
Approximate Graph Mining with Label Costs
∗

Pranay Anchuri1, Mohammed J. Zaki1, Omer Barkol2, Shahar Golan2, Moshe Shamy3

1CS Department, RPI, Troy NY, USA 2HP Labs, Haifa, Israel 3HP Software, Yahud, Israel
{anchupa,zaki}@cs.rpi.edu, {omer.barkol, shahar.golan, moshe.shamy}@hp.com

ABSTRACT
Many real-world graphs have complex labels on the nodes
and edges. Mining only exact patterns yields limited in-
sights, since it may be hard to find exact matches. However,
in many domains it is relatively easy to define a cost (or dis-
tance) between different labels. Using this information, it
becomes possible to mine a much richer set of approximate
subgraph patterns, which preserve the topology but allow
bounded label mismatches. We present novel and scalable
methods to efficiently solve the approximate isomorphism
problem. We show that approximate mining yields interest-
ing patterns in several real-world graphs ranging from IT
and protein interaction networks to protein structures.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database Applications - Data Mining

Keywords : approximate graph mining; label costs; ap-
proximate subgraph isomorphism

1. INTRODUCTION
Graphs are a natural way to model many of the mod-

ern complex datasets that typically have interlinked entities
connected with various relationships. Examples include so-
cial, biological and technological networks. Tools for rapidly
querying and mining graph data are therefore in high de-
mand. Our focus is on graph pattern discovery methods that
can simultaneously consider both the structure and content
(e.g., node labels).
Most of the prior work on frequent graph mining has fo-

cused on exact pattern discovery, which involves two main
steps. The first step is to generate non-duplicate candidate
patterns, and the second is to compute the frequency of each
candidate. The former requires graph isomorphism testing,
whereas the latter requires subgraph isomorphism checking,
since we need to count all the occurrences of a smaller graph
within a much larger graph (or a set of graphs). Many
efficient methods have been proposed for mining exact la-
beled graph patterns, including both complete search and
sampling based approaches [9, 11, 15, 16, 19]. These meth-
ods require an exact match between the labels of nodes in
the candidate pattern and in the database graph. This can
potentially miss many patterns where nodes may share a
high label similarity, but may not match exactly. This is

∗
This work was supported in part by an HP Innovation Award and

NSF Award CCF-1240646.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD’13, August 11–14, 2013, Chicago, Illinois, USA.

Copyright 2013 ACM 978-1-4503-2174-7/13/08 ...$15.00.

specially true for more complex labels (e.g., text data), or
in cases where the nodes represent some real-world objects
(e.g., proteins, IT infrastructure nodes), where it may be
possible to easily design a meaningful cost or distance ma-
trix between node “labels”. Unfortunately, exact isomor-
phism based methods cannot leverage the rich information
from the cost matrix. What is required is a new class of algo-
rithms that can mine frequent approximate patterns via ap-
proximate subgraph isomorphism that satisfies some bound
on the overall cost of the match between a candidate and
the database graph(s). Only a few methods have tackled
this problem [5,13,20], but they typically enumerate all iso-
morphisms, and are therefore not scalable to large graphs
due to the combinatorial explosion in the number of isomor-
phisms.

In this paper we present a new approach to mine frequent
approximate patterns from a single large graph in the pres-
ence of a cost matrix between the labels. The method can
also be extended to mine approximate patterns from multi-
ple graphs by appropriately defining the frequency of a pat-
tern. In particular we make the following contributions: i)
We propose a novel approach to effectively prune the space of
approximate labeled isomorphisms. Instead of enumerating
all the possible isomorphisms, we maintain a set of represen-
tatives (mappings of the pattern vertex in the database) that
is linear in the database and pattern size. Pruning is applied
on this set to narrow down the search to only viable map-
pings. ii) We propose label based iterative pruning methods
to compute the representative sets efficiently. These meth-
ods are based on k-hop labels and neighbor concatenated
labels. iii) Our method handles both arbitrary as well as
binary cost matrices. iv) We place our work within the pat-
tern sampling paradigm, thereby avoiding complete search,
which can be infeasible in real-world graphs.

We study the effectiveness of the proposed methods on
three real-world datasets. The first is a configuration man-
agement database graph, where the nodes represents enti-
ties comprising the IT infrastructure and the links represent
relationships between them; approximate mining yields a
richer set of de-facto IT policies in the company. The second
dataset is a graph dataset representing 3D protein struc-
tures; mined patterns represent approximate motifs. The
last dataset comes from a protein interaction network, where
the nodes are proteins and edges indicate whether they in-
teract physically (i.e., they may bind together or they may
be part of the same protein complex); the mined approxi-
mate patterns represent protein complexes that take part in
important cellular processes.

2. PRELIMINARIES
An undirected labeled graph G is represented as a tuple

G = (VG, EG, L) where VG is the set of vertices, EG is the set
of edges and L: VG → Σ is a function that maps vertices to
their labels. The neighbors of a vertex v are given as N(v) =
{u|(v, u) ∈ EG}. A walk in a graph is a sequence of vertices
v0, . . . , vk such that there is an edge between adjacent pairs
of vertices i.e., (vi, vi+1) ∈ EG and its length is k. A walk is

518

a path if a vertex appears at most once in the sequence.We

write u
k

−→ v if there is a path of length k between u and v.

Cost matrix: We assume that there is a cost matrix C :
Σ2 → R

≥0. The entry C[li][lj] denotes the cost of matching
the labels li and lj . Usually C is symmetric and the diagonal
entries are 0.

Approximate subgraph isomorphism: A graph S =
(VS , ES , L) is a subgraph of G, denoted S ⊆ G, iff VS ⊆ VG,
and ES ⊆ EG. Given a database graph G and a pattern
graph P = (VP , EP , L), a function φ : VP → VG is called
an unlabeled subgraph isomorphism provided φ is an injec-
tive (or one-to-one) mapping such that ∀(u, v) ∈ EP , we
have (φ(u), φ(v)) ∈ EG. That is, φ preserves the topology
of P in G. Define the cost of the isomorphism as follows:
C(φ) =

∑

u∈VP
C[L(u)][L(φ(u))], that is, the sum of the costs

of matching the node labels in P to the corresponding node
labels in G. We say that φ is an approximate subgraph iso-
morphism from P to G provided its cost C(φ) ≤ α, where
α is a user-specified cost threshold. In this case we also
call P an approximate pattern in G. Note that if α = 0,
then φ is an exact subgraph isomorphism between P and G.
From now on, isomorphism refers to approximate subgraph
isomorphism unless specified otherwise.

A

10

A20 B
30

A 40

C

50

C

60
(a) Database Graph G

A

1

B2 C 3

A 4

(b) Pattern P

C A B C
A 0 0.2 0.6
B 0.2 0 0.4
C 0.6 0.4 0

(c) Cost Matrix

approx. isomorphisms Φ
P 1 2 3 4 cost
φ1 30 10 60 40 0.4
φ2 40 10 60 30 0.4

(d) Approximate Embeddings

Figure 1: (a): database graph G, (b): approximate pattern
P . (c): cost matrix. (d): approximate embeddings of P .

Pattern support: Given a (large) database graph G, a
pattern graph P , and the set of all approximate subgraph
isomorphisms Φ from P to G, the support of P is some anti-
monotonic function sup(P,Φ), i.e., sup(P,ΦP) ≤ sup(Q,ΦQ)
for all subgraphs Q of P . We discuss some of the common
support definitions in Sec 4.2. A pattern P is called fre-
quent if sup(P) ≥ minsup, where minsup is a user defined
support threshold. P is maximal iff P is frequent and there
does not exist any supergraph of P that is frequent in G.

Representative set: Given a node u ∈ VP , its representa-
tive set in the database graph G is the set

R(u) = {v ∈ VG| ∃φ, such that C(φ) ≤ α and φ(u) = v}

That is, the representative set of u comprises all nodes v
in G that u is mapped to in some isomorphism φ. Fig-
ure 1 shows an example database, a cost matrix, an ap-
proximate pattern, and its approximate subgraph isomor-
phisms for α = 0.5. There are only two possible approx-
imate isomorphisms from P to G, as specified by φ1 and
φ2. For example, for φ1, we have φ1(1) → 30, φ1(2) → 10,
φ1(3) → 60, and φ1(4) → 40, as seen in Table 1d. The cost
of the isomorphism is C(φ1) = 0.4, since C[L(1)][L(30)] +
C[L(2)][L(10)]+C[L(3)][L(60)]+C[L(4)][L(40)] = C(A,B)+
C(B,A) + C(C,C) + C(A,A) = 0.2 + 0.2 + 0 + 0 = 0.4. The
representative set for node 1 ∈ VP is R(1) = {30, 40}.

Outline of our Approach: The two main steps in approx-
imate graph mining are candidate generation and support
computation. Candidate generation explores frequent pat-
tern search space. For each candidate we can check whether
it is frequent by computing its support. Given a pattern with
k vertices, the maximum number of possible isomorphisms

is k! ×
(

|VG|
k

)

. It is therefore infeasible to either enumer-
ate or store the complete set of isomorphisms. Computing
and storing the representative sets is a compromise that will
enable us to decide efficiently if a candidate is frequent.

3. COMPUTING REPRESENTATIVE SETS
Representative vertex v of a pattern vertex u implies that

there exists an isomorphism φ for which φ(u) = v. One
way to interpret it is that the neighborhood of u matches
that of v. By comparing the neighborhoods we can find ver-
tices that are not valid representatives of u without trying
to find an isomorphism exhaustively. Therefore, to com-
pute the representative sets we will start with a candidate
representative set denoted by R′(u) and iteratively prune
some of the vertices if the neighborhoods cannot be matched.
The candidate set is a super set of the representative set,
R′(u) ⊇ R(u). An example of a candidate set is R′(u) =
{v|v ∈ VG, C[L(u)][L(v)] ≤ α}, i.e., all the isomorphisms of
the single vertex pattern with label L(u). In this section,
we will describe different notions of neighborhood and show
how they help us in computing the final representative set
of vertices in a pattern. Note that the problem of checking
whether a vertex v ∈ R(u) is an NP-Hard problem, since
it involves the approximate subgraph isomorphism problem.
The pruning methods typically do not prune all the invalid
vertices. So, we use a final enumeration-based verification
step to prune the remaining invalid vertices and reduceR′(u)
to the true R(u) (as described in Sec. 3.3).

3.1 k-hop Label
k-hop label is defined as the set of vertices that are reach-

able via a path of length k. In other words, k-hop label
contains all vertices that are reachable in k hops starting
from u and by visiting each vertex at most once. Note that,
we use the word label even though we refer to a set of ver-
tices. Formally, the k-hop label of a vertex u in graph G,

hk(u,G) = {v|v ∈ G, u
k

−→ v}. We simply write it as hk(u)
when the graph is evident from the context. For example, for
pattern P in Fig. 2a, the 0-hop label of vertex 5 is h0(5) = 5,
its 1-hop label is h1(5) = 2, 4, 6 (we omit the set notation for
convenience) and its 2-hop label h2(5) = 1, 3. The minimum
cost of matching k-hop labels hk(u) and hk(v) is

Ck[hk(u)][hk(v)] = min
f

∑

u′∈hk(u)

C[L(u′)][L(f(u′))] (1)

where the minimization is over all injective functions f :
hk(u) → hk(v) and C[L(u′)][L(f(u′))] is the cost of matching
the vertex labels. In other words, it is the minimum total
cost of matching the vertices present in the k-hop labels.
The following theorem places an upper bound on the min-
imum cost of matching the k-hop label of a pattern vertex
and any of its representative vertices.

Theorem 1. Given any pattern vertex u, a representative
vertex v ∈ R(u) and cost threshold α, then

Ck[hk(u)][hk(v)] ≤ α, for all k ≥ 0

Proof. Consider any isomorphism φ such that φ(u) = v. It
is enough if we can show an injective function f : hk(u) →
hk(v) with a cost ≤ α (as defined in equation 1). We show
that φ on the restricted domain hk(u) is one such function f .
First, we know that

∑

u∈VP
C[L(u)][φ(L(u))] ≤ α, since φ is

519

an isomorphism. Second, let u
k

−→ u′ then φ(u′) ∈ hk(v)
because for every edge (u1, u2) on a path between u and u′

in P , (φ(u1), φ(u2)) ∈ EG. Therefore the cost of matching
the k-hop labels using φ is upper bounded by α. Hence, the
minimum cost of matching Ck[hk(u)][hk(v)] ≤ α.

Based on the above theorem, a vertex v is not a repre-
sentative vertex of u if Ck[hk(u)][hk(v)] > α for any k ≥ 0.
However, in practice, it enough to check the condition only
for k ≤ |VP | − 1 because hk(u) is the null set ∀k ≥ |VP |.
Figure 2 shows an example for the k-hop label based prun-

ing of the candidate representative set where the threshold
α = 0.5. Consider vertex 2 ∈ VP and vertex 20 ∈ VG,
we have, C0[h0(2)][h0(20)] = 0, since the cost of matching
vertex labels C[L(2)][L(20)] = 0, as per the label matching
matrix C in Fig. 2c. The k-hop labels for k = 1, 2, 3 and the
minimum of cost matching them are as shown in Table 1,
and it can be verified that the minimum cost is within the
threshold α. Thus far, we cannot prune node 20 from R′(2).
However, h4(2) = 4, 6 and h4(20) = 30, 60 and the minimum
cost of matching them is 0.6 > α (since C[L(4)][L(60)] +
C[L(2)][L(30)] = C(C,A) + C(D,D) = 0.6 + 0 = 0.6). Thus,
from Theorem 1 we conclude that 20 /∈ R′(2). This example
illustrates that k-hop labels can help prune the candidate
representative sets.

A

C

B

C

A

D

1

2

3

4

5

6
(a) Pattern P

A

C

D

B

B

A

10

20

30

40

50

60
(b) Graph G

C A B C D
A 0 0.7 0.6 0.1
B 0.7 0 0.3 1
C 0.6 0.3 0 0.8
D 0.1 1 0.8 0

(c) Cost Matrix

Figure 2: Pattern (a), db graph (b), and cost matrix (c).

k hk(2) hk(20) Ck[hk(2)][hk(20)]
1 1, 3, 5 10, 30, 50, 60 0
2 4, 6 40, 50, 60 0.4
3 3, 5 40, 30, 50 0.1

Table 1: k-hop label of vertices 2 and 20

k hk(3) hk(50) Ck[hk(3)][hk(50)]
0 3 50 0
1 2, 4, 6 20, 40, 60 0.4
2 1, 5 10, 20 , 30, 60 0
3 2, 4, 6 10, 20, 30, 40 0.3
4 1 10, 40, 60 0

Table 2: k-hop labels of vertices 3 and 50.

3.2 Neighbor Concatenated Label
In neighbor concatenated label (NL), the information re-

garding the candidates of a neighbor that were pruned in
the previous iteration is used along with the current k-hop
label to prune candidates in the current iteration. In con-
trast, the k-hop label pruning strategy for a vertex u works
independently of the result of k-hop label pruning of other
vertices in the pattern. This leads us to the following recur-
sive formulation for NL.

The initial NL label for a vertex is given as η0(u) = u. The
NL label for the kth iteration, with k ≥ 1, is then defined
as the tuple ηk(u) = ({ηk−1(u

′)|u′ ∈ N(u)}, hk(u)). The
first element (denoted X) of the tuple is the set of NL labels
of the neighbors of the vertex u in the previous iteration
k−1, and the second element (denoted Y) is the k-hop label
defined in the Sec. 3.1. We say that ηk(u) is dominated
by ηk(v), denoted as ηk(u) = (X,Y) � ηk(v) = (X ′, Y ′)
iff i) Ck[Y][Y ′] ≤ α, i.e., the minimum cost of matching
the k-hop labels is within α, and ii) there exits an injective
function g: X → X ′ such that x � g(x) for all x ∈ X i.e.,
there is a one to one mapping between the NL labels (of
the previous iteration k − 1) of neighbors of u and v. For
the base case, we have η0(u) � η0(v) iff C[L(u)][L(v)] ≤ α.
For example, with α = 0.5 in Fig. 2, η1(2) � η1(20) because
C1[h1(2)][h1(20)] ≤ α and the NL labels of vertices 1, 3, 5 are
dominated by the NL labels of vertices 10, 50, 30 or 10, 50, 60,
respectively. The following theorem states that the NL of
a pattern vertex u is dominated by the NL of any of its
representative vertices v ∈ R(u).

Theorem 2. Given any pattern vertex u, a representative
vertex v ∈ R(u), and cost threshold α, then

ηk(u) � ηk(v), for all k ≥ 0

Proof. Let φ be any isomorphism such that φ(u) = v. We
prove the theorem by using induction on k.
Base case: η0(u) � η0(v) ⇐⇒ C[L(u)][L(v)] ≤ α is true
because v ∈ R(u).
Inductive Hypothesis: Assume that ηk(u) � ηk(v) holds
true for all u ∈ VP and v ∈ R(u). Now consider ηk+1(u) =
(X,Y) and ηk+1(v) = (X ′, Y ′). From theorem 1 we know
that C[Y][Y ′] ≤ α, for all k ≥ 0. Let u′ ∈ N(u) and v′ =
φ(u′). From inductive hypothesis, ηk(u

′) � ηk(v
′). Also,

v′ ∈ N(v) because (u, u′) ∈ EP =⇒ (φ(u) = v, φ(u′) =
v′) ∈ EG. Therefore, the injective function φ maps the ele-
ments a ∈ X to φ(a) ∈ X ′. The theorem follows by NL label
definition.

Based on the above theorem, a vertex v can be pruned
from R′(u) if ηk(u) 6� ηk(v) for some k ≥ 0. In Fig. 2,
consider the vertices 3 ∈ P , 50 ∈ G and let α = 0.5. For k =
0, we have, η0(3) � η0(50) as C[B][B] = 0 ≤ α. Similarly
it is also true for the pairs (2, 20), (4, 40), etc. It follows
that η1(3) � η1(50) as the neighbors 2, 4, 6 can be mapped
to 20, 40, 60 respectively and the minimum cost of matching
the 1-hop label is 0.4 which is less than the α threshold. In
the next iteration the NL labels of vertices 3 and 50 are

η3(3) = ({η1(2), η1(4), η1(6)}, {1, 5})

η3(50) = ({η1(20), η1(40), η1(60)}, {10, 20, 30, 60})

But η2(3) 6� η2(50) because the NL label η1(6) is not domi-
nated by any of η1(20), η1(40), η1(60). So, there is no map-
ping between the neighbors of vertices 3 and 50 in the second
iteration. Hence, 50 /∈ R(3). Note that the k-hop label by it-
self cannot prune 50 because the minimum cost of matching
the k-hop labels is within α as shown in Table 2. There-
fore, NL label is more effective compared to k-hop label as
it subsumes the latter.

3.3 Candidate set verification
The pruning methods based on k-hop and NL labels start

with a candidate representative set R′(u) and prune some
of the candidate vertices based on Theorems 1 and 2. The
verification step reduces R′(u) to R(u) by retaining only
those vertices v for which there exists an isomorphism φ in
which φ(u) = v. Informally, it does this by checking if the
pattern P can be embedded at v such that total cost of label
mismatch is at most α.

520

A vertex v ∈ R(u) iff for any walk Wp = u0, u1, . . . , um

(with u = u0) that covers all the edges in pattern P , there
exists a walk Wg = v0, v1, . . . , vm (with v = v0) in the
database graph G, which satisfies the following conditions:
i) ui = uj =⇒ vi = vj , ii) (vi, vi+1) ∈ EG, and iii)
∑

C[L(ui)][L(vi)] ≤ α, ui ∈ {Wp}, i.e., the summation is
over each unique vertex ui. Unlike the NL label condition,
the above conditions are necessary and sufficient and follow
directly from the definition of approximate isomorphism.
To check whether v ∈ R(u), we first map u to v and

subtract the cost of C[L(u)][L(v)] from the threshold α. We
then try to map the remaining vertices in P by following
Wp one edge at a time. In any step (ui, ui+1), if ui and
ui+1 are mapped to x and y in G, respectively, then we
ensure that (x, y) ∈ EG (condition ii). If on the other hand,
ui+1 is not mapped then we map it to some vertex y ∈
R′(ui+1) and subtract the cost C[L(ui+1)][L(y)] from the
remaining α threshold. We backtrack if any of the conditions
is violated. The vertex v ∈ R(u) iff we can complete the walk
Wp satisfying the above three conditions. Note that we have
to find one isomorphism that maps u to v, which is much
better than enumerating all possible isomorphisms.
Consider whether vertex 30 ∈ R(1) for the pattern in

Fig. 1b, and let α = 0.5. The sequence Wp = 1, 2, 4, 3, 1
is a walk in the pattern that covers all the edges. In gen-
eral, finding a walk that covers all the edges in a graph is a
special case of Chinese postman problem [6] when the edge
weights are one. We first map 1 to 30 an subtract the cost
C[L(1)][L(30)] = 0.2 from 0.5. For the first edge, (1, 2), since
2 is not mapped we map it to some vertex, say 20 ∈ R(2).
The cost of the mapping is 0.2 and the remaining threshold
is 0.3−0.2 = 0.1. It can be verified that these mappings can-
not complete the walk Wp. So we backtrack and map 2 to
another vertex say 10 ∈ R(2). This walk can be completed
with the mappings as in φ1 in Table 1d and the remaining
cost is 0.1. The mappings of the pattern vertices not only
implies that 30 ∈ R(1), it also tells us that 10, 60, 40 rep-
resent vertices 2, 3, 4 respectively. The above procedure can
be easily extended to enumerate all the isomorphisms of the
pattern, if needed.

3.4 Label costs and dominance checking
Candidate representative vertices are pruned by check-

ing for dominance relation between the NL label of a pat-
tern vertex and that of a candidate vertex in the database.
Comparing the NL labels requires i) computing the cost of
matching the k-hop labels ii) matching the neighbors of a
pattern vertex with neighbors of a candidate vertex such
that the NL of the candidate vertex dominates that of a
pattern vertex. The first problem can be formulated as a
minimum cost maximum flow in a network, and the second
as maximum matching in a bipartite graph.

Computing k-hop label cost: The minimum cost of match-
ing the k-hop labels hk(u) and hk(v) is equal to minimum
cost maximum flow in a network F defined as follows. Each
edge in F is associated with a maximum capacity and a cost
for sending one unit of flow across it. The network contains
a vertex for each label lu = L(u′) where u′ ∈ hk(u) and a
vertex for each label lv = L(v′) where v′ ∈ hk(v). There is
a directed edge between source vertex (s) and each lu with
zero cost and a capacity equal to the multiplicity of the lu,
i.e., the number of vertices in hk(u) that have the label lu.
Similarly there is a directed edge between lv and the sink
node (t). In addition, there is a directed edge from lu to lv
with a cost equal to C[lu][lv] and a capacity equal to the mul-
tiplicity of lu. The cost between the k-hop labels is equal to
the minimum cost for maximum flow if the maximum flow
is equal to |hk(u)| and ∞ otherwise.

s

C

D

t

B

A

1, 0

1, 0

1, 0.1

1, 1

1, 0.6

1, 0.3

2, 0

1, 0

Figure 3: Flow network for h2(2) and h2(20)

Fig. 3 shows the flow network required to compute the
minimum cost of matching the k-hop labels h2(2) = 4, 6 and
h2(20) = 40, 50, 60 as shown in Table 1. The labels of ver-
tices in the k-hop labels are C,D and B,B,A respectively.
There is an edge from s to each of C,D with zero cost and
maximum capacity of one. Similarly, there is an edge from
each of A,B to the sink vertex t with zero cost and maxi-
mum capacity of one and two respectively. The capacity of
the edge between B and t is two because both the vertices
40 and 50 have the same label B. There is an edge from
C,D to each of A,B with cost equal to the corresponding
entry in the cost matrix C. The maximum flow in the net-
work is two and the minimum cost of sending two units of
flow 0.4 is achieved by pushing a unit flow along the paths
s, C,B, t and s,D,A, t. Therefore, the cost of matching the
labels h2(2) and h2(20) is 0.4. Thus, vertex 4 with label C
can be matched to either 40 or 50 and the vertex 6 to 60.

Dominance check: Consider the NL labels ηk+1(u) =
(X,Y) and ηk+1(v) = (X ′, Y ′). The cost of matching the
k-hop labels Y and Y ′ can be computed using the above the
network formulation. Finding an injective function f: X →
X ′ such that x � f(x), is equivalent to finding a matching
of size |N(u)| in the bipartite graph with edges (x, x′), for
all x ∈ X and x′ � X ′. The NL label ηk(u) is dominated by
ηk(v) if the cost between the k-hop labels is within α and
the size of maximum bipartite matching is |N(u)|.

Optimization: The candidate pattern may contain groups
of symmetric vertices that are indistinguishable with respect
to the k-hop label. In such a scenario, the candidate repre-
sentative sets of all these vertices are exactly the same. Uti-
lizing the symmetry, we can apply the label pruning strat-
egy only on one vertex per symmetry group and replicate
the results for all other vertices in the group. For example,
vertices 1 and 4 in Fig. 1b are symmetric and the represen-
tative sets R(1) and R(4) are exactly the same. In abstract
algebra terms such groups are called orbits of the graph
and can be computed by using the Nauty algorithm [17].
Even though computing the orbits is expensive, we can avoid
(|g| − 1)× |R′(u)| NL dominance checks (g is the size of an
orbit) due to the fact that NL dominance checks are per-
formed only on one vertex in each group. Note that we find
the orbits only for the pattern which is usually very small
compared to the database graph.

3.5 Precomputing database k-hop labels
The k-hop label of a database vertex is independent of the

candidate pattern. Also, the flow network to compute the
cost of matching the k-hop labels requires only aggregate in-
formation about the multiplicity of the vertex label. Hence,
we can precompute the k-hop label of database vertices and
store them in memory. The following theorem proves that
computing k-hop label is expensive.

Theorem 3. Given a graph G, k, and u ∈ VG, then com-
puting hk(u) is NP-Hard.
Proof Sketch: We can prove this by using a polynomial
time reduction from the Hamiltonian path problem which is

521

NP-Complete [14]. We omit the complete details due to lack
of space.

To compute k-hop label of a vertex u, we check for each

vertex v whether u
k

−→ v by enumerating all possible k
length paths until a path is found. This procedure is ex-
ponential, we therefore fix a maximum value kmax and use
the NL label based pruning only for values of k ≤ kmax.
It takes only a small amount of time to compute the k-hop
label for k ≤ 6 for all the vertices in the database graph;
significantly less than the overall run time of the mining al-
gorithm. Once hk(u) is computed we store in memory only
the tuples (l,m) where m is the multiplicity of the label
l = L(u′), where u′ ∈ hk(u). The total amount of main
memory required to store the precomputed k-hop labels is
O(|VG| × |Σ| × kmax).

4. MINING ALGORITHM
Having described the key contributions of label based prun-

ing and candidate representative set verification, we now
briefly describe our algorithm for mining approximate sub-
graphs in the presence of a label cost matrix. The main
steps of the mining algorithm include candidate generation
and support computation. The representative set for each
pattern vertex comprises a compact view of all the isomor-
phisms of the pattern in the input graph. We now show how
the representative sets can be used in conjunction with dif-
ferent candidate generation and support computation tech-
niques to yield approximate graph mining algorithms with
different properties.

4.1 Candidate Generation
The search space of the frequent patterns forms a partial

order. It can be explored in a depth first or breadth first
order but doing so requires computing the canonical code
to avoid duplicates. Since the search space is exponential,
sampling methods have gained traction recently [4,9]. In our
algorithm we employ the depth-first random edge extension
strategy we proposed in [2], i.e., we employ random walks
over the chains of the frequent subgraph partial order. Each
random walk starts with an empty pattern and repeatedly
adds a new edge to a new vertex, or connects two existing
vertices in the pattern, to generate a new candidate. More
precisely, at any stage of the walk let Q be the current fre-
quent pattern. A candidate pattern P is generated from Q
either by adding a new vertex with label l or by connect-
ing two existing vertices u, v ∈ VQ. For any vertex u, if
u ∈ VP ∩ VQ then the candidate representative set R′(u) in
P is the same as the representative set R(u) verified for Q.
Otherwise u ∈ VP \VQ, and the candidate representative set
is R′(u) = {v|v ∈ VG, C[L(u)][L(v)] ≤ α}, i.e., we start with
the current representatives if the vertex is already present,
otherwise it is the set of vertices in G whose label matching
cost is within α. Using the label pruning and verification
mechanism we compute the representatives of P . Then we
decide if the pattern is frequent using the support function
that we will define in Sec. 4.2. If the candidate pattern P is
frequent, then we continue the walk by extending P . Oth-
erwise, we try another random edge extension from Q. If
no extension of Q leads to a frequent pattern then by defi-
nition Q is maximal and we terminate the current random
walk. Using an input parameter K, our algorithm performs
K random walks (by default), or outputs K distinct maxi-
mal approximate patterns (if desired). Furthermore, if the
application requires a complete set of maximal patterns an
ordered exploration of the search space may be employed.

4.2 Support Computation
The support of a pattern is an anti-monotonic function on

the set of isomorphisms of the pattern. The anti-monotonicity

means that the support of a pattern cannot be greater than
the support of any of its subgraphs. Therefore, if a can-
didate pattern is found to be infrequent we can prune the
entire subtree under it from the search space. This helps in
pruning the otherwise exponential search space.

When mining from a database of graphs, a function as
simple as the total number of graphs having at least one
isomorphism is anti-monotonic. This approach cannot be
used when mining from a single graph as it leads to a bi-
nary support function which is not very informative. On
the other hand, counting the number of isomorphisms is
not anti-monotonic because a graph can have more isomor-
phisms compared to its subgraph.

An anti-monotonic support function for a single graph is
the maximum number of vertex disjoint isomorphisms. How-
ever, this requires computing the maximum independent set
(MIS) in a graph where a vertex represents an isomorphism,
and an edge exists if the isomorphisms share a vertex in
common. This is called the MIS support of the pattern.
Clearly, it is not feasible to compute the MIS support when
the input graphs are large and patterns have large number
of isomorphisms. An easy upper bound on the MIS support
is the size of the smallest representative set of a vertex in
the pattern [3]. Thus, we define the support of pattern P
in a database graph G as

sup(P) = min
u∈VP

{|R(u)|}

That is, the minimum cardinality over all representative sets
of vertices in P . The size of representative sets constructed
from the disjoint isomorphisms is equal to the MIS support.
Hence, sup(P) is at least as large as MIS support. Other
upper bounds for the MIS value have been proposed in gAp-
prox [5] and CMDB-Miner [2] algorithms. The support func-
tion used in gApprox can be computed from the representa-
tive sets by enumerating the isomorphisms as described in
the Sec. 3.3. The support function used by the CMDB-Miner
algorithm can also be used by constructing the appropriate
flow network on the representative sets. In conclusion, we
can mix and match different techniques for candidate gen-
eration and support computation to produce different ver-
sions of the approximate graph mining algorithm since the
isomorphisms are stored as representative sets.

4.3 Complexity

Space Complexity: At any given stage of the mining pro-
cess, we need to store the candidate representative sets and
the precomputed k-hop labels. For a pattern with m ver-
tices, the total amount of memory is O(m× |VG| + kmax ×
(|Σ| ∗ |VG|)). The first term corresponds to the representa-
tive sets and the second to the precomputed k-hop labels.
kmax is the maximum value of k for which we compute k-hop
labels.

Time Complexity: The cost of matching the k-hop labels
requires at most |hk(u)| augmentations in the flow network
F , which is an upper bound on the minimum cost, assuming
the cost on each edge is at most one. Each augmentation
involves cycle detection which takes O(|Σ|3) time because
the number of vertices in F is O(|Σ|). Therefore, the time
for minimum cost flow is O(|hk(u)|×|Σ|3). The time for the
bipartite matching is proportional to the number of vertices
and the edges. Since, we try to match the neighbors of a pat-
tern and candidate vertex, the number of vertices is bounded
by the maximum degree dmax of the pattern and candidate
vertices. Therefore, the total time for each dominance check
is O(|hk(u)|×|Σ|3+d3max). The number of dominance checks
performed per candidate are O(kmax × ng × |VG|) where ng

is the number of orbit groups in the pattern vertex.

522

5. EXPERIMENTAL EVALUATION
We ran experiments on several real world datasets to eval-

uate the performance of our algorithm. All the experiments
were run on an 4GB Intel Core i7 machine with a clock
speed of 2.67 GHz running Ubuntu Linux 10.04. The code
was written in C++ and compiled using g++ version 4.4
with -O3 optimization flag. The default number of random
walks is K = 500.

Dataset |V | |E| |Σ| Pre processing time

CMDB 10466 15122 84 329.31s
SCOP 39256 154328 20 17.38s
PPI 4950 16515 4950 –

Table 3: Input graph statistics

5.1 Configuration Management DB (CMDB)
A CMDB is used to manage and query the IT infrastruc-

ture of an organization. It stores information about the
so-called configuration items (CIs) – servers, software, run-
ning processes, storage systems, printers, routers, etc. As
such it can be modeled as a single large multi-attributed
graph, where the vertices represent the various CIs and the
edges represent the connections between the CIs (e.g., the
processes on a particular server, along with starting and
ending times). Mining such graphs is challenging because
they are large, complex, multi-attributed, and have many
repeated labels. We used a real-world CMDB graph for
a large multi-national corporation (name not revealed due
to non-disclosure issues) from HP’s Universal Configuration
Management Database (UCMDB). Table 3 shows the size of
the CMDB graph, and also the time for precomputing the
k-hop labels.

Cost Matrix : The set of labels in a CMDB form a hierarchy
which can be obtained from HP’s UCMDB. In the absence
of domain knowledge, one way to obtain a cost matrix is
by assigning low costs for pairs of labels that share many
ancestors in the hierarchy and high costs otherwise. The
algorithm is general in that it doesn’t depend on how the
label matching costs are assigned, the range of these val-
ues or whether the cost matrix is symmetric. Consider any
two labels l1, l2 and their corresponding paths p1, p2 to
the root vertex in the hierarchy. We first define the sim-
ilarity between the labels to be proportional to the num-
ber of common labels in p1 ∩ p2, as follows sim(l1, l2) =
|p1∩p2|

2

(

1
|p1|

+ 1
|p2|

)

. The cost of matching the labels is then

C[l1][l2] = 1− sim(l1, l2).

minsup Time Avg. Time
10 5604.35 11.21
15 7147.11 14.29
20 7931.56 15.86

Table 4: CMDB: Time (sec) for random walks

minsup Fwd Fwd Success Back Back Success
10 4.35k 0.5k 1.1k 0.12k
15 5.55k 0.91k 1.22k 0.12k
20 6.3k 0.83k 1.32k 0.85k

Table 5: CMDB: Number of extensions and successes

Results: Table 4 shows the time for K = 500 random walks
for different values of minsup and α = 0.5. The average
time per random walk is also shown. Somewhat counter-
intuitively, the time increases for higher minimum support
values. This can be explained by the fact that the CMDB
graph contains many relatively small subgraphs with low

support, and few relatively large subgraphs with high sup-
port. Thus, when minsup is high, more random edge ex-
tensions have to be tried to find the frequent ones, whereas
when minsup is low fewer random edge extensions are re-
quired to locate the frequent patterns. This trend is verified
in Table 5, which shows the total number of forward (adding
a new label) and backward (connecting two existing vertices
in the pattern) edge extensions tried by our algorithm, and
also the number of extensions tried that result in a success
(i.e., a frequent pattern). We can see that higher minsup in
general requires more extensions for the CMDB graph.

9 × process ip address

windows service nt ip address

iisftpservice iis webvirtualhost

iisappool

iisftpservice iiswebsite

Figure 4: CMDB: Approximate Pattern

Example Patterns: Figure 4 shows a maximal approximate
pattern found in the CMDB graph, representing a typical
“de-facto” configuration of the IT infrastructure in this com-
pany. It shows the connection between some services run-
ning on an NT server, and also the web/ftp services. The
node with label 9 × process indicates that there are nine
nodes in the maximal pattern with label process all of which
are connected to the nt node. This is an example where
the run time for computing the representative sets is signif-
icantly reduced by the optimization proposed in section 3.4.
All of the nine nodes belongs to the same orbit and hence
their representative sets are identical.

running software

EnrichActImpl process

process nt ip address

8× process

Figure 5: Complete Enumeration Expensive

To show the effectiveness of the pruning based on labels,
we compared the time taken to enumerate a single maximal
pattern in the CMDB graph. We compared the time with
and without label-based pruning. Both the methods ter-
minated the random walk with the maximal pattern shown
in Figure 5. However, the total time taken to enumerate
the pattern without using any derived label is 18306 secs
whereas by using the NL label the total time reduced to only
15.58 secs. The huge difference between the times arises due
to the multiplicity (labels with many occurrences) effect in
CMDB graphs.

5.2 Protein Structure Dataset (SCOP)
SCOP (scop.mrc-lmb.cam.ac.uk/scop/) is a hierarchi-

cal classification of proteins based on structure and sequence
similarity. The four levels of hierarchy in this classification
are: class, fold, superfamily and family. The 3D structure of
a protein can be represented as an undirected graph with the

523

vertex labels being the amino acids, with an edge connecting
two nodes if the distance between the 3D coordinates of the
two amino acids (their α-Carbon atoms) is within a thresh-
old (we use 7 Angstroms). We constructed a database of
100 protein structures belonging to 5 different families with
20 proteins from each family. We chose the proteins from
different levels in the SCOP hierarchy, and we also focused
on large proteins (those with more than 200 amino acids).
The 3D protein structures were downloaded from the pro-
tein data bank (http://www.rcsb.org/pdb). The database
can be considered as a single large graph with 100 connected
components. The graph characteristics and k-hop label pre-
computation times are shown in Table 3. For the SCOP
dataset, the support is redefined as the number of proteins
containing the pattern, i.e., even if a protein contains multi-
ple isomorphisms we count them only once for the support.

Cost Matrix : Since there are 20 different amino acids, we
need a 20× 20 cost matrix. BLOSUM62 [10] is a commonly
used substitution matrix for aligning protein sequences. The
i, j entry in BLOSUM denotes the log-odd score of sub-
stituting the amino acids ai and aj , defined as: B[i][j] =
1
λ
log

pij

fi·fj
, where pij denotes the probability that ai can

be substituted by aj ; fi, fj denote the prior probabilities
for observing the amino acids; and λ is a constant. We
compute fi and fj from the database, and then reconstruct

pij = fifje
λB[i][j]. Next, we define the pair-wise amino acid

cost matrix as C[i][j] = 1 −
pij

pii
, which ensures that the di-

agonal entries are C[i][i] = 0.

Results: Table 6 shows the time taken for enumerating ap-
proximate maximal patterns for different values of α (with
fixed minsup = 20). The table shows the time for K = 500
random walks and the average time per walk, with and with-
out label pruning. It can be seen that by using the label-
based pruning the time for random walks reduces signifi-
cantly (by over 100%). As expected, the time increases as
the values of α increases, since the number of isomorphisms
clearly increases for a more relaxed (larger) cost threshold.
When α = 0.01, the patterns are exact as C[i][j] > α , ∀i 6= j.
Table 7 compares the time taken to mine K = 500 max-

imal patterns from the SCOP dataset using the NL label
algorithm and two other algorithms, with minsup = 20 and
α = 1.0. The no pruning algorithm computes the represen-
tative sets from the candidate representative sets directly us-
ing the verification procedure described in section 3.3. The
gApprox algorithm is based on [5] and stores all isomor-
phisms during the course of enumerating a maximal pattern.
It can be seen that the run time for the NL based algorithm
is significantly less as it prunes invalid candidates without
performing an expensive verification procedure or storing a
large number of isomorphisms.
Table 8 shows the time taken for K = 500 random walks

for various values of minsup, with α = 1.0. The table shows
the time spent in the k-hop matching, NL matching, and
pattern verification steps, and the total time. We see a sim-
ilar trend compared to the CMDB graph in terms of the run
time, i.e., as minsup increases the time also increases. From
Table 9 we can see that the number of forward extensions
tried increases with higher minsup, though the number of
backward extensions tried decreases slightly. However, the
increase in time with higher minsup is also a result of in-
creased cost of NL label pruning and the verification steps,
both in terms of time (as seen in Table 8) and in terms of
the number of such checks (as seen in Table 10).
Table 11 compares the effectiveness of NL and k-hop la-

bels for different values of the threshold α. For each value
of α, the top row shows the time with NL label, whereas
the bottom row shows the time using only the k-hop label.
The NL label clearly reduces the time taken. In fact, it re-

NL pruning no pruning
α Time Avg. Time Time Avg. Time

0.01 57.27 0.11 115.06 0.23
0.7 228.65 0.45 394.93 0.76
1.0 2689.54 5.37 5966.53 11.93
1.5 6376.93 12.75 12572.96 25.14

Table 6: SCOP: Effect of α (Time in sec)

Algorithm Time Avg. Time
NL Pruning 2689.54 5.37
no Pruning 5966.53 11.93
gApprox 15653.2 31.30

Table 7: SCOP: Time (sec) Comparison

minsup k-hop label NL label Verification Total
10 377.10 378.99 629.804 1796.61
20 476.10 489.59 1188.25 2689.54
25 462.52 513.25 1055.28 2572.33
40 461.30 625.52 1148.42 2818.81

Table 8: SCOP: Time (sec) for Different Steps vs. minsup

minsup Fwd Fwd Success Back Back Success
10 4.89k 0.57k 0.67k 0.44k
20 6.24k 0.27k 0.44k 0.17k
25 6.48k 0.25k 0.40k 0.13k
40 5.6k 0.23k 0.32k 0.1k

Table 9: SCOP: Number of extensions and successes

minsup neighbor checks k-hop checks Verify checks
10 809k 65.5k 1.78k
20 925k 92.9k 1.72k
25 792k 93.32k 1.24k
40 721k 139.78k 9.63k

Table 10: SCOP: Number of matching neighbors, k-hop dis-
tance and verification computations.

α NL label k-hop label Verification Total

0.5
119.84 35.53 13.71 169.08

250.57 36.33 286.9

0.75
293.40 127.96 224.55 645.91

368.84 653.14 1021.98

Table 11: SCOP: Effectiveness of labels (Time in sec)

duces the time for both the k-hop matching and the pattern
verification steps, since NL is very effective in pruning the
representative set. This effect is best seen for α = 0.75,
where the total time for verification reduces even though
matching the neighbors takes more time compared to k-hop
matching. This shows the effectiveness of the NL label ver-
sus k-hop label in isolation.

Example Patterns: Figure 6 show an example approximate
protein graph pattern and its corresponding 3D structure
extracted from the SCOP dataset. For example, the graph
in 6a has support 19, and the structure of one of its occur-
rences, in protein PDB:1R2E, is shown in 6b. The common
motif comprises the black colored amino acids some of whom
are far apart in sequence but are spatially close in 3D. It
is important to note that the cost of this isomorphism is
C(φ) = 0.4541, indicating that exact isomorphism cannot
find the motif.

524

(a) Pattern (b) Structural Motif

Figure 6: SCOP: Approximate Pattern and its Structure

5.3 Protein-Protein Interaction Network (PPI)
We ran experiments on a yeast (Saccharomyces cerevisiae)

PPI network. The list of interacting proteins for yeast was
downloaded from the DIP database (http://dip.doe-mbi.
ucla.edu). As seen in Table 3, the PPI network has 4950
proteins and 16,515 interactions. Unlike the other datasets,
each node in the PPI network essentially has a unique label,
which is the protein name. One of the differences for the PPI
graph is that we do not utilize the k-hop labels. The com-
plexity of matching the k-hop labels depends on the num-
ber of literals in the k-hop label. As each label (protein) is
unique in the PPI graph, the number of literals in the k-hop
label of a vertex v in a PPI network is equal to the num-
ber of vertices reachable in k-hops. This increases the run
time for the k-hop label matching. Therefore, for mining
PPI networks we use only the neighbor mapping component
of NL labels (thus, the pre-processing time for PPI is not
applicable in Table 3).

Cost Matrix : To construct the cost matrix for the protein
network we consider the similarity between the protein se-
quences for any two adjacent nodes. Sequence similarity is
obtained via the BLAST alignment score (http://blast.
ncbi.nlm.nih.gov/), that returns the expected value (E-
value) of the match. A low E-value implies high similarity,
thus we create a binary cost matrix between the proteins
by setting C[pi][pj] = 0 iff the proteins pi and pj have high
similarity, i.e., iff E-value(pi, pj) ≤ ǫ. We empirically set
ǫ = 0.003. Once the binary cost matrix is constructed the
algorithm is run with α = 0 since the label mismatch is
handled by the cost matrix.

minsup Time Avg. Time
3 834.55 1.67
5 377.56 0.76
10 254.24 0.51

Table 12: Time (sec) for random walks in PPI Dataset

minsup Fwd Fwd Success Back Back Success
3 54.56k 0.34k 0.85k 0.025k
5 22.83k 0.11k 0.16k 0.022k
10 10.2k 0.73k 0.75k 0.09k

Table 13: PPI: Number of extensions and successes

Results: Table 12 shows the time for K = 500 random walks
in the yeast PPI network for different values of minsup. It
can be seen that the time for random walks decreases as the
support value increases, which is opposite to the trend seen
for CMDB and SCOP graphs. We verify in Table 13 that
for PPI the number of forward extensions is drastically lower
for higher minsup values.

Example Patterns: Figure 7a shows a mined maximal fre-
quent approximate pattern (using minsup = 5). The pro-
teins are labeled with their DIP identifiers (e.g., DIP-2818N);

(a) Pattern
GO Terms Description
BP:0051603 proteolysis involved in cellular pro-

tein catabolic process
MF:0004298 threonine-type endopeptidase activ-

ity
CC:0034515 proteasome storage granule

(b) Common GO Terms

Figure 7: Approximate PPI Pattern and GO Enrichment

the last number in the label is just a sequential node id.
It is worth emphasizing that exact subgraph isomorphism
would not yield any patterns in this dataset, since each la-
bel is unique. However, since we allow a protein to be re-
placed by a similar protein via the cost matrix C, we ob-
tain interesting approximate patterns. To judge the qual-
ity of the mined patterns we use the gene ontology (GO;
www.geneontology.org), which comprises three structured,
controlled vocabularies (ontologies) that describe gene prod-
ucts in terms of their associated biological processes (BP),
molecular functions (MF), and cellular components (CC).
For each of the mined approximate patterns we obtain the
set of all the GO terms common to all proteins in the pat-
tern. This serves as an external validation of the mined
results, since common terms imply meaningful biological re-
lationships among the proteins. Figure 7b shows the com-
mon GO terms for the pattern in Figure 7a. This subgraph
comprises proteins involved in proteolysis as the biological
process, i.e., they act as enzymes that lead to the breakdown
of other proteins into amino acids. Their molecular function
is endopeptidase activity, i.e., breakdown of peptide bonds
of non-terminal amino acids, in particular the amino acid
Threonine. These proteins are located in the proteasome
storage granule, and most likely comprise a protein complex
(proteasome) – a molecular machine – that digests proteins
into amino acids.

6. RELATED WORK
In the past, many algorithms have been proposed to mine

subgraphs from a given database of graphs. These algo-
rithms can be mainly divided into two classes depending on
how the candidate patterns are generated. Algorithms like
those in [11, 12, 15] are Apriori based methods, i.e., a can-
didate pattern of size k + 1 is generated by combining two
frequent graphs of size k that have a common k − 1 sized
subgraph. Algorithms like those in [19], on the other hand,
belong to the class of pattern growth algorithms in which
a candidate pattern is generated by extending a frequent
pattern with another edge. Sampling approaches like those
proposed in [2, 9, 20] mine a representative set of maximal
patterns from a database of graphs or a single graph; they
are especially effective in large real-world graphs where com-
plete graph mining is practically infeasible.

Mining subgraphs from a single graph is a related prob-
lem which is surprisingly difficult compared to mining from
a database of graphs. In [16], they defined the support of a
pattern in a single graph as the maximum number of edge
disjoint isomorphisms, which is itself an NP -Hard problem.
In [7], they proposed a definition of support based on over-

525

lapping ancestor isomorphisms. In [2], we proposed CMDB-
Miner to mine frequent patterns from a single large graph.
Support of a pattern is defined as the maximum flow in
an appropriately constructed flow network with capacities.
This method estimates the support of a pattern without
enumerating its isomorphisms.
There has been little work in approximate subgraph min-

ing. In [5], they proposed gApprox to mine approximate
frequent subgraphs. The degree of approximation between
a pattern and its isomorphism includes label mismatches
and missing edges. The search space is explored in a depth
first order and the support of a pattern is computed by enu-
merating all its isomorphisms. This approach is not feasible
for large graphs with label multiplicities as there are poten-
tially an exponential number of isomorphisms [2]. In [13],
they proposed APGM to mine approximate frequent sub-
graphs from a database of graphs. The method is similar to
the gApprox method, with the main difference being that
the entire 1-hop neighborhood of the current embeddings
is explored to enumerate all extensions of the frequent pat-
tern and their corresponding embeddings, whereas gApprox
enumerates the embeddings for a single extension in each
step. However, they store the complete set of approximate
embeddings of the current frequent pattern, which can be
a problem. In [1], the authors proposed strategies to speed
up the existing approximate mining algorithms, by limit-
ing the number of candidates and also the number of du-
plicate checks performed. They assume that the underlying
algorithm takes care of the label and/or edge mismatches.
In [20], they proposed a randomized algorithm to mine ap-
proximate patterns from a database of graphs. This method
only handles edge mismatches and not label costs.
Graph querying is another problem that is related to sub-

graph mining. The goal is to find matches of a given query
graph in a single graph or database of graphs. In [18], they
proposed an indexing method to extract the approximate oc-
currences of a given graph query in large graph databases.
In [8], they proposed a polynomial time algorithm for detect-
ing isomorphism between spectrally distinguishable graphs.
An isomorphism, if it exists, is obtained by matching the
steady state vectors of Markov chains in both the graphs.
The problem with the indexing approaches is that they are
efficient in retrieving a single match for the query graph but
fail at retrieving all matches, and thus are not suited to mine
frequent patterns. Furthermore, they assume that the query
is given, and thus they do not perform pattern enumeration
as required in graph mining.

7. DISCUSSIONS AND CONCLUSIONS
We presented an effective approach to mine approximate

frequent subgraph patterns from a single large graph database
in the presence of a label cost matrix.
There are two main parameters in our method: K, the

number of random walks, and α the cost threshold. The
value of K is directly proportional to the number of maxi-
mal approximate patterns we desire, and is relatively easy
to set. On the other hand, choosing an appropriate value
of α is very important as it affects the quality of patterns
mined. Depending on the application domain and the pur-
pose of graph mining, let t be the number of vertices in the
pattern for which we allow label mismatches in the subgraph
isomorphism. One reasonable value of α is t× IMQ where
IMQ is the inter-quartile mean, i.e., the mean of the entries
between the first quartile (25th percentile) and the third
quartile (75th percentile) of the entries in the cost matrix
arranged in sorted order. t can be chosen by first enumer-
ating maximal patterns with α = 0 and then computing
the average size m of the maximal patterns mined from the
graph. The value of t then is a fraction of the average size

m. Care has to be taken not to choose a very large α as it
leads to patterns of poor quality and also increases the run
time significantly as can be seen in Table 6.

In terms of future work, we plan to increase the efficiency
of our method by exploiting parallelism. Obviously different
walks can be carried out in parallel. However, more inter-
esting is the parallelization of the approximate isomorphism
generation and label-based pruning steps, including verifica-
tion. We also want to explore the idea of label based pruning
for more general definitions of approximate isomorphism in-
cluding edge mismatches.

8. REFERENCES

[1] N. Acosta-Mendoza, A. G. Alonso, and J. E.
Medina-Pagola. On speeding up frequent approximate
subgraph mining. Lecture Notes in Computer Science,
7441:316–323, 2012.

[2] P. Anchuri, M. J. Zaki, O. Barkol, R. Bergman, Y. Felder,
S. Golan, and A. Sityon. Graph mining for discovering
infrastructure patterns in configuration management
databases. Knowledge and Information Systems,
33(3):491–522, Dec. 2012.

[3] B. Bringmann and S. Nijssen. What is frequent in a single
graph? In PAKDD Conference, 2008.

[4] V. Chaoji, M. A. Hasan, S. Salem, J. Besson, and M. J.
Zaki. ORIGAMI: A Novel and Effective Approach for
Mining Representative Orthogonal Graph Patterns.
Statistical Analysis and Data Mining, 1(2):67–84, June
2008.

[5] C. Chen, X. Yan, F. Zhu, and J. Han. gApprox: Mining
frequent approximate patterns from a massive network. In
ICDM Conference, 2007.

[6] J. Edmonds and E. L. Johnson. Matching, euler tours and
the chinese postman. Mathematical programming,
5(1):88–124, 1973.

[7] M. Fiedler and C. Borgelt. Support computation for mining
frequent subgraphs in a single graph. In Int’l Workshop on
Mining and Learning with Graphs, 2007.

[8] M. Gori, M. Maggini, and L. Sarti. Exact and approximate
graph matching using random walks. IEEE Trans. on
Pattern Analysis and Machine Intelligence,
27(7):1100–1111, july 2005.

[9] M. A. Hasan and M. J. Zaki. Output space sampling for
graph patterns. Proceedings of the VLDB Endowment,
2(1):730–741, 2009.

[10] S. Henikoff and J. Henikoff. Amino acid substitution
matrices from protein blocks. Proc. Natl. Acad. Sci. USA,
89:10915–10919, 2002.

[11] J. Huan, W. Wang, and J. Prins. Efficient mining of
frequent subgraphs in the presence of isomorphism. In
ICDM Conference, 2003.

[12] A. Inokuchi, T. Washio, and H. Motoda. Complete mining
of frequent patterns from graphs: Mining graph data.
Machine Learning, 50(3):321–354, 2003.

[13] Y. Jia, J. Zhang, and J. Huan. An efficient graph-mining
method for complicated and noisy data with real-world
applications. Knowl. Inf. Syst., 28(2):423–447, 2011.

[14] R. Karp. Reducibility among combinatorial problems. In
R. Miller and J. Thatcher, editors, Complexity of Computer
Computations. Plenum Press, 1972.

[15] M. Kuramochi and G. Karypis. Frequent subgraph
discovery. In ICDM Conference, 2001.

[16] M. Kuramochi and G. Karypis. Finding Frequent Patterns
in a Large Sparse Graph. Data Mining and Knowledge
Discovery, 11(3):243–271, 2005.

[17] B. D. McKay. Practical graph isomorphism. Congressus
Numerantium, 30:45–87, 1981.

[18] Y. Tian and J. M. Patel. Tale: A tool for approximate large
graph matching. In ICDE Conference, 2008.

[19] X. Yan and J. Han. gSpan: Graph-based substructure
pattern mining. In ICDM Conference, 2002.

[20] S. Zhang and J. Yang. Ram: Randomized approximate
graph mining. In SSDBM Conference, 2008.

526

