that
the APM algorithm can mine P-RFP set quickly, and the
pruning technique accelerates it even further.

7. CONCLUSIONS
Due to the downward closure property, the number of

probabilistic frequent patterns mined over uncertain data
can be so large that they hinder further analysis and ex-
ploitation. This paper proposes the APM algorithm, which
aims to efficiently and effectively find a small set of pat-
terns to represent the complete set of probabilistic frequent
patterns. To address the high computational complexity in
examining the joint support probability, we introduce an
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Figure 2: The Number of P-RFP on IIP-500.

Figure 3: The Number of P-RFP on Retail-500.

Figure 4: Log Runtime on IIP-500.

approximation of the joint support probability with both
theoretical and empirical proofs. Our experimental results
demonstrate that the devised algorithm can substantially
reduce the size of probabilistic frequent patterns efficiently.

This work adopts the measure defined in deterministic
databases to quantify the distance between two patterns in
terms of their supporting transactions. Since the supports
of patterns are random variables in the context of uncer-
tain data, other distance measures, such as Kullback-Leibler
divergence, might be applicable. As an ongoing work, we
will study the effectiveness of probabilistic representative
frequent patterns defined on different distance measures.

Figure 5: Log Runtime on Retail-500.

Figure 6: The Number of P-RFP on IIP.

Figure 7: The Number of P-RFP on Retail.
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