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ABSTRACT
Global-state networks provide a powerful mechanism to model the
increasing heterogeneity in data generated by current systems. Such
a network comprises of a series of network snapshots with dy-
namic local states at nodes, and a global network state indicat-
ing the occurrence of an event. Mining discriminative subgraphs
from global-state networks allows us to identify the influential sub-
networks that have maximum impact on the global state and un-
earth the complex relationships between the local entities of a net-
work and their collective behavior. In this paper, we explore this
problem and design a technique called MINDS to mine minimally
discriminative subgraphs from large global-state networks. To com-
bat the exponential subgraph search space, we derive the concept
of an edit map and perform Metropolis Hastings sampling on it to
compute the answer set. Furthermore, we formulate the idea of
network-constrained decision trees to learn prediction models that
adhere to the underlying network structure. Extensive experiments
on real datasets demonstrate excellent accuracy in terms of predic-
tion quality. Additionally, MINDS achieves a speed-up of at least
four orders of magnitude over baseline techniques.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Data Min-
ing

General Terms
Algorithms

Keywords
discriminative subgraphs, network-constrained decision trees

1. INTRODUCTION
The ability to capture multiple snapshots of a network leads to a

“global-state” network in which the snapshots share the same struc-
ture but have different values on nodes and/or edges. Furthermore,
the network-guided evolution of the local states jointly determines
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Figure 1: A GS-network based modeling of protein-protein in-
teraction data on eight different humans (snapshots). The GS-
network models the occurrence of cancer. A protein expression
level of 1 denotes abnormal activity, whereas 0 indicates normal
expression levels.

the global network state in each snapshot. Such global-state net-
works (GS-network) can model a myriad of domain specific fea-
tures such as traffic congestion in transportation networks [3], evo-
lution of opinions and sentiments on social networks [12], gene ex-
pression levels on protein-protein interaction networks [6] and scaf-
folds in molecular libraries [15]. For example, in protein-protein
interaction networks, the expression levels of individual proteins
encode logical functions that determine the presence or absence of
a disease. In social networks, opinion expressed on a movie by a
certain user affects the opinions of his/her friends which in turn sets
off a word-of-the-mouth cascade that ultimately decides the global
consensus. How do local node labels govern the evolution of the
global network state? Can we save cost by monitoring only a dis-
criminative subgraph and still be able to predict the global network
state accurately? In this paper, we investigate these questions.

Consider the problem of inferring biological outcomes from the
human protein-protein interaction network (PPI). A hypothetical
example is shown in Fig.1. In a PPI, each node corresponds to
a protein and two proteins are connected by an edge if they are
known to interact while regulating a common biological process.
As a result, abnormality in the expression level of a certain protein
directly impacts only its neighbors. As evident in Fig.1, the ex-
pression level of a protein varies from individual to individual. Re-
search in systems biology has shown that clinical outcomes, such as
susceptibility to cancer, depend not only on the expression level of
a single protein, but on pathways or network modules [6]. Model-
ing this phenomenon, therefore, requires us to have a network with
dynamic node labels and a global dynamic state; the node labels in-
dicate the protein expression levels in a human and the global state
indicates the presence or absence of the disease. To predict the bi-
ological outcome, we need to find the sub-networks whose local
states accurately predict the global network state.
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As illustrated above, GS-networks can model aspects of data that
are beyond the scope of static networks. A line of work that closely
resembles GS-networks is the idea of time-evolving dynamic net-
works. A dynamic network consists of a series of networks whose
properties change with time. However, dynamic networks lack a
global network state and existing techniques on analyzing dynamic
networks primarily focus on studying time-evolving recurrent pat-
terns [2, 3, 18]. In contrast, the goal of our problem is to learn
the network-encoded logic functions from the local states, and then
predict the global network state. For that purpose, we develop a
technique called MINDS (MINing Discriminative Subgraphs) to
mine discriminative subgraphs from large GS-networks.

Learning discriminative subgraphs from GS-networks is key to
understanding the complex relationship that exists between the lo-
cal and the global states. Consider the problem of monitoring envi-
ronmental sensor networks and learning regression models to pre-
dict the intensity of climatic conditions. In an environmental net-
work, each sensor represents a node and measures environmental
properties such as pressure and temperature. Two sensors are con-
nected if changes in environmental factors directly influence each
other. Now, research in meteorological science has established that
climatic conditions in a region depend not only on local factors, but
also on environmental conditions across the globe. For example,
the intensity of Indian monsoon is linked to El Niño [11]. While
limited success has been achieved in making short-term forecasts
based on local environmental factors, long-term forecasts based on
global factors remain a challenge. Mining discriminative subgraphs
from environmental sensor networks would help us identify such
global factors and forecast onsets of extreme conditions to mini-
mize the resulting damage.

While optimizing prediction quality is important, it is also es-
sential to learn local models that are consistent with the network
structure. Additionally, the mined sub-networks should regular-
ize the GS-network by applying a bias of network constraint to-
wards shrinking the hypotheses space. Compactness of discrimina-
tive sub-networks is key to both network regularization as well as
real time monitoring. Consider the scenario in sentiment analysis
on social networks to predict stock market momentum [12]. The
global behavior of users in the network is shaped through their in-
dividual opinions and the resulting cascading effects within their
social circles. Given the scale of social networks such as Facebook
or Twitter, monitoring the entire user base to provide real-time up-
dates on the global consensus is not feasible. Mining the most com-
pact discriminative subgraphs promises to penetrate this scalability
bottleneck by identifying smaller groups of influential users that
maximally predict the global behavior.

Clearly, mining discriminative subgraphs from GS-networks is
a powerful mechanism for identifying network components that
are influential in determining the global state. However, given the
fact that decades of research has already been performed on learn-
ing classification models, an obvious question arises: How is the
problem of mining discriminative subgraphs different from training
classifiers? To answer this question, we highlight the key aspects
of our problem that are beyond the scope of a traditional classifier.
1. Semantics: Learn local prediction models that are sensitive to
the underlying network structure. In our problem, each feature (or
node) is constrained within a structure and the network event being
modeled evolves through that structure. On the contrary, a tradi-
tional classifier operates on unstructured data where each feature
represents an axis in a high-dimensional space. Consequently, any
model learned lacks semantic meaning.
2. Level of abstraction: Mine discriminative subgraphs, each of
which is self-sufficient in explaining the evolution of the global

network state and modeling a coherent event. For example, in PPI,
such a subgraph corresponds to a biological process, whereas in en-
vironmental networks, a subnetwork represents a region. The local
models can further be combined to design ensemble learning algo-
rithms. On the other hand, a traditional classifier is only capable
of mining discriminative nodes with the sole focus on prediction
quality. Consequently, the learned patterns are of a low-level and
do not capture the higher-level structure.
3. Beyond Classification: Mine discriminative subgraphs that not
only provide the platform for learning classification models, but
also network regularization, regression and monitoring.

To achieve the properties highlighted above, we design a tech-
nique called MINDS to mine minimally discriminative subgraphs
from large GS-networks without compromising the underlying net-
work structure. To summarize:
• We formulate the problem of mining minimally discriminative
subgraphs from large GS-networks. To learn local prediction mod-
els and quantify the discriminative potential of a subgraph, we in-
troduce the concept of network-constrained decision tree that learns
network-encoded logic functions to predict the global network state.
• To tackle the exponential subgraph search space, we formulate
the idea of an Edit Map, on which we perform Metropolis-Hastings
sampling algorithm to drastically reduce the computational cost.
•We perform extensive experiments on real GS-networks to eval-
uate the efficiency and effectiveness of MINDS. Our results show
that the proposed algorithm achieves an accurate approximation of
the optimal answer set. Furthermore, MINDS outperforms the cur-
rent state-of-the-art classifiers developed for PPIs.

2. PROBLEM FORMULATION
A network/graphG = (V,E) is composed of a set of nodes V =
{v1, v2, · · · , vn} modeling the entities of the network and a set of
edges E = {(vi, vj) | vi, vj ∈ V } modeling the relationships
between these entities. A network snapshot N = (V,E, L, S)
contains two additional parameters: a labeling functionL : V → R
and the global network state S. While L operates on the node IDs
and models the local states, the global state function S quantifies
the success of the event being modeled. For simplicity, we assume
edges to be undirected and S ∈ {−1, 1}. However, all of the theory
developed in this paper is generalizable to variants such as edge-
weighted graphs, directed edges, multi-class states, or continuous
valued states.

DEFINITION 1. GLOBAL-STATE NETWORK: A GS-network
is a set of network snapshots N = {N1, · · · , Nn | Ni = (Vi, Ei, Li,
Si)}. We alternatively use the notation N = (VN , EN , Li, Si)
to denote a GS-network where VN =

⋃
∀Ni∈N Vi and EN =⋃

∀Ni∈NEi.

EXAMPLE 1. Fig.1 demonstrates a hypothesized GS-network
modeling the occurrence of cancer. The global state encodes the
presence or absence of cancer and the local states indicate the pro-
tein expression levels. All snapshots in this GS-network share the
same structure. For snapshots with different structures, the null
value is used to denote the state of a missing node. As a result, an
edge exists in a snapshot only if it connects to non-null nodes.

A graphG = (V,E) is a subgraph of a GS-network N = (VN , EN ,
Li, Si), denoted by G ⊆ N, if V ⊆ VN and E ⊆ EN . A stronger
constraint is enforced by the relationship of induced subgraphs.

DEFINITION 2. INDUCED SUBGRAPH: G = (VG, EG) is an
induced subgraph of GS-network N = (VN , EN , Li, Si), denoted
asG ⊆ N, if and only if VG ⊆ VN ,EG ⊆ EN , and ∀(u, v) ∈ EN
where u ∈ VG and v ∈ VG, (u, v) ∈ EG.
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A supergraph is defined analogously.
In this paper, we focus on mining only connected induced dis-

criminative subgraphs of a GS-network. Consequently, any refer-
ence to a subgraph is assumed to be a connected induced subgraph.

Given a training dataset, our goal is to mine subgraphs that ac-
curately predict the global state S of any snapshot N ∈ N. Fur-
thermore, the mined subgraphs should be as compact as possible to
ensure network regularization. Towards that goal, we first define
the notion of discriminative subgraphs.

DEFINITION 3. DISCRIMINATIVE SUBGRAPHS: Given a GS-
network N = (VN , EN , Li, Si), let f(G,L) be a structure-sensitive
prediction function that predicts the global state of a network. If
C = {Ni = (VN , EN , Li, Si)|Ni ∈ N, f(G,Li) = Si} is the set
of correctly predicted networks, then the discriminative potential of
subgraph G ⊆ N is:

φ(G) =
|C|
|N| (1)

G is discriminative if φ(G) ≥ θ for a user-provided threshold θ.

Due to our assumption of binary valued global states, f(G,L)
is essentially a classification model. For continuous valued global
states, f(G,L) would be a regression function. We elaborate on
how to learn the prediction function f(G,L) in Secs. 3 and 4.

While one could mine all discriminative subgraphs in the net-
work for a given threshold θ, such an answer set is likely to be
informationally sparse. More specifically, given a subgraph G that
is discriminative, all of G’s supergraphs are discriminative as well.
This result follows from the fact that any prediction function f(G,L)
learned from G = (VG, EG) can be learned from a supergraph
G′ = (VG′ , EG′) ⊇ G as well since the feature set VG′ ⊇ VG
contains all the information embedded inG. Therefore , to mitigate
this potential issue of information sparsity, our goal is to extract the
set of minimally discriminative subgraphs.

DEFINITION 4. MINIMALLY DISCRIMINATIVE SUBGRAPHS:
A subgraph G is minimally discriminative if φ(G) ≥ θ and the set
{G′|G′ ⊆ G,φ(G′) ≥ φ(G)} = ∅.

As can be seen, minimally discriminative subgraphs correspond
to the smallest possible subnetworks within a GS-network that are
influential enough to determine its global state. Consequently, min-
ing minimally discriminative subgraphs allows us to maximize the
information density in the answer set and avoid overfitting.

3. NETWORK-CONSTRAINED DECISION
TREES

Sec. 2 formalizes the discriminative potential of any graph G.
However, we still need to learn a structure-sensitive prediction func-
tion f(G,L) so that φ(G) can be quantified. From Defn. 3, φ(G) is
directly proportional to the probability P (f(G,Li) = Si) for any
networkNi ∈ N. Without the constraints of the structure, the prob-
lem is essentially that of learning a classification/regression model
on the GS-network N using only nodes in G as features. However,
as already discussed in Sec. 1, such an approach lacks semantic
meaning and the level of abstraction required to gain meaningful
insights from the mined network features.

To concretize the importance of structure in our problem further,
consider the hypothesized GS-network in Fig.1 and the local events
where protein p1 over-expresses (i.e., samples where p1 has node
label 1). From the network structure, it is evident that an abnor-
mality in p1 has a direct impact only on p2. As a result, out of the
five human samples where p1 = 1, p2 behaves abnormally on four
of them. Now, through p2, the abnormality in p1 has a cascading
effect on the expression levels of p3, p4 and p5. A deeper analysis

(a) (b) (c)

Figure 2: The optimal traditional decision tree (a) and the opti-
mal network-constrained decision tree (b) for the GS-network
shown in Fig.1. (c) Demonstrates how infection spreads in the
network. The infected nodes are highlighted in red.

of the example reveals that whenever both p1 and p5 behave abnor-
mally, the corresponding human samples are susceptible to cancer.
Clearly, p1 and p5 are statistically the most informative nodes and
this fact is reflected in Fig.2(a) which shows the optimal decision
tree (DT) for Fig.1. Notice that the learned model is completely
oblivious to the fact that the process evolved from p1 to p5 through
p2. Even though p2 is not statistically informative, structurally, it
is the “bridge” between p1 and p5, and thus, plays a key role in de-
termining the global network state. From a biological viewpoint, if
p2 can somehow be shielded from abnormal behaviors in p1, then
the risk of the disease is greatly diminished. Clearly, the impor-
tance of p2 must be recognized and the failure of traditional local
learners in capturing this key structural aspect highlights their lim-
itations in mining structured data such as graphs. To capture the
importance of network structure within the framework of a tradi-
tional classifier, we introduce the concept of network-constrained
decision trees (NCDT).

Similar to the goals of a DT, an NCDT also learns the optimal
boolean function that best predicts the global states using the lo-
cal node labels. However, an NCDT also models the evolution of
a process through the network and imposes additional constraints
on nodes that can be used to split the training dataset. For the first
split, an NCDT is free to choose any node. After the first split
node n1 is selected, an NCDT considers n1 as “infected”. Fur-
thermore, the infection spreads from n1 to all of n1’s neighbors,
and an NCDT can select only one of the infected nodes to decide
the next split. Based on this constraint, once the second split node
n2 is selected, n2’s neighbors in turn get affected and this process
repeats recursively, like in a DT, till leaf nodes are reached. The
additional constraint of splitting only through infected nodes en-
sures that “structural bridges” are captured and we do not overfit
the learned models. Note that the proposed NCDT can easily be
employed for learning a regression function as well by incorporat-
ing the same strategies used for learning regression DTs. Formally,
an NCDT is defined as the following:

DEFINITION 5. NETWORK-CONSTRAINED DECISION TREES:
A decision tree is also an NCDT if all nodes in any path start-
ing from the root form a connected component in the GS-network.
Consequently, the nodes in the NCDT are guaranteed to form a
connected component as well.

EXAMPLE 2. Fig.2(b) shows the optimal NCDT for the GS-
network in Fig.1. Fig.2(c) demonstrates how the “infection” spreads
in the network. In the optimal NCDT, p5 is selected as the first
split node. As a result, p5 and p2 get infected. Among the infected
nodes, p2 is selected for the next split, which results in the infection
spreading to p1, p3 and p4. p1 is selected for the third split to pro-
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duce the optimal NCDT. On the other hand, the DT in 2(a) is not
an NCDT since p5 and p1 do not form a connected component.

Certainly, DT is not the only classifier that can be adapted to
learn a structure-sensitive prediction function. We choose NCDTs
since it forms a natural and intuitive extension to DT. Additionally,
as shown later in Sec. 5, the linear construction cost of NCDTs
make it highly efficient when compared to other state-of-the-art
classification techniques such as Support Vector Machines.

3.1 Computational challenges
With the formalization of NCDTs, we now have a mechanism

to quantify the discriminative potential of any graph. In this sec-
tion, we analyze the computational challenges faced while mining
minimally discriminative subgraphs.

CLAIM 1. Computing the optimal NCDT is NP-hard.
PROOF: Learning the optimal DT is known to be NP-complete [9].
Given any dataset D = {d1, · · · , dn} where di = (x1, · · · ,
xk, yi) with yi being the class label, the decision tree problem is to
determine whether there exists a decision tree of size (i.e., number
of nodes in the tree) less than s that classifies each di correctly.
Given an arbitrary instance of the problem, we construct a clique
with all features (or nodes) 1, · · · , k connected to each other. It
is easy to see that a DT of size less than s exists if and only if an
NCDT of size less than s exists. In other words, learning an NCDT
on a clique is equivalent to learning a DT. �

NP-hardness of computing the optimal NCDT is not the only
computational challenge. To mine minimally discriminative sub-
graphs, we need to first enumerate all possible subgraphs of the GS-
network, and then compute their discriminative potentials. Unfor-
tunately, the number of subgraphs in a network grows exponentially
with its size and as a result, enumerating all possible subgraphs
is not feasible. Consequently, the proposed problem presents us
with a unique challenge: how can we mine minimally discrimina-
tive subgraphs even without enumerating the entire search space?

4. MINING DISCRIMINATIVE SUBGRAPHS
Sec. 3.1 outlines the two computational challenges in mining

discriminative subgraphs from large GS-networks. In this section,
we address these two challenges. First, we devise a strategy to
compute NCDTs greedily. Next, to combat the exponential search
space, we impart an ordering on the candidate subgraphs in the
form of an edit map, and then perform Metropolis-Hastings [1]
sampling on the map to compute an accurate approximation.

4.1 Greedy computation of NCDT
As in greedy learning of traditional DTs, the first node to split

the training dataset is selected greedily by choosing the one with
the highest statistical importance. The statistical importance can
be quantified using any of the existing attribute value tests such as
information gain or gini index. For our implementation, we use
information gain which is defined as the following

IG(N, u) = E(N)−
∑

l∈L∗(u)

|Nl|
|N| E(Nl) (2)

where N is a GS-network, L∗(u) is the set of all possible labels for
node u, Nl = {N = (VN , EN , L, S)|N ∈ N, L(u) = l} is the set
of networks where node u has label l and E(·) is the entropy of a
set. The first split divides N into |L∗(u)| subsets. Next, the set of
infected nodes is computed, and each of the subsets is split recur-
sively by choosing the infected node with the highest information
gain for that subset. As in a DT, this process completes when leaf
nodes are reached where either the global states of all snapshots
belong to a single class or no feature exists to split further.

Figure 3: The top three levels and the bottom two levels of the
edit map of the GS-network in Fig.1. We just show the set of
nodes in each vertex of the edit map since the edges can be con-
cluded from the definition of an induced subgraph.

4.2 Searching greedily in the subgraph space
A greedy learning of the NCDT tackles the NP-hardness chal-

lenge outlined earlier. Now, we focus on the second challenge of
exploring the exponential search space, which cannot be computed
or stored due to its sheer size. Our current capabilities only al-
low us to compute the discriminative potential of a given subgraph
and evaluate local modifications to further improve its discrimi-
native power. Thus, our only hope to reach the globally optimal
solution is through locally optimal choices. Towards that goal, a
greedy approach could be adopted. First, the node with the highest
information gain can be identified as the seed, and an NCDT can
be constructed greedily around that seed node. The correspond-
ing subgraph would therefore be the nodes spanning the NCDT.
If the subgraph is discriminative, then it is added to the candidate
set, otherwise discarded. To continue populating the candidate sub-
graph set, the process is restarted from the seed node with the sec-
ond highest information gain. Once all nodes have been explored,
the answer set can be computed by identifying only the minimally
discriminative subgraphs from the candidate set.

While a greedy strategy is computationally efficient, the discrim-
inative potential of the subgraph is highly restricted by the choice
of the initial seed node. If the seed lies in a neighborhood where
the rest of the nodes provide low information gain, then the re-
sultant subgraph will be non-discriminative as well. More impor-
tantly, a greedy algorithm is constrained to continue expanding the
NCDT in the low informative region even after realizing that the
initial seed is an informative outlier. What is therefore critical to
the success of any local optimization based approach is being sen-
sitive to back-tracking and negating any of the wrong choices al-
ready made. MINDS builds upon this intuition by converting the
subgraph search space into an Edit Map, and then performing MH
sampling on the map to mine minimally discriminative subgraphs.

4.3 Edit map
The edit map (EM) of a GS-network represents all possible edits

that can be performed on any subgraph G ⊆ N in the form of an
edge-weighted partial-order graph.

DEFINITION 6. EDIT MAP: The edit map of a GS-network
N = (VN , EN , Li, Si) is a directed edge-weighted graph M =
(VM , EM ), where VM = {G|G ⊆ N},EM = {(G = (V,E), G′ =
(V ′, E′)) | either G′ ⊇ G, V ′ = V ∪ {u}, u /∈ V, u ∈
VN or G′ ⊆ G, V ′ = V \{u}, u ∈ V }, and fM : EM → R is a
function that assigns a weight to each edge in EM .

As can be seen, the EM structures the search space into an edge-
weighted graph where each vertex corresponds to a distinct sub-
graph G ⊆ N. Besides, G is connected to all of its subgraphs with
one less node, denoted as G → u, and supergraphs with one addi-
tional node, denoted as G ← u. Each edge in the EM, incident on
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some vertex G, G ⊆ N, corresponds to an edit which either inserts
or deletes a node fromG. By performing a series of edits,G can be
transformed to any subgraph G′ ⊆ N. The edge weights quantify
the impact of the edits on the discriminative potential. We elaborate
on how to compute these edge weights in Sec. 4.5. Hereon, we use
the term node to denote an entity in the GS-network, and vertex to
denote a candidate subgraph in the EM. Fig.3 shows the EM of the
GS-network in Fig.1. The leftmost vertex in the EM represents the
null graph, and the rightmost vertex represents the entire network
structure. The EM is always connected.

As noted earlier, the size of the EM is exponential with respect
to the GS-network size and thus cannot be computed or stored in its
entirety. However, given any subgraph, we can make local edits to
enhance our chances of finding the minimally discriminative sub-
graphs. We formalize this idea by initiating a Metropolis-Hastings
sampling on the EM to guide us towards discriminative subgraphs.

4.4 Metropolis-Hastings sampling
The Metropolis-Hastings (MH) algorithm is a Monte Carlo Markov

Chain sampling algorithm whose goal is to sample from a target
distribution τ . Given a state space Ω = {s1, · · · , sn}, let vi ≥ 0
be the value of item si ∈ Ω. Our goal is to draw state si from τ ,
where

τi =
vi
C

(3)

C =
∑n
i=1 vi is a normalizing constant. For large n, C is difficult

to compute and thus, computing τ directly is not feasible. MH
allows us to simulate τ by converting the state space into an n-
state Markov chain with an arbitrary transition matrix Q. Let the
current state, Xt, at time step t be i. The MH algorithm performs
the following three steps to determine Xt+1:
• Draw a random state j with probability Qij
• Compute the acceptance probability αij , where

αij = min

{
1,
τjQji
τiQij

}
= min

{
1,
vjQji
viQij

}
(4)

•
Xt+1 =

{
j, with probability αij
i with probability 1− αij

(5)

In this formulation, the transition matrixQ is called the proposal
distribution matrix and αij is termed as the acceptance probability.
The optimal proposal distribution is the one that best approximates
the target distribution, and the acceptance probability should model
how precise the approximation is. The proposal distribution and
the acceptance probability can be combined to define the following
one-step transition matrix T :

Tij =

{
Qijαij if i 6= j

1−
∑
k 6=iQikαik if i = j

(6)

The Markov chain with transition matrix T is reversible and er-
godic. Additionally, the stationary distribution π of the Markov
chain converges to the target distribution τ .

4.5 MH sampling on the edit map
Sec. 4.4 describes how the MH algorithm can be used to sam-

ple from a target distribution. In this section, we utilize the MH
algorithm to sample discriminative subgraphs from the exponential
subgraph search space. In our problem, each subgraph (or vertex)
in the EM is a state. The target is to approximate the answer set
by sampling only a small subset of highly discriminative subgraphs
from the entire search space. Clearly, the quality of the sampled set
is critical to the accuracy of our approximation. In MH algorithm,
the quality of the stationary distribution depends on two key pa-
rameters: the proposal distribution and the acceptance probability.

We thus focus on defining these parameters to best approximate the
answer set of minimally discriminative subgraphs.

The proposal distribution matrix Q is a function of the edge
weights in the EM. The edge weights reflect the quality of the edits
on a given subgraph G. An edit is “good” if the newly constructed
subgraph increases our chances of finding a minimally discrimi-
native subgraph. While an increase in the discriminative potential
can be observed only when nodes are added, Q should allow node
deletions so that the sampler does not converge to local optimums.
Furthermore, since our goal is to mine minimally discriminative
subgraphs and maximize information density, deletions should be
preferred over “bad” additions that do not increase the discrimina-
tive potential. Thus, to summarize, given a subgraph G, we group
all possible edits on G into three classes:
1. Good addition: φ(G) increases due to addition of a node.
2. Bad addition: φ(G) does not increase.
3. Deletion: Delete nodes to avoid converging to local optimums.
We next formalize these intuitions.

First, we focus on quantifying the edge-weights corresponding
to additions. As can be seen, the impact of a node addition on the
discriminative potential can be computed only after the NCDT is
constructed on the new subgraph following the edit. Consequently,
if G has m supergraph neighbors, we need to build m NCDTs. On
dense networks, m can be significantly large. Furthermore, this
operation needs to be repeated for each graph that we sample in
the EM. As a result, an accurate computation of the edge weights
is computationally expensive. To reduce this computational bur-
den, we compute an approximation of the actual edge weight based
on information gain. Assuming the current state Xt = G =
(VG, EG), first, the NCDT on G is built. Next, we construct the
set M = {Ni = (VN , EN , Li, Si)|Ni ∈ N, f(G,Li) 6= Si} of
misclassified networks, where f(G,L) is the prediction function.
For each node u ∈ VN that can be added to G to construct a super-
graph G′ = G ← u ∈ Gsup, we group them into two sets based
on their information gain:

A− = {u|IG(M, u) ≤ 0 | G′ = G← u ∈ Gsup}
A+ = {u|IG(M, u) > 0 | G′ = G← u ∈ Gsup}

A− and A+ represent the “bad” and “good” additions respectively,
and Gsup represents the set of all possible supergraphs of G. The
quality of performing an addition is now quantified as follows:

A(u) =


∆
|A−|

if, u ∈ A−
(1−∆) IG(M,u)∑

v∈A+
IG(M,v)

if, u ∈ A+
(7)

where ∆ is a small probability distributed evenly among the “bad”
additions. As can be seen, the sampler is most likely to select one of
the “good” additions based on its information gain. However, since
information gain is only an approximation of the actual increase in
discriminative potential, with a small probability ∆, the sampler
would explore “bad” additions as well. Furthermore, as in the case
of deletions, being open to “bad” additions avoids convergence to
local optimums. We discuss how to select ∆ in Sec. 4.5.1.

Next, we focus on quantifying the utility of deletions. As dis-
cussed earlier, deletions are necessary to maximize the information
density in the sampled subgraphs, and ensure that the sampler does
not explore non-minimally discriminative subgraphs. To achieve
this property, the need for deletions on a subgraph G should be de-
pendent on φ(G). If φ(G) is low, additions are preferred so that
the sampler adds more information and moves to discriminative
subgraphs. On the other hand, if φ(G) is high, it is preferable
to delete nodes and explore other regions of the subgraph search
space. We model these requirements using the following proposal
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Algorithm 1 MINDS(N, θ)
1: A := ∅
2: t := 0
3: Xt := A randomly selected subgraphG = (VXt , EXt ) ⊆ N
4: Build NCDT onXt

5: while t < maxiter do
6: ifXt is minimally discriminative then
7: A := A ∪ {Xt}
8: A := A\{G′ ∈ A|G′ ⊇ Xt, φ(Xt) = φ(G′)}
9: Xtsub

:= {Xt → u|u ∈ VXt , u is not a cut-vertex}
10: Xtsup := {Xt ← u|u /∈ VXt , ∃v ∈ VXt , (u, v) ∈ EN}
11: ComputeQXtG

′ , ∀G′ ∈ Xtsub
∪Xtsup

12: Choose neighborG′ from proposal distributionQXtG
′

13: Update NCDT forG′

14: α :=
v
G′QG′Xt

vXt
Q

XtG
′

15: if uniform(0, 1) ≤ α then
16: t := t+ 1
17: Xt := G′

18: return A

distribution:
QGG′ =

{
β

|Gsub|
if G′ = G→ u ∈ Gsub

(1− β)A(u) if G′ = G← u ∈ Gsup
(8)

where β models the need for deletions based on φ(G) and is quan-
tified as the following:

β =
eKφ(G)

eK
(9)

and K is some large constant. As φ(G) increases, most of the
probability is distributed among deletes, whereas at a low φ(G),
additions are preferred.

The definition of β completes the formalization of the proposal
distribution matrix Q. We next focus on defining the acceptance
probability αGG′ . Since our goal is to sample discriminative sub-
graphs, vG in Eq. 4 can be set to φ(G). However, with such a score
assignment, any supergraphs of G′ ⊇ G where φ(G′) = φ(G) ≥
θ will be considered as a “good” state even though from Definition
4, G′ will never be part of the answer set. Therefore, to model this
property, we compute vG as follows:

vG =


ε ≈ 0 if ∃G′ = G→ u ∈ Gsub, φ(G′) = φ(G)

ε ≈ 0 if ∃G′ = G← u ∈ Gsup, φ(G′) > φ(G)

φ(G) otherwise
(10)

Eq. 10 ensures that transitions from non-minimally discriminative
states are always accepted (cases 1 and 2). If no such conclusion
can be drawn from the current state and its neighbors, then transi-
tions are accepted based on their discriminative potentials.

4.5.1 Parameters
Although the proposed model contains two parameters, ∆ and

K, none of them have a profound impact on the results as long as
the parameters are set within an appropriate range. ∆ is a small
probability that allows exploration of locally “bad” node additions
in hope of a globally optimal solution. The results are consistent
for any values in the range [0.001,0.005]. In our experiments, we
set ∆ =

|A−|
|VN |

. For K in Eq. 9, any large value in the range [100,
300] would produce consistent results.

4.6 Implementation details
Alg. 1 presents the pseudocode of MINDS. MINDS starts ex-

ploring the search space from a random subgraph Xt ⊆ N and the
NCDT on Xt is built (lines 2-4). By leveraging the memoryless
property of the MH sampling algorithm, MINDS constructs only
the local neighborhood of Xt in the EM (lines 9-10). To further re-
duce computation costs, only those entries of Q that involve graph

Table 1: Summary of the GS-networks used. The ‘Event’ col-
umn denotes the event being modeled.

Dataset #Nodes #Edges #Events Event
D11001[6] 11203 57235 371 Breast Cancer
D21001[5] 9673 39240 183 Liver Metastasis
D31001[6] 1321 5227 35 Embryonic Origin

Xt are computed (line 11). Furthermore, to optimize storage costs
in the exponential search space, at any time step, only two copies
of NCDTs are maintained in memory: one for the current state and
the other for the proposed state. As a result, MINDS achieves both
of the desired goals: accurate simulation of the target distribution
through MH sampling, and computational efficiency through mem-
oryless property of Markov chains.

5. EXPERIMENTS
The objectives of our evaluation procedure are the following:
• Evaluate the sampling quality and scalability of MINDS.
• Investigate the importance of network structure.
• Study the impact of noise in GS-networks on the mined patterns.
Furthermore, based on the observed results, quantify the statistical
significance of the results obtained in the cleaned datasets.
•Analyze the power of minimally discriminative subgraphs on pre-
dicting network states.

5.1 Datasets
To benchmark MINDS on real GS-networks, we use three dif-

ferent PPIs. Each of the PPIs represents the human protein inter-
action network. Although all three networks are drawn from the
same species, they are curated by three different agencies and dif-
fer in the various cellular processes being modeled. Consequently,
no mapping exists between nodes across networks. Table 1 sum-
marizes the GS-networks. Fig.4(a) shows the degree distribution
of each of these networks. As expected, they display a scale-free
behavior. The “#Events” column denotes the number of network
events/snapshots observed. Each event is associated with local node
labels and a global state. The local node labels represent the protein
expression levels and the global state indicates the clinical outcome
of the event being modeled. To discretize the protein expression
levels, we follow the standard procedure from system biology [5].
First, the expression levels of each protein are standard normal-
ized so that the mean and the standard deviation is 0 and 1 respec-
tively. Next, the expression levels of all proteins across all events
are sorted and the values in the top 25% are set to 1. The remaining
values are set to 0. A node label 1 therefore indicates the corre-
sponding protein to over-express and 0 indicates normal behavior.

5.2 Experimental setup
For experiments evaluating quality of MINDS, we select the max-

imum possible subset of network events from each dataset such that
the distribution of the global states is balanced. A balanced set en-
sures that a majority-class classifier can only achieve an accuracy
of 0.5. Otherwise, we use the entire datasets. Unless specifically
mentioned, we iterate the sampler for 100, 000 time steps. We set
the default threshold for discriminative potential to 0.8. The value
of constant K in Eq. 9 is set to 200. Typically, K has minimal
impact on the results as long as K > 100.

5.2.1 MH with SVM
To highlight the importance of capturing the underlying network

structure, we replace NCDT with SVM as the learning methodol-
ogy in the MH sampling step. More specifically, at any subgraph
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G ⊆ N, φ(G) is computed based on SVM with linear kernel. The
SVM is not constrained by network connectivity as long as all fea-
tures (nodes) are part of G. In MH sampling with SVM, only the
proposal distribution matrix is altered based on the feature rank-
ing mechanism outlined in [4]. Instead of information gain, the
importance of a node u is quantified based on its absolute weight
value w(u) in the learned SVM model. Thus, at each state with
graph G, two SVM models are learned: SVM model MG on G,
and SVM model MGsup that uses all nodes in G in addition to the
nodes that can be added to G on the EM. w(u) ∈ MG quantifies
the importance of deleting node u, and w(u) ∈ MGsup quantifies
the importance of adding node u to G. Thus,

QGG′ =

(β)
1

|w(u)|∑
G→v∈Gsub

1
|w(v)|

if G′ = G→ u ∈ Gsub

(1− β) |w(u)|∑
G←v∈Gsup

|w(v)| if G′ = G← u ∈ Gsup

The formulation of β (9) and α (10) remains the same.

5.3 Performance analysis of sampling
First, we evaluate the quality of the subgraphs sampled from the

EM. The quality of the sampling procedure is the single most im-
portant aspect that affects the accuracy of the computed answer set.
To obtain an accurate approximation, the sampler should often visit
graphs that have high discriminative potential. Therefore, to ana-
lyze the desired correlation between visit count and the discrimina-
tive potential of a subgraph, we plot the likelihood of a subgraph be-
ing visited given its discriminative potential. Figs.4(b)-4(c) demon-
strate the results on two of the largest datasets D1 and D2. To
set the baseline, we perform random sampling of subgraphs. As
can be seen, majority of the subgraphs visited by MINDS have
0.9 ≤ φ(G) ≤ 1. On the other hand, if we select subgraphs ran-
domly from the network, the visit count is uniformly distributed
across all values of discriminative potential. During random selec-
tion, we ensure that the subgraph sizes are drawn from the same
distribution visited by MINDS. For SVM-guided MH sampling, a
trend similar to MINDS is also observed. However, the sampler
spends more time in the range 0.7 ≤ φ(G) ≤ 0.9. This result
shows that the proposed formulations of the proposal distribution
matrix and the acceptance probability, for both SVM and NCDT,
are effective in separating out the discriminative subgraphs from
those that are non-discriminative.

The second important aspect of the sampling procedure that af-
fects the quality of the answer set is the size of the visited sub-
graphs. Recall that for subgraph G to be minimally discriminative,
none of G’s subgraphs can have a higher discriminative potential
than G. Clearly, that reduces to sampling small subgraphs but with
high discriminative potentials. Thus, to analyze how well the pro-
posed technique conforms to this desired sampling property, we an-
alyze the distribution of the subgraph sizes that are sampled. First,
we plot the distribution of the subgraph sizes against the discrimi-
native potential. As can be seen in Figs. 4(d)-4(e), the information
density in subgraphs sampled by MINDS is significant higher than
in SVM for subgraph sizes above 5. While the discriminative po-
tential of subgraphs sampled by MINDS saturates at sizes around
20, to achieve the same potential, SVM requires significantly larger
subgraphs. This result highlights the importance of capturing the
network structure through NCDTs. Since SVM is oblivious to
network connectivity, it only utilizes the information encoded in
the network nodes. On the other hand, the structural constraint in
NCDT captures the network through which the process being mod-
eled evolves, and consequently, utilizes the information encoded
in both the nodes as well as edges. The importance of capturing
the structure is further established in Fig.4(f). Fig. 4(f) analyzes

the sampled subgraph sizes and plots their distribution against visit
count. Since the information densities in SVM sampled subgraphs
are significantly lower than MINDS, much of the SVM sampling is
restricted on large subgraphs to achieve a high discriminative po-
tential. Consequently, most of the subgraphs sampled by SVM are
not minimally discriminative. We further analyze the importance
of structure in Sec. 5.4.

Next, we focus on analyzing the scalability of MINDS. First, we
evaluate the growth rate of the running time against network size
in Fig. 4(g). To construct GS-networks of varying sizes, we se-
lect subgraphs from D1. To set the baseline, we first attempt an
exhaustive subgraph exploration on a network containing only 60
nodes. However, due to the exponential subgraphs search space,
the exhaustive search failed to complete even after 12 hours, during
which it analyzed more than 100 × 106 subgraphs. The projected
time based on the number of subgraphs that were left unprocessed
was 200 hours. Given this context, even on a network contain-
ing 10, 000 nodes, MINDS is more than three orders of magnitude
faster than an exhaustive exploration on a network of size 60. Com-
pared to SVM, MINDS is more than a magnitude faster than SVM.
Fig. 4(h) analyzes scalability against the number of events in the
network. As can be seen, the running time of MINDS grows lin-
early and is more than 10 times faster than SVM. Finally, in Fig.
4(i), we evaluate the growth rate of the running time against the
discriminative potential threshold θ. As expected from the formu-
lation in Sec. 4.5, the running time is constant since other than
the randomness in the sampling procedure, θ does not change the
number of computations performed.

Fig. 4(j) analyzes the quality of the answer set with the num-
ber of iterations. To quantify quality, we verify whether the an-
swer set captures the entire spectrum of the minimally discrimina-
tive subgraphs. For that purpose, we use the metric of informa-
tion density span. First, we define information density of a graph
G = (VG, EG) as φ(G)

|VG|
. The information density span of the an-

swer set is the difference between the highest and the lowest infor-
mation densities among all graphs in the answer set. The highest
and the lowest information densities define the boundaries of the
answer set, and we consider the answer set to converge once the
density span stops expanding. As can be seen in Fig.4(j), after
100, 000 iterations, the increase in the span is minimal. We use in-
formation density instead of discriminative potential, since graphs
in the answer set should be both discriminative and compact.

Although the above experiments indicate an excellent perfor-
mance, an important question remains to be answered: How ac-
curate is our approximation? To answer this question, we select
a sub-network of D1 containing 60 nodes and try computing the
ground truth answer set. Unfortunately, due to the huge compu-
tational cost mentioned above, computing the ground truth even
on miniature networks is not feasible. Thus, we use an alterna-
tive strategy for constructing the ground truth. We synthetically
implant NCDTs on the network structure of D1 and generate a bal-
anced set of network events ensuring that the implanted NCDTs
have an accuracy of 1. While generating the network events and
the accompanying node labels, we set the node labels according to
the functions encoded by the implanted NCDTs. For nodes that are
not used by the NCDTs, we set the labels arbitrarily. Due to this
controlled construction, subgraphs spanning the implanted NCDTs
have discriminative potentials of 1.0. Now, to evaluate the accu-
racy, we execute MINDS on the constructed GS-network and verify
whether the discriminative subgraphs are extracted.

Table 2 presents the results averaged over 800 runs as the sizes of
the implanted subgraphs are varied (we explain the results for graph
N = (VN , EN ) in Sec. 5.4). In all of our experiments, MINDS
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Figure 4: (a) Degree distribution in datasets D1, D2 and D3. (b-c) Growth rate of visit count with discriminative potential. (d-e)
Growth rate of discriminative potential with subgraph size. (f) Distribution of sampled subgraph sizes. Growth rate of the running
time with (g) network size, (h) number of events, and (i) θ. (j) Quality of the answer set against number of iterations. (k) Statistical
significance of the patterns mined by MINDS. (l) Impact of structural noise on discriminative subgraphs.

is able to identify a subgraph with a discriminative potential of 1.
Interestingly, for |VI | ≥ 5, MINDS is able to identify a smaller
subgraph G and still achieve an accuracy of 1. Due to the human-
mediated construction of the implanted NCDTs, the trees are not
always optimal. MINDS is able to identify that non-optimality and
construct a more complex and compact NCDT while retaining the
same accuracy. This result establishes that MINDS is efficient in
both accurately approximating the answer set and regularizing the
network.

5.4 Impact of noise
What happens when the GS-network is noisy? How much of the

signal is lost due to inaccuracies in the network structure? In this
section, we answer these questions. There are three sources of
noise: the network structure (SN), the local expression levels at
nodes (LN), and the global network state (GN). To understand the
impact of noise, we perform permutation tests [7]. More specifi-
cally, first, we create a null hypotheses by introducing noise in the
PPI and run MINDS on the noisy network. Due to the addition of
noise, the discriminative signal in the original network is lost. This
process of introducing noise is repeated one million times to com-
pute the distribution of discriminative potentials for a subgraph of
a given size. Based on the null hypothesis, we compute the p-value
for the distribution observed in Fig.4(e). For example, in Fig.4(e),
a subgraph of size 6 has an average discriminative potential of 0.94

Table 2: Accuracy of MINDS against ground-truth answer set
and the impact of noise on network structure. I = (VI , EI)
denotes the implanted discriminative subgraph, G = (VG, EG)
and N = (VN , EN ) denote the best subgraph discovered in the
original and noisy GS-networks respectively.
|VI | |VG| |VN | |VG ∩ VI | |VN ∩ VI |

|VG∩VI |
|VG∪VI |

|VN∩VI |
|VN∪VI |

φ(G) φ(N)

3 4.93 10.02 2.59 2.31 0.64 0.28 1 1
5 5.08 8.53 3.42 3.41 0.57 0.38 1 1
8 6.52 8.02 4.61 4.61 0.48 0.42 1 1

10 8.02 8.47 5.38 5.26 0.43 0.4 1 1

and our goal is to compute the statistical significance of this event.
The higher the statistical significance, the more discriminative is
the information that is lost due to the addition of noise.

To introduce structural noise (SN), we randomly construct edges
between nodes while keeping the total number of edges in the orig-
inal network, and the local and global labels intact. For LN and
GN, we adopt similar strategies by permuting the local node labels
and global snapshot labels respectively. As in SN, we ensure that
the distributions of the noisy local and global states are the same as
in the original datasets. Fig.4(k) shows the results for all subgraph
sizes sampled by MINDS in datasetD2. As can be seen, regardless
of the noise introduction policy, the p-values for the majority of the
subgraph sizes are 0. The significance of the results decreases for
sizes above 12 in the SN and LN methods due to diminishing return
of marginal gains. More specifically, in the original dataset, the dis-
criminative potential saturates for subgraphs above a size of 8. In
the noisy dataset, even after perturbing the local states, MINDS is
able to identify discriminative subgraphs when their sizes are above
12. In other words, due to the permutation, the saturation happens
from size 12 onwards instead of 8.

To further understand the impact of noise, we analyze the infor-
mation density of the discriminative subgraphs as the amount of SN
is varied. A noise level of 20% indicates that 20% of the edges are
randomly constructed; the remaining edges are the same as in the
original network. Fig. 4(l) demonstrates the results. As expected,
with increase in noise level the structural signal is lost, and conse-
quently, the average discriminative potential for a given subgraph
size decreases. Similar results are observed for LN and GN as well.

Finally, we investigate the impact of SN on discovery of the
ground-truth answer set. As in the verification procedure earlier,
synthetic NCDTs are implanted on the GS-network. Next, SN
is introduced and we compare the discriminative subgraphs N =
(VN , EN ) identified in the noisy network with the implanted ones.
As can be seen in Table 2, although discriminative subgraphs are
still identified, they are significantly larger in size. This is in sharp
contrast to the results in original network where MINDS is able
to identify subgraphs that are actually smaller than the implanted
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Figure 5: (a-c) Growth rate of the AUC with number of trees
for the events.

ones. This is a direct consequence of the structural signal getting
lost due to shuffling of edges.

Overall, the analysis reveals the following:
1. The network structure contains discriminative information that
should be captured in the classifier for optimum performance.
2. If the network is noisy, the sizes of the discriminative subgraphs
grow to compensate for the missing information.

5.5 Analysis of prediction quality
In this section, we verify the predictive power of the mined sub-

graphs for network state classification. To evaluate prediction per-
formance, we perform 5-fold cross validation. First, we compute
the answer set on the training dataset. Then, from each of the mini-
mally discriminative subgraphs, we extract the learned NCDT. The
state predicted on the testing set by the majority of the NCDTs is
considered as the collective predicted state. The accuracy is quan-
tified by the area under the ROC curve (AUC).

To benchmark our technique, we use the state-of-the-art classi-
fier Network Guided Forests (NGF) [6] designed specifically for
PPIs, and SVM. NGF employs a greedy sampling strategy simi-
lar to the algorithm outlined in Sec. 4.2. By sampling multiple
times, NGF constructs a random forest. Furthermore, NGF incor-
porates domain specific information, such as favoring high-degree
proteins, and a second round of clustering to identify decision mod-
ules to boost the performance. In contrast, MINDS incorporates no
domain specific information. Figs. 5(a)-5(c) demonstrate the clas-
sification accuracy as the number of trees is varied for MINDS and
NGF. As can be seen, MINDS achieves a higher AUC across all
network events that is up to 65% higher than NGF and SVM.

6. RELATED WORK
While the idea of a GS-network has not been formalized before,

the problem of mining protein modules from PPIs has been studied.
Prior work in systems biology has indicated that the network struc-
ture is critical towards identifying discriminative protein modules
and have focused on network regularization [13,14] and classifica-
tion [5, 6]. However, with the exception of [6], existing techniques
assume homogeneous activity on entire protein modules and are
only capable of identifying simple logic functions such as the sum
or the multiplication of the expression levels. On the other hand, [6]
employs a greedy strategy by starting from the most informative
node in the network and then building a tree within that neighbor-
hood. As illustrated in Sec. 4.2, a greedy strategy is susceptible to
converging to a local optima. Furthermore, as opposed to solving
the problem only in the context of PPIs, our work proposes a gener-
alized algorithm for GS-networks. The features mined by MINDS
can not only be employed for classification, but also for regression,
network regularization and real-time monitoring.

As discussed earlier in Sec. 1, dynamic networks [2, 3, 18] and
mining discriminative subgraphs from graph databases [8, 10, 15–
17, 19] are the two closest lines of work from the computer sci-
ence community. However, both fail to model the problem being
proposed here. Dynamic networks do not contain global states and
each snapshot is ordered temporally. Mining discriminative sub-
graphs from graph databases, on the other hand, assumes a database
of multiple graphs and mines subgraphs that are statistically “over-
represented” in one of the classes.

7. CONCLUSION
In this paper, we formalized the concept of a global-state net-

work and designed a technique called MINDS to learn the network-
encoded evolution rules that determine the global network state.
MINDS learns local prediction models by constructing network-
constrained decision trees on minimally discriminative subgraphs.
The mined patterns regularize the network and provide the platform
for an array of higher level tasks such as classification, regression
and network monitoring. To tackle the exponential subgraph search
space, MINDS structures the space in the form of an Edit Map and
performs MH sampling on it to mine discriminative subgraphs. Ex-
tensive experiments performed on real GS-networks demonstrate
MINDS to be efficient in mining patterns that are accurate and sta-
tistically significant. MINDS is up to 4 orders of magnitudes faster
than baseline techniques.
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