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ABSTRACT

With the explosive growth of social networks, many applica-
tions are increasingly harnessing the pulse of online crowds
for a variety of tasks such as marketing, advertising, and
opinion mining. An important example is the wisdom of
crowd effect that has been well studied for such tasks when
the crowd is non-interacting. However, these studies don’t
explicitly address the network effects in social networks. A
key difference in this setting is the presence of social influ-
ences that arise from these interactions and can undermine
the wisdom of the crowd [17].

Using a natural model of opinion formation, we analyze
the effect of these interactions on an individual’s opinion
and estimate her propensity to conform. We then propose
efficient sampling algorithms incorporating these conformity
values to arrive at a debiased estimate of the wisdom of a
crowd. We analyze the trade-off between the sample size and
estimation error and validate our algorithms using both real
data obtained from online user experiments and synthetic
data.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications -
Data Mining

General Terms

Algorithms, Experimentation
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1. INTRODUCTION
The “wisdom of crowd” effect refers to the phenomenon in

which the average opinion of a diverse group of individuals
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is often closer to the truth than the opinion of any single
member of the group [10]. The wisdom of the crowd is in-
creasingly finding use in a plethora of contexts ranging from
the traditional online surveys to query predicates involving
human computation in database applications [20, 19]. In
many of these applications, the underlying assumption is
that the crowd does not interact and that individuals in the
crowd form their opinions independently. With the explo-
sive growth of social networks and online question-answer
websites 1, these platforms are becoming good sources for
harnessing the collective opinions of online users. However,
one significant difference in this new setting is the interacting
crowd wherein the user can interact with her neighborhood
to arrive at an opinion which might not necessarily reflect
her original opinion. Crowdsourcing applications that rely
on getting an unbiased opinion from the user will not work
effectively in this setting. Lorenz et. al. [17] study how so-
cial influence can undermine the wisdom of a crowd for a
variety of estimation tasks.

The presence of interactions between a group of online
users brings up two important problems that we address in
this paper.

The first is that of characterizing the effect of these in-
teractions on the dynamics of opinion formation in online
social networks or ad hoc settings such as social crowds. In
a social setting, a user can be associated with both an innate
opinion and an expressed opinion [5, 11, 3, 22] for any given
topic or question. Her innate opinion is typically formed in-
dependent of online social interactions, while her expressed
opinion could be shaped by the opinion of her online neigh-
bors. This shaping of her expressed opinion is attributed
to her propensity to conform. There is a line of impressive
work that studied the consensus and fragmentation of the
expressed opinions at steady state using different models of
opinion formation [9, 13, 3, 2]. In this study, we adopt the
model due to Friedkin and Johnsen [9], wherein the effect
of social influence is captured by a user’s propensity to con-
form to her neighborhood’s opinion. However, our focus is
fundamentally different from [9] in that we rely the underly-
ing opinion formation dynamics to extract the latent innate
opinions from the network.

The second problem is that of factoring out the effect of
social influence when estimating the collective wisdom of a
crowd. In the presence of social interactions, this wisdom
now corresponds to the average innate opinion of the crowd

1http://www.quora.com
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(as opposed to the average expressed opinion after inter-
actions). One important point to note is that the innate
opinions of people are not known in general, and the knowl-
edge of the users’ propensity to conform is either incomplete
or noisy. This brings us to the two questions that we need
to address for estimating the average innate opinions in the
social network. First, we need efficient sampling algorithms
that can obtain good estimates of the true average innate
opinion using a small number of samples. Second, and more
importantly, since we can only work with the expressed opin-
ion of the nodes and cannot directly observe their innate
opinion, our algorithms need to take care of debiasing the
expressed opinions of the nodes that they sample.

In this paper, we study the above two problems using both
an analytical opinion formation model that accounts for so-
cial influence, and a real-world experimental setup based
on online surveys among participants that can interact with
each other. While these social interactions in our experi-
ments are limited solely to a user being able to share her
opinions with a random set of other online users, we show
that even these relatively simple interactions can cause users
to move away from their original innate opinions for a given
question.

Contributions of this study

We make the following contributions in this work

• We analyze a natural model of opinion formation in the
context of extracting the wisdom of a social crowd. We
show analytically that this model converges to a unique
equilibrium under weaker assumptions (Section 3).

• We show how to debias the effect of social influence on
the overall wisdom of the crowd which we treat to be
the average innate opinion in the crowd. In particu-
lar, we design a near-optimal sampling algorithm (Sec-
tion 4) that estimates the true average innate opinion
of the crowd, and study the estimation error perfor-
mance of the algorithm, both analytically and using
experiments on both real and synthetic data.

• We study the effect of social influence in real-world ex-
periments, and empirically validate the opinion forma-
tion model. In particular, we ask users from Amazon
Mechanical Turk to complete a set of online surveys
with two different question topics, where we allow lim-
ited interactions of users with each other. We observe
the opinion formation process starting from users’ ini-
tial answers to their final expressed answers after in-
teractions, and compute their propensity to conform.
We show that this value is indeed largely specific to
a given user and does not change significantly for the
different questions that the user answers in her survey
(Section 5).

2. RELATED WORK
The findings suggesting that the collective opinion of a

group is as good as, and often better than, the answer of
an individual to a question are well established. Over a
century ago, Galton [10] observed that the median of eight
hundred participants’ responses to a weight guessing contest
was accurate within 1% of the true answer. Surowiecki [23]
surveys numerous case studies and experiments from stock
markets, political elections, and quiz shows supporting the

above statement, highlighting that the independence of indi-
viduals’ opinions is a key requirement to form a wise crowd
– an assumption undermined by the very nature of social
networks [12, 21].

Lazer and Friedman [16] take an agent-based computer
simulation approach to argue for a tradeoff between diver-
sity and information flow, showing that the connectedness
(in moderation) may improve the social wisdom and perfor-
mance in several contexts. Lorenz et al. [17] demonstrate
through human-subject lab experiments that the connected-
ness may harm more than benefit by diminishing the diver-
sity and also by false-boosting the confidence of the crowd.

Our problem somewhat relates to consensus formation [14]
in the sense that each node aggregates the opinion of her
neighborhood. One notable example in this setting is the
work by DeGroot [5] which studies how consensus is formed
and reached when individual opinions are updated using the
average of the neighborhood of a fixed network. Work of
Friedkin and Johnsen (FJ) [9], is perhaps the first study to
extend the DeGroot model [5] to include both disagreement
and consensus by associating with each node an innate opin-
ion in addition to her expressed opinion. In their model, they
propose a certain degree gi with which a user adheres to her
initial opinion and by a susceptibility of 1− gi is socially in-
fluenced by others in her network. French [8] used a similar
model to empirically estimate the susceptibility values.

Budgeted actions and inquiries over social networks have
been studied before in the context of influence maximiza-
tion [7, 15], vaccination [6] and expectation polling [4]. This
theme is increasingly motivated by the explosive growth
of social networks and the inhibitive cost of covering their
members. Our work differs from [4] in the sense that we do
not assume that the individuals may explicitly provide an
answer to an expectation poll, yet their expressed opinion
reflects what they observe in their neighborhood as well as
their innate opinion. Moreover, every individual - to express
an opinion - take all her neighbors’ expressed opinions who
take all their own neighbors expressed opinion and so on.

3. OPINION MODEL
We consider an online social network graph G = (V,E)

with nodes {v1, v2, . . . , vn} ∈ V . For ease of notation, we
will frequently interchange node vi and index i. The nodes
vi correspond to individuals, and edges E = [eij ], denote
social interactions between the individuals. For a node vi,
its set of neighbors is denoted by N(i) = {j : eij = 1},
and its degree is denoted by di = |Ni|. We denote the total
number of edges in the graph as |E|. We define D ∈ R

n×n

to be Diag(d1, d2, . . . , dn).
We wish to estimate the average wisdom or opinion held

in the social network about a particular topic or question
of interest. As mentioned earlier, due to social interactions
between the individuals in the social network, an opinion
stated by an individual might not be the same as the original
or true opinion held by the individual, and is often influenced
by the expressed opinions in the individual’s social neighbor-
hood. All that we are likely to observe in the social network
at any instant of time is therefore the stated or expressed
opinions held by individuals at the time, and not their origi-
nal innate opinions. We refer to node vi’s expressed opinion
at time t as Yi(t), and its innate opinion as Yi(0) (which is
assumed to be the same as the initial expressed opinion of
the node at time 0). We assume that an opinion is expressed
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(or encoded) by a single real quantity, hence Yi(t) ∈ R for
all i and t. For each individual vi, we define a conformity
parameter αi, 0 ≤ αi ≤ 1, which is a measure of how strong
her innate opinions are, and how likely will she be influenced
by her neighborhood opinions. An αi value close to 1 implies
that the individual is highly opinionated, and her expressed
opinion is similar to her innate opinion, while a value close to
0 implies that the individual has a very weak innate opinion
and consequently her expressed opinion is largely governed
by the opinions of neighbors around her. Thus, the value
1−αi represents agent i’s propensity to conform. We define
αD ∈ R

n×n to be Diag(α1, α2, . . . , αn).
We analyze a natural model for opinion formation due to

Friedkin and Johnsen [9] (under weaker assumptions than
in [9]) and show existence and convergence to a unique equi-
librium.

In this model, individuals update their expressed opin-
ion in discrete time steps by taking a convex combination
of their innate opinion and the expressed opinions of their
neighbors. As mentioned earlier, the weights in the convex
combination depends on a user’s α value. For simplicity,
we assume that the individuals don’t distinguish between
their neighbors and take their opinions equally important.
Equation 1 captures the above model for all individuals i.

Yi(t+ 1) = αiYi(0) + (1− αi)

∑

j∈Ni
Yj(t)

di
(1)

We show that the above opinion formation model defines
a unique equilibrium as long as all α’s are non zero: that is,
individuals hold an innate opinion that has some impact on
what they express.

Lemma 1 The above model has a unique equilibrium if αi >
0 for all i.

Proof. Consider any equilibrium Y∗ = {Y ∗
1 , . . . , Y ∗

n }T for
Equation 1. Then, for i = 1, 2, . . . , n, Y∗ satisfies

Y ∗
i = αiYi(0) + (1− αi)

∑

j∈Ni
Y ∗
j

di
.

Or,

Y
∗ = αDY

0 +MY
∗,

where Y0 = {Y1(0), Y2(0), . . . , Yn(0)}
T , and

M = [mij ] =

{

0 if i = j
1−αi

di
eij otherwise

Thus, we have

Y
∗ = (I −M)−1αDY

0, (2)

where I is the n× n identity matrix.
We show that the matrix I −M ∈ R

n×n is non-singular.
For any row i of I−M , the sum of absolute values of its non
diagonal elements is

∑

j 6=i
1−αi

di
eij = 1−αi, and its diagonal

element is 1. Thus, using the Gersgorin Disc Theorem, every
eigenvalue λ of I−M lies within one of the discs {z : |z−1| ≤
1 − αi} for i = 1, 2, . . . n. Since αi > 0, the eigenvalues of
I −M cannot include 0. Thus, I −M is invertible, and the
equilibrium is unique.

Hence Y∗ = (I−M)−1αDY0 is the unique equilibrium of
the opinion formation model defined in Equation 1. We now

prove that after sufficient iterations, the model will indeed
converge to this equilibrium.

Lemma 2 If αi > 0 for all i, then the above opinion for-
mation model converges to its unique equilibrium Y∗.

Proof. Note that Yk+1, the social opinion state at time
k + 1 can be formulated by the following system:

Yk+1 = αDY
0 +MYk

where M is the iteration Matrix. Define ǫk so that Yk =
Y∗ + ǫk. By definition ǫk+1 = Mǫk. Again we use the
property that the sum of all the entries of each row in M
is a non-negative quantity smaller than one to show that
the error term goes to zero as k grows. Let ǫmax

k be the
largest coordinate in ǫk. Hence, it is sufficient to show that
ǫmax
k+1 < ǫmax

k . Note that

ǫmax
k+1 =

1− αi

di

∑

j

ǫ
(j)
k ≤

1− αi

di

∑

j

ǫmax
k

≤ (1− αi)ǫ
max
k < ǫmax

k

for some node i as long as αj > 0 for all j.

4. ESTIMATING THE AVERAGE INNATE

OPINION
Our goal is to estimate the average innate opinions in the

social network (denoted by Ȳ 0 =
∑n

i=0 Yi(0)/n), by factor-
ing out the social influences in the expressed opinions of the
social network users. There are several reasons why this esti-
mation of the average innate opinion of the social network is
more important than the average expressed opinions. First,
for many opinion polls and surveys, pollsters care about the
true opinions held by an individual which might be quite
different from their expressed opinions. Second, as shown in
[17], the wisdom-of-crowd effect can break down when using
individual opinions that are not independent and are influ-
enced by social interactions. Hence it is important to use
the original innate opinions of individuals when estimating
answers using the wisdom-of-crowds phenomenon.

As mentioned earlier, there are two problems that we need
to tackle when estimating the average innate opinions in
the social network. Firstly, we need efficient sampling algo-
rithms that can obtain good estimates of the true average
innate opinion using a small number of samples. More im-
portantly, since we can only work with the expressed opin-
ions and cannot directly observe the innate opinions of in-
dividuals, we need to take care of debiasing the expressed
opinions of the sampled nodes.

4.1 Sampling Algorithms
We now describe three sampling algorithms that might be

used to estimate the average innate opinion in the network.
The simplest and perhaps the most prevalent sampling

method is uniform sampling, in which a sampling budget is
decided and each node is sampled with a uniform probability
1
n

(with replacement) until the budget is exhausted. This
naive algorithm is oblivious of any differences between innate
and expressed opinions in the social network.

With the goal of eliciting the innate opinion and assuming
that we have access to the α values, one may prefer to sample
the nodes with large values of α as they are expected to
retain their innate opinion in their expressed opinion to a

502



Algorithm 1 UniformSampling

1: Choose a random sample S ⊆ V of size r with replace-
ment by sampling each node i with probability pi

2: Output Ŷ 0 = 1
r

∑

i∈S Yi(t) .

large extent. We call this conformity sampling. and formally
define it as follows:

Algorithm 2 ConformitySampling

1: Choose a random sample S ⊆ V of size r with re-
placement by sampling each node i with probability
pi =

αi∑
n
j=1 αj

2: Output Ŷ 0 = 1
nr

∑

i∈S
1
pi
Yi(t) .

We use both sampling criteria as baselines and propose a
new algorithm that outperforms the baselines both theoret-
ically and empirically.

4.1.1 Influence Sampling

Our approach is reminiscent of the social sampling ([4])
algorithms where, instead of only using the opinions of the
sampled nodes to estimate the true average opinion, the
algorithm uses the opinions of the neighborhood of each
sampled node via expectation polling. This might how-
ever arguably be a strong assumption, since individuals are
expected to accurately report their neighborhood’s average
opinion. Furthermore, the authors do not distinguish be-
tween innate and expressed opinions in the social network.
As described in [4], the authors analyze sampling algorithms
that sample each node vi with probability proportional to its
degree di to obtain a sample set S of size r. Assuming that
the opinion of each node vi is Yi and the goal is to estimate
the average Ȳ =

∑n
i=0 Yi/n, the authors then propose us-

ing an estimator Ŷ = 1
nr

∑

i∈S
2|E|
di

∑

j∈N(i)

Yj

dj
and obtain

a probabilistic bound for the estimation error |Ŷ − Ȳ |, given
a sample size r.

In our case, the goal is to estimate the average innate
opinion Ȳ 0 =

∑n
i=0 Yi(0)/n by sampling a set S; however

we do not have access to the Yi(0) of the sampled set S or its
neighbors, and can only observe the Yi(t) values instead, at
time t. If we knew the Yi(0) values, the problem would de-
generate to simple uniform sampling of the nodes, for which
the following result holds.

Fact 3 If we choose r = 1
ǫ2

log(1/δ) samples, then with
probability 1 − δ, a uniform sampling strategy will give an

estimate Ŷ 0, such that |Ŷ 0 − Ȳ 0| ≤ ǫ

In our case however, since we have estimates for the αi

values at all nodes in the graph, we would like to incorpo-
rate these to guide our sampling strategy and our choice of

estimator function Ŷ 0. Note that since solving Equation 2
to obtain the Y 0

i values requires explicit knowledge of all the
Y ∗
i in the network, we cannot directly use the equation to

compute the Yi(0) values from the observed Yi(t).
Our approach therefore is to use the Yi(t) values directly

in our estimator function Ŷ 0, and to construct Ŷ 0 such that
the Yi(t) of the sampled nodes and its neighbors lead to good
approximations for the corresponding Yi(0) values. We will

then carefully choose our sampling strategy in a way that
tends to minimize these approximation errors.

In order to derive an “optimal” sampling algorithm we
rewind the opinion formation process as shown in the fol-
lowing lemma. The following lemma shows how to get the
average innate opinion from the expressed opinions

Lemma 4 Ȳ 0 =
∑n

i=0 ciY
∗
i where

ci =
1−

∑

j∈N(i)(1− αj)/dj

nαi

Proof. Using Equation 2, we have Y0 = α−1
D (I −M)Y∗.

Thus

Ȳ 0 =

∑n
i=0 Y

0
i

n
=

1

n
1Y

0 =
1

n
α−1
D (I −M)Y∗

Expanding the right hand side of the last step into a sum
form completes the proof

Note that the ci above might be negative. Guided by the
above lemma, we now define the sampling probabilities pi of
our InfluenceSampling algorithm as

pi =
|ci|

∑n
j=1 |cj |

=
|
1−

∑
j∈N(i)(1−αj )/dj

nαi
|

∑n
j=1 |

1−
∑

k∈N(j)(1−αk)/dk

nαj
|

Algorithm 3 InfluenceSampling

1: Choose a random sample S ⊆ V of size r with replace-
ment by sampling each node i with probability pi pro-

portional to |ci| = |
1−

∑
j∈N(i)(1−αj )/dj

nαi
|

2: Output Ŷ 0 = (
∑n

j=1 |cj |) ·
1
r

∑

k∈S Yk(t) · sgn(ck), where

sgn(ck) = 1 if ci ≥ 0 and −1 otherwise.

We now show that estimator Ŷ 0 of the InfluenceSam-

pling algorithm is an unbiased estimator of Ȳ 0

Lemma 5 The InfluenceSampling estimator Ŷ 0 is an
unbiased estimator of Ȳ 0

Proof. Since we sample each node with probability pro-

portional to |ci|, E[Ŷ 0] = (
∑n

j=1 |cj |) ·
∑n

i=1 piYi(t) sgn(ci)

=
∑n

i=1 |ci|Yi(t) sgn(ci) =
∑n

i=1 ciYi(t) = Ȳ 0

Theorem 6 Using Θ( 1
Hαǫ2

log(1/δ)) samples (where Hα =
n∑

n
i=1

1/αi
denotes the harmonic mean of the αi), the es-

timator Ŷ 0 output by the InfluenceSampling algorithm

satisfies |Ŷ 0 − Ȳ 0| < ǫ with probability 1 − δ , when the ci
are non-negative2. Furthermore, this number of samples is
optimal up to constant factors.

Proof. Note that we sample each node with probability
proportional to |ci|. Let Dc denote this sampling distri-
bution. The number of samples required follows from the

Hoeffding inequality [18]. This is because Ŷ 0 is the mean of
i.i.d. random variables of the form (

∑n
j=1 |cj |) ·Yi(t) sgn(ci)

where i ∼ Dc. Each of these is a bounded random vari-
able in [−l, l] where l =

∑n
i=1 |ci|. Hence, using the Ho-

effding inequality and Lemma 5, Prob(|Ŷ 0 − E[Ŷ 0]| > ǫ) =

2we address the case when the ci are negative in Remark 7.
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Prob(|Ŷ 0 − Ȳ 0| > ǫ) < e−kǫ2/2l2 , where k is the number of

samples. Thus, 2 l2

ǫ2
log(1/δ) is sufficient (and necessary [18])

to get an additive ǫ approximation estimate with confidence
1− δ. For non-negative ci, l ≤

∑n
i=1

1
nαi

= 1
Hα

. The bound

follows.

Note that the number of samples in the above theorem
matches (up to a constant factor of 1

Hα
) the bound that

we get from Fact 3. Thus, InfluenceSampling performs
almost as well as this optimal ideal uniform sampling algo-
rithm, even though the latter has a huge advantage in terms
of assuming accessing to the innate opinion. This is due
to the fact that InfluenceSampling can take advantage
of implicitly accessing neighbors’ innate opinions encoded
in the node’s expressed opinion, as long as it is debiased
properly. This shows the optimality of our algorithm.

Remark 7 If the ci values are negative, then the number
of samples needed in Theorem 6 could be larger (since l is

then bounded by
∑n

i=1
di
nαi

instead of
∑n

i=1
1

nαi
). Note that

nodes with negative ci correspond to subgraphs having large
star topologies with node i in the center. We observe that in
our experiments (and social networks in general) the number
of such nodes is never too large. In fact, in our experiments,
the ci values that we empirically calculate are always posi-
tive.

A insightful special case is when all degrees are equal to

d. Note that in this case ci =
∑

j∈N(i) αj

ndαi
. This means

that we give advantage to weakly opinionated nodes that are
surrounded by strongly opinionated ones as they aggregate
their innate opinions efficiently.

Remark 8 Note that in practice we may not have the exact
values of αi, but only estimates that are appromations of the
true value. If these estimates are within an ǫ additive factor
of the true values then our estimator for the mean Y 0

i will
also have a bias within at most ǫ additive factor of the true
value.

Also note that if we can compute ci for a small fraction of
the nodes, that can be used to approximately estimate

∑

i ci
that is needed in InfluenceSampling.

A word about the assumption in our sampling algorithm
on knowing the estimates of α values of users: it is not
entirely unrealistic to get reasonable estimates for a user’s
propensity to conform in real social networks. For example,
on the Twitter Social Network, one might use a function
of a user’s tweet and retweet frequency as a proxy for her
α values. Similarly, on online sites that support discussion
threads [1], a user’s participation history could be used to
obtain an approximate estimate of her α values. We leave
the characterization of algorithms that mine users’ social
posts to obtain an estimate of her α value for future research.
Furthermore, as the above remark shows, our techniques
gracefully handle scenarios when these α values are either
missing or noisy for some users.

5. EXPERIMENTS
We now validate our opinion formation model and our

sampling algorithms using synthetic and real datasets. We
first describe our datasets.

(a) Screen 1 of the DotsRegular survey

(b) Screen 2 of the DotsRegular survey

Figure 1: Screenshots of the DotsRegular survey

5.1 Datasets
Our first set of experiments consisted of an interacting net-

work of online users built using Amazon Mechanical Turk
(mturk) and a personal website used to host the experi-
ments. Subjects were recruited from Amazon Mechanical
Turk and asked to take part in three online surveys hosted
on the external website. Figure 1 illustrates the one of the
online experiments. Figure 1(a) shows the first set of ques-
tions asked to users while the subsequent screen in the exper-
iment showing the ”interactions” is captured in Figure 1(b).
We label these surveys DotsRegular, DotsRandom and
TabletsRegular. The aim was to ask subjects’ opinions
on questions in the surveys both before and after interac-
tions with other subjects, and analyze their innate (initial)
and expressed (final) answers. To show that our opinion
models are not specific to a particular type of questions or
topics, we ran our experiments using two different topics
for our questions - the first one dealt with questions about
properties of an image, and the second one dealt with the
opinions about a class of consumer products. We detail the
surveys next.
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5.1.1 User Surveys

The DotsRegular survey consisted of three questions
about three images containing a set of dots. The first im-
age consisted of 1000 randomly distributed black dots in
a circle. The second image consisted of 3000 randomly dis-
tributed black dots in a circle, and the third image consisted
of a mixture of 900 red dots and 1800 blue dots randomly
distributed in a circle. There were three questions in the
surveys. The first two questions were about guessing the
number of dots in the first and second image respectively.
The third question was about guessing the percentage of
red dots in the third image. In all the images, the dots were
finely spaced enough to discourage explicit counting of dots
by the participants to estimate the answers.

The survey participants were asked to log onto the sur-
vey site and complete the survey only during a pre-specified
30-minute time window. This ensured roughly simultaneous
participation by all the subjects in the online survey. In this
time duration, the subjects were first asked to provide their
answers to the three questions (which was treated as their
innate opinions about the questions). Then, for each partic-
ipant we randomly assigned a set of 5 other participants as
her “neighbors”, and showed her their current answers. We
then gave her an opportunity to update her current answers.
This process was repeated for each survey participant for up
to 3 iterations (the answers of the participants changed very
little after 3 iterations, hence we chose to report the answers
provided by the users after the third iteration.) Thus we
created a social graph among the survey participants that is
5-regular, within which each participant interacts with her
neighbors during the process of converging to her final an-
swer. Figure 2(a) illustrates the resulting graph. It has 125
nodes corresponding to the number of participants in the
experiment and 625 edges.

The DotsRandom survey was identical to the DotsReg-

ular survey, except that instead of fixing 5-neighbors for
each participant, we randomly selected a varying number of
neighbors (from 1 through 15) for a given participant. This
experiment elicited response from 63 participants resulting
in graph with 63 nodes and 584 edges. We note that in both
the surveys, the original answers provided by the partici-
pants (before any interactions with other participants) were
treated as their innate opinions and the final answers were
treated as their expressed opinions.

The final survey, TabletsRegular, had a setup simi-
lar to DotsRegular, except that we asked a different set
of questions related to two recently introduced tablet com-
puter products (A and B) in the market. The first question
asked about the opinion of the participant regarding the
potential success of a tablet computer in the market. The
participant was asked to choose between 5 options: Strongly
Positive, Positive, Neutral, Negative and Strongly Negative.
The question also asked the participant to provide a sentence
justifying their choice. Thus, these justifications could in-
clude positive, negative, and neutral comments about the
product corresponding to the star rating provided by the
user. Another unrelated question asked participants about
what they thought would be the total sales volume of an-
other tablet in the month of January 2013. These questions
are markedly different from the dots surveys in the sense
that they are more subjective. In fact, as part of the survey
associated with the first question, we showed a user with the
justifications written by her randomly selected set of neigh-

bors as a proxy for the influence she might experience as
part of her opinion forming process. As before, the original
answers for the first and second provided by the partici-
pants (before any interactions with other participants) were
treated as their innate opinions and the final answers were
treated as their expressed opinions. Again, the total number
of participants for this survey was 125 users resulting in a
graph with 125 nodes and 625 edges.

5.1.2 Synthetic Data

The second set of experiments were performed using syn-
thetic data. We generated random graphs with 200000 nodes
and two different types of degree distributions: regular graphs
with degree 20, and power-law graphs degree of each node
was obtained from a Zipf distribution truncated to lie be-
tween 20 and 200. For each graph, we generated the α pa-
rameters for each node from a uniform distribution in [0, 1].
We also generated an initial (innate) opinion for each node
from a Gaussian distribution with mean 50 and varying val-
ues of variance ranging between 0 and 1000. We then ran
our opinion formation dynamics on the graph until the ex-
pressed opinions converged to the equilibrium value and used
the starting (innate) values and the converged values as the
expressed opinions in our analysis of the model and the sam-
pling algorithms.

5.2 Results
For the social graphs corresponding to both the survey

and the synthetic datasets, we then ran the various sampling
algorithms using different sample sizes r, read the expressed
opinions of the sampled nodes, and output an estimate of
the average innate opinion in the graph as a function of these
expressed opinions. We compute the estimation error to be
the absolute difference between this estimate and the true
average innate opinion. We repeat the sampling process over
100 runs and report both the average mean and variance of
the estimation error over all the runs.

5.2.1 Validating the Opinion Formation Model

We began by validating the opinion formation model from
Section 3. Note that the α parameter is central to the model
as it captures the intrinsic behavior of a user when it comes
to interacting with her neighborhood in the process of form-
ing an opinion. Specifically, we set out to measure how in-
nate is this parameter to the user, i.e., how consistent was
the user in her behavior for different questions. This consis-
tency would reflect in a rather stable value of the α parame-
ter. To study this, we use the opinion model equation (1 and
the initial and final answers for each of the survey questions,
to obtain an estimate of the α parameter for each partici-
pant: we denote them by α1, α2 and α3. We then measure
how similar these three estimated α values are for each par-
ticipant. For every (αi,αj) pair for a participant, we plot
the relative difference in values (to handle to case where one

of the αi values might be 0, we use 1− min(αi,αj)

max(α1,αj)
to measure

the relative difference) Figure 3(a) plots the relative pairwise
difference in the computed α values from the three ques-
tions in the DotsRegular Survey (the plots corresponding
to the DotsRandom and TabletsRegular experiments
were similar). As the figure illustrates, the relative differ-
ence in the computed α values are indeed small (less than
0.2) for almost 60% of the participants, which shows that
the α values indeed are largely independent of the questions
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(a) DotsRegular Survey (b) TabletsRegular Survey

Figure 2: Social graphs resulting from the surveys

(a) Relative difference
in α estimates per user

(b) Histogram of α val-
ues

Figure 3: α values for DotsRegular

(a) Relative difference
in α estimates per user

(b) Histogram of α val-
ues

Figure 4: α values for TabletsRegular

asked. In particular, the average relative difference over all
users and all (αi,αj) pairs was observed to be 28%.

Figure 3(b) plots the distribution of α1 values among the
survey population of DotsRegular. It is interesting to
note that while a majority of the users have a high α value,
there is a non-trivial fraction of users that value the opinion
of their neighbors or have a higher propensity to conform.

Figures 4(a) and 4(b) plots the corresponding relative
pairwise difference in computed α values and the distribu-
tion of the α1 values for the TabletsRegular Survey. No-
tice that the distribution is very similar to the DotsReg-

ular case, which again seems to indicate that the α values
are largely independent of the questions for a given topic.

5.2.2 Sampling Innate Opinions

Next, we move to the question of estimating the average
innate opinion of the survey population (i.e., the wisdom of
the social crowd) by using only a small sample of the ex-
pressed opinions. Using the α parameter value associated
with the first question of each of the three surveys (Dot-

sRegular, DotsRandom, and TabletsRegular) we run
the three sampling algorithms described in Section 4, viz.,
InfluenceSampling, UniformSampling and Conformi-

tySampling, and compare the estimates (Ŷ 0) output by
each of the algorithms against the true average innate opin-
ion (Ȳ 0). For a given sample size, we run each sampling
algorithms over 100 runs and plot the mean and variance of

the estimation error |Ŷ 0 − Ȳ 0|.
Figure 5 plots the average mean and variance of the es-

timation errors for each sampling algorithm as a function
of the samples sizes for the DotsRegular, DotsRandom

and TabletsRegular experiments. As seen in the figure,
InfluenceSampling outperforms both UniformSampling

and ConformitySampling in all three surveys in terms of
the mean estimation error, by margins ranging from 10% to
almost 30%. This validates our theoretical results showing
optimality of the InfluenceSampling algorithm. More in-
tuitively, our algorithm outputs a more accurate estimate by
picking nodes that implicitly aggregate their innate neigh-
borhood opinion.

Again, in terms of the standard deviation of the estima-
tion error, InfluenceSampling achieves significantly lower
standard deviations than eitherUniformSampling andCon-

formitySampling. Furthermore, the corresponding curves
for InfluenceSampling are much better behaved (in terms
of the expected monotonic decay as the number of sam-
ples increase) compared to the other sampling algorithms.
The standard deviation plots for UniformSampling and
ConformitySampling algorithms does not decay smoothly
with the number of samples, and the reason for this was not
intuitively obvious to us.

5.2.3 Moving to Larger Graphs

For the synthetic datasets, our main focus was to evalu-
ate the performance of the sampling algorithms at scale. As
mentioned earlier, we use a uniform distribution for the α
values, and a Gaussian distribution (with variance ranging
from 0 to 1000) for the innate opinions at each node. We con-
duct our experiments for both regular graphs and power-law
graphs. For each type of graph, we report our estimation er-
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(a) Mean Error for DotsRegular

Survey
(b) Mean Error for DotsRandom

Survey
(c) Mean Error for TabletsRegu-

lar Survey

(d) Error Std deviation for Dot-

sRegular Survey
(e) Error Std deviation for Dot-

sRandom Survey
(f) Error Std deviation for Tablet-

sRegular Survey

Figure 5: Mean Errors and Standard Deviation for the Surveys

ror results both for a high-variance case and a lower-variance
case for the innate opinion distribution. We compare the es-

timates (Ŷ 0) output by each of the algorithms against the
true average innate opinion (Ȳ 0). For a given sample size,
we run each sampling algorithms 100 times and report the

mean and variance of the estimation error |Ŷ 0 − Ȳ 0|.
Figure 6 plots the mean and variance of the estimation er-

rors for each sampling algorithm as a function of the samples
sizes for regular graphs and for power-law graphs.

Again, as with the survey experiments, InfluenceSam-
pling outperforms both UniformSampling and Confor-

mitySampling in all three surveys in terms of the mean
estimation error, by as much as 200% for 10 samples, and
around 30% for 100 or more samples. As Figure 6 illus-
trates, the gap in performance of InfluenceSampling is
less pronounced as the number of samples increases.

In terms of the standard deviation of the estimation error
too, InfluenceSampling achieves significantly lower stan-
dard deviations than either UniformSampling and Con-

formitySampling for a small number of samples, though
this gap goes down as the number of samples increases.

Finally, we studied the convergence of the opinion forma-
tion dynamics of Equation 1 in terms of the average change
in the expressed opinion of nodes over two successive iter-
ations. As seen from Figure 7, expressed opinions even for
regular graphs of size 200000 converges to the equilibrium
values in as little as 3 steps something which was also ob-
served in our real-world survey experiments.

As might be expected, the improved performance of In-
fluence Sampling over the other sampling algorithms is even
more significant in these large scale synthetic graphs, than
for the small-scale survey experiments on Mechanical Turk.

6. CONCLUSIONS
In this paper, we considered the problem of analyzing and

debiasing the “wisdom of crowd” phenomenon in the pres-
ence of online social interactions. We adopted a natural
opinion formation model that depends on users’ propensity

Figure 7: Convergence of the opinion formation pro-

cess for synthetic regular graphs

to conform (as characterized by their α parameters), and de-
signed a provably-efficient sampling algorithm (Influence-
Sampling) that uses these α values to estimate the average
innate opinion of the social crowd with a small number of
samples. We validated the opinion formation model on User
Opinion Surveys, and evaluated our sampling algorithm on
both real and synthetic data.

One direction of future work is to validate the model and
sampling techniques on large social networks under more
richer social interactions.
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