
Trace Complexity of Network Inference

Bruno Abrahao
∗

Department of Computer Science
Cornell University

Ithaca, NY, 14850, USA
abrahao@cs.cornell.edu

Flavio Chierichetti
†

Dipartimento di Informatica
Sapienza University

Rome, Italy
flavio@di.uniroma1.it

Robert Kleinberg
‡

Department of Computer Science
Cornell University

Ithaca, NY, 14850, USA
rdk@cs.cornell.edu

Alessandro Panconesi
†

Dipartimento di Informatica
Sapienza University

Rome, Italy
ale@di.uniroma1.it

ABSTRACT

The network inference problem consists of reconstructing the edge
set of a network given traces representing the chronology of infec-
tion times as epidemics spread through the network. This prob-
lem is a paradigmatic representative of prediction tasks in machine
learning that require deducing a latent structure from observed pat-
terns of activity in a network, which often require an unrealistically
large number of resources (e.g., amount of available data, or com-
putational time). A fundamental question is to understand which
properties we can predict with a reasonable degree of accuracy with
the available resources, and which we cannot. We define the trace

complexity as the number of distinct traces required to achieve high
fidelity in reconstructing the topology of the unobserved network
or, more generally, some of its properties. We give algorithms
that are competitive with, while being simpler and more efficient
than, existing network inference approaches. Moreover, we prove
that our algorithms are nearly optimal, by proving an information-
theoretic lower bound on the number of traces that an optimal infer-
ence algorithm requires for performing this task in the general case.
Given these strong lower bounds, we turn our attention to special
cases, such as trees and bounded-degree graphs, and to property
recovery tasks, such as reconstructing the degree distribution with-
out inferring the network. We show that these problems require a
much smaller (and more realistic) number of traces, making them
potentially solvable in practice.

∗Supported by AFOSR grant FA9550-09-1-0100, by a Cornell Uni-
versity Graduate School Travel Fellowship, and by a Google Award
granted to Alessandro Panconesi.
†Supported by two Google Faculty Research Awards and by the
MULTIPLEX project (EU-FET-317532).
‡Supported by AFOSR grant FA9550-09-1-0100.

Categories and Subject Descriptors

I.5.1 [Computing Methodology]: Pattern Recognition — Design

Methodology

Keywords

Network inference, Independent Cascade Model, Network Epidemics,
Sampling Complexity

1. INTRODUCTION
Many technological, social, and biological phenomena are natu-

rally modeled as the propagation of a contagion through a network.
For instance, in the blogosphere, “memes” spread through an un-
derlying social network of bloggers [1], and, in biology, a virus
spreads over a population through a network of contacts [2]. In
many such cases, an observer may not directly probe the under-
lying network structure, but may have access to the sequence of
times at which the nodes are infected. Given one or more such
records, or traces, and a probabilistic model of the epidemic pro-
cess, we can hope to deduce the underlying graph structure or at
least estimate some of its properties. This is the network infer-

ence problem, which researchers have studied extensively in recent
years [1, 7, 12, 13, 20].

In this paper we focus on the number of traces that network infer-
ence tasks require, which we define as the trace complexity of the
problem. Our work provides inference algorithms with rigorous
upper bounds on their trace complexity, along with information-
theoretic lower bounds. We consider network inference tasks under
a diffusion model presented in [13], whose suitability for represent-
ing real-world cascading phenomena in networks is supported by
empirical evidence. In short, the model consists of a random cas-
cade process that starts at a single node of a network, and each edge
{u, v} independently propagates the epidemic, once u is infected,
with probability p after a random incubation time.

Overview of results. In the first part of this paper, we focus
on determining the number of traces that are necessary and/or suf-
ficient to perfectly recover the edge set of the whole graph with
high probability. We present algorithms and (almost) matching
lower bounds for exact inference by showing that in the worst case,
Ω(n∆1−ǫ) traces are necessary and O(n∆ log n) traces are suffi-
cient, where n is the number of nodes in the network and ∆ is its
maximum degree. In the second part, we consider a natural line
of investigation, given the preceding strong lower bounds, where

491

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD’13, August 11–14, 2013, Chicago, Illinois, USA.
Copyright 2013 ACM 978-1-4503-2174-7/13/08 ...$15.00.

we ask whether exact inference is possible using a smaller num-
ber of traces for special classes of networks that frequently arise in
the analysis of social and information networks. Accordingly, we
present improved algorithms and trace complexity bounds for two
such cases. We give a very simple and natural algorithm for exact
inferences of trees that uses only O(log n) traces.1 To further pur-
sue this point, we give an algorithm that exactly reconstructs graphs
of degree bounded by ∆ using only O(poly(∆) log n) traces, un-
der the assumption that epidemics always spread throughout the
whole graph. Finally, given that recovering the topology of a hid-
den network in the worst case requires an impractical number of
traces, a natural question is whether some non-trivial property of
the network can be accurately determined using a moderate num-
ber of traces. Accordingly, we present a highly efficient algorithm
that, using vastly fewer traces than are necessary for reconstruct-
ing the entire edge set, reconstructs the degree distribution of the
network with high fidelity by using O(n) traces.

The information contained in a trace. Our asymptotic results
also provide some insight into the usefulness of information con-
tained in a trace. Notice that the first two nodes of a trace unam-
biguously reveal one edge — the one that connects them. As we
keep scanning a trace the signal becomes more and more blurred:
the third node could be a neighbor of the first or of the second node,
or both. The fourth node could be the neighbor of any nonempty
subset of the first three nodes, and so on. The main technical chal-
lenge in our context is whether we can extract any useful informa-
tion from the tail of a trace, i.e., the suffix consisting of all nodes
from the second to the last. As it turns out, our lower bounds show
that, for perfect inference on general connected graphs, the answer
is “no”: we show that the First-Edge algorithm, which just returns
the edges corresponding to the first two nodes in each trace and
ignores the rest, is essentially optimal. This limitation precludes
optimal algorithms with practical trace complexity2. This result
motivates further exploration of trace complexity for special-case
graphs. Accordingly, for trees and bounded degree graphs, we il-
lustrate how the tail of traces can be extremely useful for network
inference tasks.

Our aforementioned algorithms for special-case graphs make use
of maximum likelihood estimation (MLE) but in different ways.
Previous approaches, with which we compare our results, have also
employed MLE for network inference. For instance, NETINF [13]
is an algorithm that attempts to reconstruct the network from a set
of independent traces by exploring a submodular property of its
MLE formulation. Another example, and closest to ours, is the
work by Netrapalli and Sangahvi [20], whose results include quali-
tatively similar bounds on trace complexity in a quite different epi-
demic model.

Turning our attention back to our algorithms, our tree reconstruc-
tion algorithm performs global likelihood maximization over the
entire graph, like the NETINF algorithm [13], whereas our bounded-
degree reconstruction algorithm, like the algorithm in [20], per-
forms MLE at each individual vertex. Our algorithms and analysis
techniques, however, differ markedly from those of [13] and [20],
and may be of independent interest.

In the literature on this rapidly expanding topic, researchers have
validated their findings using small or stylized graphs and a rel-
atively large number of traces. In this work, we aim to provide,

1All inference results in this paper hold with high probability.
2On the other hand, the use of short traces may not be only a the-
oretical limitation, given the real world traces that we observe in
modern social networks. For example, Bakshy et al. [3] report that
most cascades in Twitter (twitter.com) are short, involving one
or two hops.

in the same spirit as [20], a formal and rigorous understanding of
the potentialities and limitations of algorithms that aim to solve the
network inference problem.

This paper is organized as follows. Section 2 presents an overview
of previous approaches to network learning. Section 3 presents the
cascade model we consider throughout the paper. Section 4 deals
with the head of the trace: it presents the First-Edge algorithm for
network inference, shows that it is essentially optimal in the worst
case, and shows how the first edges’ timestamps can be used to
guess the degree distribution of the network. Section 5, instead,
deals with the tail of the trace: it presents efficient algorithms for
perfect reconstruction of the topology of trees and of bounded de-
gree networks. Section 6 presents an experimental analysis that
compares ours and existing results through the lens of trace com-
plexity. Finally, Section 7 offers our conclusions.

2. RELATED WORK
Network inference has been a highly active area of investigation

in data mining and machine learning [1, 7, 12, 13, 20]. It is usually
assumed that an event initially activates one or more nodes in a net-
work, triggering a cascading process, e.g., bloggers acquire a piece
of information that interests other bloggers [15], a group of people
are the first infected by a contagious virus [2], or a small group
of consumers are the early adopters of a new piece of technology
that subsequently becomes popular [22]. In general, the process
spreads like an epidemic over a network (i.e., the network formed
by blog readers, the friendship network, the coworkers network).
Researchers derive observations from each cascade in the form of
traces — the identities of the people that are activated in the pro-
cess and the timestamps of their activation. However, while we do
see traces, we do not directly observe the network over which the
cascade spreads. The network inference problem consists of recov-
ering the underlying network using the epidemic data.

In this paper we study the cascade model that Gomez-Rodrigues
et al. [13] introduced, which consists of a variation of the indepen-
dent cascade model [16]. Gomez-Rodrigues et al. propose NET-
INF, a maximum likelihood algorithm, for network reconstruction.
Their method is evaluated under the exponential and power-law dis-
tributed incubation times. In our work, we restrict our analysis to
the case where the incubation times are exponentially distributed as
this makes for a rich arena of study.

Gomez-Rodrigues et al. have further generalized the model to in-
clude different transmission rates for different edges and a broader
collection of waiting times distributions [12, 19]. Later on, Du et
al. [7] proposed a kernel-based method that is able to recover the
network without prior assumptions on the waiting time distribu-
tions. These methods have significantly higher computational costs
than NETINF, and, therefore, than ours. Nevertheless, experiments
on real and synthetic data show a marked improvement in accu-
racy, in addition to gains in flexibility. Using a more combinatorial
approach, Gripon and Rabbat [14] consider the problem of recon-
structing a graph from traces defined as sets of unordered nodes, in
which the nodes that appear in the same trace are connected by a
path containing exactly the nodes in the trace. In this work, traces
of size three are considered, and the authors identify necessary and
sufficient conditions to reconstruct graphs in this setting.

The performance of network inference algorithms is dependent
on the amount of information available for the reconstruction, i.e.,
the number and length of traces. The dependency on the number
of traces have been illustrated in [7], [12], and [13] by plotting
the performance of the algorithms against the number of available
traces. Nevertheless, we find little research on a rigorous analysis

492

twitter.com

of this dependency, with the exception of one paper [20] that we
now discuss.

Similarly to our work, Netrapalli and Sangahvi [20] present quan-
titative bounds on trace complexity in a quite different epidemic
model. The model studied in [20] is another variation of the in-
dependent cascade model. It differs from the model we study in a
number of key aspects, which make that model a simplification of
the model we consider here. For instance, (i) [20] assumes a cas-
cading process over discrete time steps, while we assume continu-
ous time (which has been shown to be a realistic model of several
real-world processes [13]), (ii) the complexity analyzed in [20] ap-
plies to a model where nodes are active for a single time step —
once a node is infected, it has a single time step to infect its neigh-
bors, after which it becomes permanently inactive. The model we
consider does not bound the time that a node can wait before infect-
ing a neighbor. Finally, (iii) [20] rely crucially on the “correlation
decay” assumption, which implies – for instance — that each node
can be infected during the course of the epidemics by less than 1
neighbor in expectation. The simplifications in the model presented
by [20] make it less realistic — and, also, make the inference task
significantly easier than the one we consider here.

We believe that our analysis introduces a rigorous foundation to
assess the performance of existing and new algorithms for network
inference. In addition, to the best of our knowledge, our paper is
the first to study how different parts of the trace can be useful for
different network inference tasks. Also, it is the first to study the
trace complexity of special case graphs, such as bounded degree
graphs, and for reconstructing non-trivial properties of the network
(without reconstructing the network itself), such as the node degree
distribution.

3. CASCADE MODEL
The cascade model we consider is defined as follows. It starts

with one activated node, henceforth called the source of the epi-
demic, which is considered to be activated, without loss of gener-
ality, at time t = 0.

As soon as a node u gets activated, for each neighbor vi, u flips
an independent coin: with probability p it will start a countdown
on the edge {u, vi}. The length of the countdown will be a ran-
dom variable distributed according to Exp(λ) (exponential3 with
parameter λ). When the countdown reaches 0, that edge is tra-

versed — that is, that epidemic reaches vi via u.
The “trace” produced by the model will be a sequence of tuples

(node v, t(v)) where t(v) is the first time at which the epidemics
reaches v.

In [13], the source of the epidemics is chosen uniformly at ran-
dom from the nodes of the network. In general, though, the source
can be chosen arbitrarily4.

The cascade process considered here admits a number of equiv-
alent descriptions. The following happens to be quite handy: in-
dependently for each edge of G, remove the edge with probability
1 − p and otherwise assign a random edge length sampled from
Exp(λ). Run Dijkstra’s single-source shortest path algorithm on
the subgraph formed by the edges that remain, using source s and
the sampled edge lengths. Output vertices in the order they are

3 [7, 12, 13] consider other random timer distributions; we will
mainly be interested in exponential variables as this setting is al-
ready rich enough to make for an interesting and extensive analy-
sis.
4Choosing sources in a realistic way is an open problem — the data
that could offer a solution to this problem seems to be extremely
scarce at this time.

discovered, accompanied by a timestamp representing the shortest
path length.

4. THE HEAD OF A TRACE
In this section we will deal with the head of a trace — that is,

with the edge connecting the first and the second nodes of a trace.
We show that, for general graphs, that edge is the only useful infor-
mation that can be extracted from traces. Moreover, and perhaps
surprisingly, this information is enough to achieve close-to-optimal
trace complexity, i.e., no network inference algorithm can achieve
better performance than a simple algorithm that only extracts the
head of the trace and ignores the rest. We analyze this algorithm in
the next section.

4.1 The First-Edge Algorithm
The First-Edge algorithm is simple to state. For each trace in the

input, it extracts the edge connecting the first two nodes, and adds
this edge the guessed edge set, ignoring the rest of the trace. This
procedure is not only optimal in trace complexity, but, as it turns
out, it is also computationally efficient.

We start by showing that First-Edge is able to reconstruct the full
graph with maximum degree ∆ using Θ(n∆ log n) traces, under
the cascade model we consider.

THEOREM 4.1. Suppose that the source s ∈ V is chosen uni-

formly at random. Let G = (V,E) be a graph with maximum de-

gree ∆ ≤ n − 1. With Θ
(

n∆
p

log n
)

traces, First-Edge correctly

returns the graph G with probability at least 1− 1
poly(n)

.

PROOF. Let e = {u, v} be any edge in E. The probability that
a trace starts with u, and continues with v can be lower bounded by
p

n∆
, that is, by the product of the probabilities that u is selected as

the source, that the edge {u, v} is not removed from the graph, and
that v is the first neighbor of u that gets infected. Therefore, if we
run cn∆

p
lnn traces, the probability that none of them starts with

the ordered couple of neighboring nodes u, v is at most:

(

1−
p

n∆

)n∆
p

c lnn

≤ exp(−c lnn) = n−c.

Therefore, the assertion is proved for any constant c > 2.

We notice that a more careful analysis leads to a proof that

Θ
((

∆+ p−1)n log n
)

traces are enough to reconstruct the whole graph with high proba-
bility. To prove this stronger assertion, it is sufficient to show the
probability that a specific edge will be the first one to be traversed
is at least 2

n
·
(

1− e−1
)

· min
(

∆−1, p
)

. In fact one can even
show that, for each d ≤ ∆, if the First-Edge algorithm has access
to O

((

d+ p−1
)

n log n
)

traces, then it will recover all the edges
having at least one endpoint of degree O(d). As we will see in our
experimental section, this allows us to reconstruct a large fraction
of the edges using a number of traces that is significantly smaller
than the maximum degree times the number of nodes.

Finally, we note that the above proof also entails that First-Edge
performs as stated for any waiting time distribution (that is, not just
for the exponential one). In fact, the only property that we need
for the above bounds to hold, is that the first node, and the first
neighbor of the first node, are chosen independently and uniformly
at random by the process.

493

4.2 Lower Bounds
Here, we discuss a number of lower bounds for network infer-

ence. Due to limited space, we omit proofs in this section5. Here
we discuss the main ideas underlying these results.

We start by observing that if the source node is chosen adversar-
ially — and, say if the graph is disconnected —no algorithm can
reconstruct the graph (traces are trapped in one connected compo-
nent and, therefore, do not contain any information about the rest of
the graph.) Moreover, even if the graph is forced to be connected,
by choosing p = 1

2
(that is, edges are traversed with probability 1

2
)

an algorithm will require at least 2Ω(n) traces even if the graph is
known to be a path. Indeed, if we select one endpoint as the source,
it will take 2Ω(n) trials for a trace to reach the other end of the path,
since at each node, the trace flips an unbiased coin and dies out
with probability 1

2
.

This is the reason why we need the assumption that the epidemic
selects s ∈ V uniformly at random — we recall that this is also an
assumption in [13]. Whenever possible, we will consider more re-
alistic assumptions, and determine how this changes the trace com-
plexity of the reconstruction problem.

We now turn our attention to our main lower bound result. Namely,
for p = 1, and assuming that the source is chosen uniformly at ran-
dom, we need ω(n∆1−ǫ) traces to reconstruct the graph.

First, let G0 be the clique on the node set V = {1, . . . , n}, and
let G1 be the clique on V minus the edge {1, 2}.

Suppose that Nature selects the unknown graph uniformly at ran-
dom in the set {G0, G1}. We will show that with O(n2−ǫ), the
probability that we are able to guess the unknown graph is 1

2
+o(1)

— that is, flipping a coin is close to being the best one can do for
guessing the existence of the edge {1, 2}.

Before embarking on this task, though, we show that this re-
sult directly entails that O(n∆1−ǫ) traces are not enough for re-
construction even if the graph has maximum degree ∆, for each
1 ≤ ∆ ≤ n− 1. Indeed, let the graph G′

0 be composed of a clique
on ∆ + 1 nodes, and of n − ∆ − 1 disconnected nodes. Let G′

1

be composed of a clique on ∆ + 1 nodes, minus an edge, and of
n − ∆ − 1 disconnected nodes. Then, due to our yet-unproven
lower bound, we need at least ω(∆2−ǫ) traces to start in the large
connected component for the reconstruction to succeed. The proba-
bility that a trace starts in the large connected component is O

(

∆
n

)

.

Hence, we need at least ω(n∆1−ǫ) traces.

We now highlight some of the ideas we used to prove the Ω(n2−ǫ)
lower bound. First, we show a technical lemma that proves that the
random ordering of nodes produced by a trace in G0 is uniform at
random, and that the random ordering produced by a trace in G1 is
“close” to being uniform at random.

LEMMA 4.2. Let π0 be the random ordering of nodes produced

by the random process on G0, and π1 be the random ordering of

nodes produced by the random process on G1. Then, (i) π0 is a

uniform at random permutation over [n]; (ii) for each 1 ≤ a <
b ≤ n, the permutation π1 conditioned on the vertices 1, 2 ap-

pearing (in an arbitrary order) in the positions a, b, has its other

elements chosen uniformly at random; (iii) the probability pa,b that

π1 has the vertices 1, 2 appearing (in an arbitrary order) in the

positions a < b is equal to pa,b =
1+da,b

(n2)
, with da,b = −1 if

a = 1, b = 2, and |da,b| ≤ O
(

lnn
n

+ 1
b

)

otherwise; moreover,
∑n−1

a=1

∑n

b=a+1 da,b = 0.

5The proofs we omitted here will appear in an extended version of
this paper (in preparation).

The preceding Lemma can be used to prove the following result:

LEMMA 4.3. If we disregard timestamps, we cannot distinguish

G0 and G1 with probability more than 1
2
+ o(1) using only m =

o
(

n2

log3 n

)

traces.

To prove this Lemma, we bound the KL-divergences of the two dis-
tributions generated by G0 and G1 from all their weighted geomet-
ric means, thus obtaining a bound on the Chernoff information [6].

Then we can use the latter bound to show that Ω
(

n2

log3 n

)

traces
are necessary.

The KL-divergence bounds are obtained by leveraging on the
strong approximation bounds for the likelihoods of (most) traces
given by Lemma 4.2.

We now complement the above lower bound (that holds only if
we disregard the timestamps), with a full-fledged lower bound. To
do so, we show that under a conditioning having high probability,
the probability that a set of traces has higher likelihood in G0 than
in G1 is 1

2
± o(1).

LEMMA 4.4. Let a set of m = n2−ǫ traces be given. Let W be

the waiting times in the traces. There exists an event E such that,

(i) for both the unknown graph G0 and G1, the probability of E
is 1 − o(1), moreover, (ii) conditioning on E, the probability that

L0(W) > L1(W) is equal to 1
2
± o(1).

Finally, Lemma 4.3 and Lemma 4.4 together allow us to obtain
the following Theorem:

THEOREM 4.5. Suppose that at most m = n2−ǫ traces are

given. Then, no algorithm can correctly guess whether the un-

known graph is G0 or G1 with probability more than 1
2
+ o(1).

As already noted, the lower bound in the above Theorem can be
easily transformed in a Ω(n∆1−ǫ) lower bound, for any 1 ≤ ∆ ≤
n− 1.

4.3 Reconstructing the Degree Distribution
In this section we study the problem of recovering the degree

distribution of a hidden network and show that this can be done
with Ω(n) traces while achieving high accuracy, using, again, only
the first edge of a trace.

The degree distribution of a network is a characteristic structural
property of networks, which influences their dynamics, function,
and evolution [21]. Accordingly, many networks, including the
Internet and the world wide web exhibit distinct degree distribu-
tions [10]. Thus, recovering this property allows us to make in-
ferences about the behavior of processes that take place in these
networks, without knowledge of their actual link structure.

Let ℓ traces starting from the same node v be given. For trace i,
let ti be the differences between the time of exposure of v, and the
the time of exposure of the second node in the trace.

Recall that in the cascade model, the waiting times are distributed
according to an exponential random variable with a known param-
eter λ. If we have ℓ traces starting at a node v, we aim to estimate
the degree of v the time gaps t1, . . . , tℓ between the first node and
the second node of each trace.

If v has degree d in the graph, then ti (1 ≤ i ≤ ℓ) will be dis-
tributed as an exponential random variable with parameter dλ [8].
Furthermore, the sum T of the ti’s, T =

∑ℓ

i=1 ti, is distributed as
an Erlang random variable with parameters (ℓ, dλ) [8].

494

In general, if X is an Erlang variable with parameters (n, λ),
and Y is a Poisson variable with parameter z · λ, we have that
Pr [X < z] = Pr [Y ≥ n]. Then, by using the tail bound for the
Poisson distribution [5, 17], we have that the probability that T is
at most (1 + ǫ) · ℓ

dλ
is

Pr [Pois ((1 + ǫ) · ℓ) ≥ ℓ] ≥ 1− e−Θ(ǫ2ℓ).

Similarly, the probability that T is at least (1− ǫ) · ℓ
dλ

is

1− Pr [Pois((1− ǫ) · ℓ) ≥ ℓ] ≥ 1− e−Θ(ǫ2ℓ).

We then have:

Pr

[
∣

∣

∣

∣

T −
ℓ

dλ

∣

∣

∣

∣

≤ ǫ ·
ℓ

dλ

]

≥ 1− e−Θ(ǫ2ℓ).

Let our degree inference algorithm return d̂ = ℓ
Tλ

as the degree
of v. Also, let d be the actual degree of v. We have:

Pr
[
∣

∣

∣
d̂− d

∣

∣

∣
≤ ǫd

]

≥ 1− e−Θ(ǫ2ℓ).

We have then proved the following theorem:

THEOREM 4.6. Provided that Ω
(

ln δ−1

ǫ2

)

traces start from v,

the degree algorithm returns a 1 ± ǫ multiplicative approximation

to the degree of v with probability at least 1− δ.

5. THE TAIL OF THE TRACE
A naïve interpretation of the lower bound for perfect reconstruc-

tion, Theorem 4.5, would conclude that the information in the “tail”
of the trace — the list of nodes infected after the first two nodes,
and their timestamps — is of negligible use in achieving the task of
perfect reconstruction. In this section we will see that the opposite
conclusion holds for important classes of graphs. We specialize to
two such classes, trees and bounded-degree graphs, in both cases
designing algorithms that rely heavily on information in the tails
of traces to achieve perfect reconstruction with trace complexity
O(log n), an exponential improvement from the worst-case lower
bound in Theorem 4.5. The algorithms are quite different: for trees
we essentially perform maximum likelihood estimation (MLE) of
the entire edge set all at once, while for bounded-degree graphs
we run MLE separately for each vertex to attempt to find its set of
neighbors, then we combine those sets while resolving inconsisten-
cies.

In Section 6 we provide one more example of an algorithm,
which we denote by First-Edge+, that makes use of information
in the tail of the trace. Unlike the algorithms in this section, we do
not know of a theoretical performance guarantee for First-Edge+
so we have instead analyzed it experimentally.

It is natural to compare the algorithms in this section with the
NETINF algorithm [13], since both are based on MLE. While NET-
INF is a general-purpose algorithm, and the algorithms developed
here are limited to special classes of graphs, we believe our ap-
proach offers several advantages. First, and most importantly, we
offer provable trace complexity guarantees: Ω(log n) complete traces
suffice for perfect reconstruction of a tree with high probability,
and Ω(poly(∆) log n) traces suffice for perfect reconstruction of a
graph with maximum degree ∆. Previous work has not provided
rigorous guarantees on the number of traces required to ensure that
algorithms achieve specified reconstruction tasks. Second, our tree
reconstruction algorithm is simple (an easy preprocessing step fol-
lowed by computing a minimum spanning tree) and has worst-
case running time O(n2ℓ), where n is the number of nodes and
ℓ = Ω(log n) is the number of traces, which compares favorably
with the running time of NETINF.

5.1 Reconstructing Trees
In this section we consider the special case in which the under-

lying graph G is a tree, and we provide a simple algorithm that
requires Ω(log n) complete traces and succeeds in perfect recon-
struction with high probability. Intuitively, reconstructing trees is
much simpler than reconstructing general graphs for the following
reason. As noted in [13], the probability that an arbitrary graph
G generates trace T is a sum, over all spanning trees F of G, of
the probability that T was generated by an epidemic propagating
along the edges of F . When G itself is a tree, this sum degener-
ates to a single term and this greatly simplifies the process of doing
maximum likelihood estimation. In practical applications of the
network inference problem, it is unlikely that the latent network
will be a tree; nevertheless we believe the results in this section are
of theoretical interest and that they may provide a roadmap for ana-
lyzing the trace complexity of other algorithms based on maximum
likelihood estimation.

Algorithm 1 The tree reconstruction algorithm.

Input: A collection T1, . . . , Tℓ of complete traces generated by
repeatedly running the infection process with p = 1 on a fixed
tree.
Let ti(v) denote the infection time of node v in trace Ti.

Output: An estimate, Ĝ, of the tree.
1: for all pairs of nodes u, v do

2: Let c(u, v) be the median of the set {|ti(u)− ti(v)|}
ℓ
i=1.

3: if ∃ a node p and a pair of traces Ti, Tj such that ti(p) <
ti(u) < ti(v) and tj(p) < tj(v) < tj(u) then

4: Set c(u, v) = ∞.

5: Output Ĝ = minimum spanning tree with respect to cost ma-
trix c(u, v).

The tree reconstruction algorithm is very simple. It defines a cost
for each edge {u, v} as shown in Figure 1, and then it outputs the
minimum spanning tree with respect to those edge costs. The most
time-consuming step is the test in step 3, which checks whether
there is a node p whose infection time precedes the infection times
of both u and v in two distinct traces Ti, Tj such that the infection
times of u and v are oppositely ordered in Ti and Tj . (If so, then G
contains a path from p to u that does not include v, and a path from
p to v that does not include u, and consequently {u, v} cannot be
an edge of the tree G. This justifies setting c(u, v) = ∞ in step
4.) To save time, one can use lazy evaluation and perform this test
only for pairs u, v that are about to be inserted into the tree.

The analysis of the algorithm is based on the following outline:
first, we show that if {u, v} is any edge of G, then c(u, v) < λ−1

with high probability (Lemma 5.1). Second, we show that if {u, v}
is any edge not in G, then c(u, v) > λ−1 with high probability
(Lemma 5.2). The edge pruning in steps 3 and 4 of the algorithm is
vital for attaining the latter high-probability guarantee. When both
of these high-probability events occur, it is trivial to see that the
minimum spanning tree coincides with G.

LEMMA 5.1. If {u, v} is an edge of the tree G, then Algo-

rithm 1 sets c(u, v) < λ−1 with probability at least 1 − c1
λ, for

some absolute constant c1 < 1.

PROOF. First, note that the algorithm never sets c(u, v) = ∞.
This is because if one were to delete edge {u, v} from G, it would
disconnect the graph into two connected components Gu, Gv , con-
taining u and v, respectively. The infection process cannot spread
from Gu to Gv or vice-versa without traversing edge {u, v}. Con-
sequently, for every node p ∈ Gu, the infection time ti(u) occurs

495

strictly between ti(p) and ti(v) in all traces. Similarly, if p ∈ Gv

then the infection time ti(v) occurs strictly between ti(p) and ti(u)
in all traces.

Therefore, the value of c(u, v) is equal to the median of |ti(u)−
ti(v)| over all the traces T1, . . . , Tℓ. In any execution of the infec-
tion process, if the first endpoint of edge {u, v} becomes infected at
time t, then the opposite endpoint receives a timestamp t+X where
X ∼ Exp(λ). Consequently the random variable |ti(u) − ti(v)|
is an independent sample from Exp(λ) in each trace. The lemma
now follows by an application of Chernoff’s bound.

The proof of the following lemma, while similar to that of the
preceding one, is somewhat more involved. It is omitted for space
reasons.

LEMMA 5.2. If {u, v} is not an edge of G, then Algorithm 1

sets c(u, v) > λ−1 with probability at least 1 − c2 · cℓ3 for some

absolute constants c2 < ∞ and c3 < 1.

Combining Lemmas 5.1 and 5.2, and using the union bound, we
find that with probability at least 1 − (n − 1)cℓ1 −

(

n−1
2

)

c2c
ℓ
3, the

set of pairs (u, v) such that c(u, v) < λ−1 coincides with the set of
edges of the tree G. Whenever the n− 1 cheapest edges in a graph
form a spanning tree, it is always the minimum spanning tree of the
graph. Thus, we have proven the following theorem.

THEOREM 5.3. If G is a tree, then Algorithm 1 perfectly recon-

structs G with probability at least 1− (n− 1)cℓ1 −
(

n−1
2

)

c2c
ℓ
3, for

some absolute constants c1, c3 < 1 and c2 < ∞. This probabil-

ity can be made greater than 1 − 1/nc, for any specified c > 0,

by using ℓ ≥ c4 · c · log n traces, where c4 < ∞ is an absolute

constant.

5.2 Bounded-Degree Graphs
In this section, we show that O(poly(∆) log n) complete traces

suffice for perfect reconstruction (with high probability) when the
graph G has maximum degree ∆. In fact, our proof shows a some-
what stronger result: it shows that for any pair of nodes u, v, there
is an algorithm that predicts whether {u, v} is an edge of G with
failure probability at most 1 − 1/nc, for any specified constant
c > 0, and the algorithm requires only Ω(poly(∆) log n) indepen-
dent partial traces in which u and v are both infected. However, for
simplicity we will assume complete traces throughout this section.

The basic intuition behind our algorithm can be summarized as
follows. To determine if {u, v} is an edge of G, we try to recon-
struct the entire set of neighbors of u and then test if v belongs to
this set. We use the following insight to test whether a candidate set
S is equal to the set N(u) of all neighbors of u. Any such set de-
fines a “forecasting model” that specifies a probability distribution
for the infection time t(u). To test the validity of the forecast we
use a strictly proper scoring rule [11], specifically the logarithmic
scoring rule, which is defined formally in the paragraph following
Equation (1). Let us say that a set S differs significantly from the
set of neighbors of u (henceforth denoted N(u)) if the symmet-
ric difference S ⊕ N(u) contains a vertex that is infected before
u with constant probability. We prove that the expected score as-
signed to N(u) by the logarithmic scoring rule is at least Ω(∆−4)
greater than the score assigned to any set that differs significantly
from N(u). Averaging over Ω(∆4 log∆ log n) trials is then suf-
ficient to ensure that all sets differing significantly from N(u) re-
ceive strictly smaller average scores.

The scoring rule algorithm thus succeeds (with high probabil-
ity) in reconstructing a set R(u) whose difference from N(u) is
insignificant, meaning that the elements of R(u) ⊕N(u) are usu-
ally infected after u. To test if edge {u, v} belongs to G, we can

Algorithm 2 Bounded-degree reconstruction algorithm.

Input: An infection rate parameter, λ.
A set of vertices, V .
An upper bound, ∆, on the degrees of vertices.
A collection T1, . . . , Tℓ of complete traces generated by re-
peatedly running the infection process on a fixed graph G with
vertex set V and maximum degree ∆.
Let ti(v) denote the infection time of node v in trace Ti.

Output: An estimate, Ĝ, of G.
1: for all nodes u do

2: for all sets S ⊆ V \ {u} of at most ∆ vertices do

3: for all traces Ti do

4: Let Su
i = {v ∈ S | ti(v) < ti(u)}.

5: if Su
i = ∅ then

6: Let scorei(S, u) = 0 if u is the source of Ti, other-
wise scorei(S, u) = −∞.

7: else

8: scorei(S, u) = log |Su
i |−λ

∑

v∈Su
i
[ti(u)− ti(v)].

9: Let score(S, u) = ℓ−1 ·
∑

i scorei(S, u).
10: Let R(u) = argmax{score(S, u)}.
11: for all ordered pairs of vertices u, v do

12: if ti(v) < ti(u) in at least ℓ/3 traces and v ∈ R(u) then

13: Insert edge {u, v} into Ĝ.

14: Output Ĝ.

now use the following procedure: if the event t(v) < t(u) occurs
in a constant fraction of the traces containing both u and v, then
we predict that edge {u, v} is present if v ∈ R(u); this predic-
tion must be correct with high probability, as otherwise the element
v ∈ R(u)⊕N(u) would constitute a significant difference. Sym-
metrically, if t(u) < t(v) occurs in a constant fraction of the traces
containing both u and v, then we predict that edge {u, v} is present
if u ∈ R(v).

KL-divergence. For distributions p, q on R having density func-
tions f and g, respectively, their KL-divergence is defined by

D(p ‖ q) =

∫

f(x) log
(

f(x)
g(x)

)

dx. (1)

One interpretation of the KL-divergence is that it is the expected
difference between log(f(x)) and log(g(x)) when x is randomly
sampled using distribution p. If one thinks of p and q as two fore-
casts of the distribution of x, and one samples x using p and applies
the logarithmic scoring rule, which outputs a score equal to the
log-density of the forecast distribution at the sampled point, then
D(p ‖ q) is the difference in the expected scores of the correct and
the incorrect forecast. A useful lower bound on this difference is
supplied by Pinsker’s Inequality:

D(p ‖ q) ≥ 2 ‖p− q‖2TV, (2)

where ‖ · ‖TV denotes the total variation distance.

Quasi-timestamps and conditional distributions From now on
in this section, we assume λ = 1. This assumption is without loss
of generality, since the algorithm’s behavior in unchanged if we
modify its input by setting λ = 1 and multiplying the timestamps
in all traces by λ; after modifying the input in this way, the input
distribution is the same as if the traces had originally been sampled
using the infection process with parameter λ = 1.

Our analysis of Algorithm 2 hinges on understanding the con-
ditional distribution of the infection time t(u), given the infection
times of its neighbors. Directly analyzing this conditional distri-
bution is surprisingly tricky, however. The reason is that u itself

496

may infect some of its neighbors, so conditioning on the event that
a neighbor of u was infected at time t0 influences the probability
density of t(u) in a straightforward way at times t > t0 but in a
much less straightforward way at times t < t0. We can avoid this
“backward conditioning” by applying the following artifice.

Recall the description of the infection process in terms of Dijk-
stra’s algorithm in Section 3: edges sample i.i.d. edge lengths and
the timestamps t(v) are equal to the distance labels assigned by
Dijkstra’s algorithm when computing single-source shortest paths
from source s. Now consider the sample space defined by the tu-
ple of independent random edge lengths y(v, w). For any vertices
u 6= v, define a random variable t̊(v) to be the distance label as-
signed to v when we delete u and its incident edges from G to
obtain a subgraph G − u, and then we run Dijkstra’s algorithm on
this subgraph. One can think of t̊(v) as the time when v would
have been infected if u did not exist. We will call t̊(v) the quasi-

timestamp of v (with respect to u). If N(u) = {v1, . . . , vk} is
the set of neighbors of u, and if we sample a trace originating at a
source s 6= u, then the executions of Dijkstra’s algorithm in G and
G−u will coincide until the step in which u is discovered and is as-
signed the distance label t(u) = minj {̊t(vj)+y(vj , u)}. From this
equation, it is easy to deduce a formula for the conditional distribu-
tion of t(u) given the k-tuple of quasi-timestamps t̊ = (̊t(vj))

k
j=1.

Using the standard notation z+ to denote max{z, 0} for any real
number z, we have

Pr(t(u) > t | t̊) = exp

(

−
k
∑

j=1

(t− t̊(vj))
+

)

. (3)

The conditional probability density is easy to calculate by differen-
tiating the right side of (3) with respect to t. For any vertex set S
not containing u, let S〈t〉 denote the set of vertices v ∈ S such that
t̊(v) < t, and let ρ(t, S) = |S〈t〉|. Then the conditional probabil-
ity density function of t(u) satisfies

f(t) = ρ(t,N(u)) exp

(

−
k
∑

j=1

(t− t̊(vj))
+

)

(4)

log f(t) = log(ρ(t,N(u)))−
∑

v∈N(u)

(t− t̊(v))+. (5)

It is worth pausing here to note an important and subtle point. The
information contained in a trace T is insufficient to determine the
vector of quasi-timestamps t̊, since quasi-timestamps are defined
by running the infection process in the graph G − u, whereas the
trace represents the outcome of running the same process in G.
Consequently, our algorithm does not have sufficient information
to evaluate log f(t) at arbitrary values of t. Luckily, the equation

(t(u)− t(v))+ = (t(u)− t̊(v))+

holds for all v 6= u, since t̊(v) differs from t(v) only when both
quantities are greater than t(u). Thus, our algorithm has suffi-
cient information to evaluate log f(t(u)), and in fact the value
scorei(S, u) defined in Algorithm 2, coincides with the formula for
log f(t(u)) on the right side of (5), when S = N(u) and λ = 1.

Analysis of the reconstruction algorithm. The foregoing dis-
cussion prompts the following definitions. Fix a vector of quasi-
timestamps t̊ = (̊t(v))v 6=u, and for any set of vertices S not con-
taining u, let pS be the probability distribution on R with density
function

fS(t) = ρ(t, S) exp

(

−
∑

v∈S

(t− t̊(v))+
)

. (6)

One can think of pS as the distribution of the infection time t(u)
that would be predicted by a forecaster who knows the values t̊(v)
for v ∈ S and who believes that S is the set of neighbors of u.
Letting N = N(u), each timestamp ti(u) is a random sample from
the distribution pN , and scorei(S, u) is the result of applying the
logarithmic scoring rule to the distribution fS(t) and the random
sample t(u). Therefore

E[scorei(N,u)− scorei(S, u)] = D(pN ‖ pS) (7)

≥ 2‖pN − pS‖2TV. (8)

The key to analyzing Algorithm 2 lies in proving a lower bound
on the expected total variation distance between pN and pS . The
following lemma supplies the lower bound. Its proof is omitted for
space reasons.

LEMMA 5.4. Fix a vertex u, let N = N(u) be its neighbor set,

and fix some S ⊆ V \ {u} distinct from N . Letting π(S ⊕ N,u)
denote the probability that at least one element of the set S ⊕N is

infected before u, we have

E

(

‖pN − pS‖TV
)

≥ 1
10
∆−2π(S ⊕N,u). (9)

Combining Pinsker’s Inequality with Lemma 5.4 we immedi-
ately obtain the following corollary.

COROLLARY 5.5. If N = N(u) and S is any set such that

π(S ⊕ N, u) > 1/4, then for each trace Ti the expected value of

scorei(N)− scorei(S) is Ω(∆−4).

Using this corollary, we are ready to prove our main theorem.

THEOREM 5.6. For any constant c > 0, the probability that

Algorithm 2 fails to perfectly reconstruct G, when given

ℓ = Ω(∆9 log2 ∆ log n)

complete traces, is at most 1/nc.

PROOF. Let us say that a set S differs significantly from N(u) if
π(S ⊕N(u), u) > 1/4. Let us say that an ordered pair of vertices
(u, v) violates the empirical frequency property if the empirical fre-
quency of the event ti(v) < ti(u) among the traces T1, . . . , Tℓ

differs by more than 1
12

from the probability that t(v) < t(u) in
a random trace. Exponential tail inequalities for sums of i.i.d. ran-
dom variables establish that when ℓ is as specified in the theorem
statement, with probability at least 1 − 1/nc, there is no vertex u
such that R(u) differs significantly from N(u) and no ordered pair
(u, v) that violates the empirical frequency property. The proofs of
these high-probability guarantees are omitted for space reasons.

Assuming that no set R(u) differs significantly from N(u) and
that no pair (u, v) violates the empirical frequency property, we

now prove that the algorithm’s output, Ĝ, is equal to G. If {u, v}
is an edge of G, assume without loss of generality that the event
t(v) < t(u) has probability at least 1/2. By the empirical frequency
property, at least ℓ/3 traces satisfy ti(v) < ti(u). Furthermore,
v must belong to R(u), since if it belonged to R(u) ⊕ N(u) it
would imply that π(R(u)⊕N(u), u) ≥ Pr(t(v) < t(u)) ≥ 1/2,
violating our assumption that R(u) doesn’t differ significantly from

N(u). Therefore v ∈ R(u) and the algorithm adds {u, v} to Ĝ.

Now suppose {u, v} is an edge of Ĝ, and assume without loss of
generality that this edge was inserted when processing the ordered
pair (u, v). Thus, at least ℓ/3 traces satisfy ti(v) < ti(u), and v ∈
R(u). By the empirical frequency property, we know that a random
trace satisfies t(v) < t(u) with probability at least 1/4. As before,
if v belonged to R(u) ⊕ N(u) this would violate our assumption
that R(u) does not differ significantly from N(u). Hence v ∈
N(u), which means that {u, v} is an edge of G as well.

497

(a) Barabasi-Albert Graph (b) Facebook-Rice-Graduate (c) Facebook-Rice Undergraduate

Figure 1: Complementary cumulative density function (CCDF) of degree reconstruction using Ω(n) traces for (a) a synthetic network

with 1,024 nodes generated using the Barabasi-Albert algorithm, and two real social networks: two subsets of the Facebook network

comprising 503 graduate students (a) and 1220 undergraduate students (c), respectively, from Rice University.

6. EXPERIMENTAL ANALYSIS
In the preceding sections we have established trace complexity

results for various network inference tasks. In this section, our goal
is to assess our predictions on real and synthetic social and informa-
tion networks whose type, number of nodes, and maximum degree
(∆) we now describe.

We use two real social networks, namely two Facebook subnet-
works comprising 503 (∆ = 48) graduate and 1220 (∆ = 287)
undergraduate students, respectively [18]. We also generate three
synthetic networks, each possessing 1024 vertices, whose genera-
tive models frequently arise in practice in the analysis of networks.
We generated a Barabasi-Albert Network [4] (∆ = 174), which is
a preferential attachment model, a G(n,p) Network [9] (∆ = 253)
with p = 0.2, and a Power-Law Tree, whose node degree distribu-
tion follows a power-law distribution with exponent 3 (∆ = 94).

First, we evaluate the performance of the algorithm to recon-
struct the degree distribution of networks without inferring the net-
work itself (Section 4.3). Figure 1 shows the reconstruction of the
degree distribution using Ω(n) traces of the Barabasi-Albert Net-
work and the two Facebook subnetworks. We used 10n traces, and
the plots show that the CCDF curves for the real degrees and for
the reconstructed distribution have almost perfect overlap.

Turning our attention back to network inference, the Ω(n∆1−ǫ)
lower-bound established in Section 3 tells us that the First-Edge
algorithm is nearly optimal for perfect network inference in the
general case. Thus, we assess the performance of our algorithms
against this limit. The performance of First-Edge is notoriously
predictable: if we use ℓ traces where ℓ is less than the total number
of edges in the network, then it returns nearly ℓ edges which are all
true positives, and it never returns false positives.

If we allow false positives, we can use heuristics to improve the
First-Edge’s recall. To this end, we propose the following heuris-
tic that uses the degree distribution reconstruction algorithm (Sec-
tion 4.3) in a pre-processing phase, and places an edge in the in-
ferred network provided the edge has probability at least p of being
in the graph. We call this heuristic First-Edge+.

In First-Edge+, we use the memoryless property of the expo-
nential distribution to establish the probability p of an edge per-
taining to a network G. The algorithm works as follows. Consider
a node u that appears as the root of a trace at time t0 = 0. When
u spreads the epidemic, some node v is going to be the next in-
fected at time t1, which was sampled from an exponential distri-
bution with parameter λ. At time t1, notice that there are exactly
du − 1 nodes waiting to be infected by u, and exactly dv − 1 wait-
ing to be infected by v, where du and dv are the degrees of u and
v respectively. At time t1 any of these nodes is equally likely to

(a) Barabasi-Albert (b) Facebook-Rice Undergrad

(c) Power-Law Tree (d) Gn,p

Figure 2: F1 score of the First-Edge, First-Edge+, and NET-
INF algorithms applied to different real and synthetic networks

against a varying number of traces. (best viewed in color)

be infected, due to the memoryless property. Moreover, the next
node w that appears in a trace after time t1 is going to be infected
by u with probability p(u,w) = du−1

du+dv−2
and by v with proba-

bility p(v,w) = dv−1
du+dv−2

. We can approximate6this reasoning for
larger prefixes of the trace: given a sequence u1, · · · , uk of in-
fected nodes starting at the source of the epidemic, the probability

that uk+1 is a neighbor of ui is roughly p(ui,uk+1) ≃
dui∑
j duj

.

Therefore, for every segment of a trace that starts at the source,
we infer an edge (u, v) if p(u,v) > p, computed using the recon-
structed degrees, where p is a tunable parameter. In our experi-
ments we arbitrarily chose p = 0.5.

Note that First-Edge+ may not terminate as soon as we have in-
ferred enough edges, even in the event that all true positives have
been found, an effect that degrades its precision performance. To
prevent this, we keep a variable T , which can be thought of as the
temperature of the inference process. Let M be a counter of the
edges inferred at any given time during the inference process, and

6The exact probability depends on the number of edges between
each of the nodes u1, . . . , uk and the rest of the graph.

498

Ê be an estimate of the total number of edges, computed using the
degree reconstruction algorithm in the pre-processing phase. We
define T = M

Ê
and run the algorithm as long as T < 1.0. In addi-

tion, whenever we infer a new edge, we flip a coin and remove, with
probability T , a previously inferred edge with the lowest estimated
probability of existence. Thus, while the network is “cold”, i.e.,
many undiscovered edges, edges are rapidly added and a few are re-
moved, which boosts the recall. When the network is “warm”, i.e.,
the number of inferred edges approaches |E|, we carefully select
edges by exchanging previously inferred ones with better choices,
thereby contributing to the precision.

Figure 2 contrasts the performance of First-Edge, First-Edge+
and an existing network algorithm, NETINF [13], with respect to
the F1 measure. NETINF requires the number of edges in the net-
work as input, and thus we give it an advantage, by setting the
number of edges to the true cardinality of edges for each network.

In Figures 2(a) and 2(b), we observe that, as First-Edge+ and
NETINF are less conservative, their F1 performances have an ad-
vantage over First-Edge for small numbers of traces, with First-
Edge+ approaching the performance to NETINF. Interestingly, in
Figure 2(c), we see that First-Edge and First-Edge+ achieve per-
fect tree inference with roughly 5, 000 traces, which reflects a trace
complexity in Ω(n) rather than in Ω(log n), which is the trace
complexity of Algorithm 1.7 This result illustrates the relevance
of the algorithms for special cases we developed in Section 5. Last,
in proving lower-bounds for trace complexity, we frequently use
random graphs as the worst-case examples. This is shown in Fig-
ure 2(d), where neither our algorithms nor NETINF can achieve
high inference performance, even for large numbers of traces.

In accordance with our discussion in Section 4.1, we confirm
that, in practice, we need significantly fewer than n∗∆ traces for in-
ferring most of the edges. It is perhaps surprising that First-Edge+,
which is extremely simple, achieves comparable performance to
the more elaborate counterpart, NETINF. In addition, while NET-
INF reaches a plateau that limits its performance, First-Edge+ ap-
proaches perfect inference as the number of traces goes to Ω(n∆).
In the cases in which NETINF achieves higher performance than
First-Edge+, the latter is never much worse than the former. This
presents a practitioner with a trade-off between the two algorithms.
For large networks, while First-Edge+ is extremely easy to imple-
ment and makes network inferences (in a preemptive fashion) in a
matter of seconds, NETINF takes a couple of hours to run to com-
pletion and requires the implementation of an elaborate algorithm.

7. CONCLUSION
Our goal is to provide the building blocks for a rigorous foun-

dation to the rapidly-expanding network inference topic. Previ-
ous works have validated claims through experiments on relatively
small graphs as compared to the large number of traces utilized,
whereas the relation that binds these two quantities remains insuf-
ficiently understood. Accordingly, we believe that a solid foun-
dation for the network inference problem remains a fundamental
open question, and that works like [20], as well as ours, provide the
initial contributions toward that goal.

Our results have direct applicability in the design of network in-
ference algorithms. More specifically, we rigorously study how
much useful information can be extracted from a trace for network
inference, or more generally, the inference of network properties
without reconstructing the network, such as the node degree distri-

7In our experiments Algorithm 1 consistently returned the true
edge set without false positives with O(log n) traces for various
networks of various sizes. Therefore, in the interest of space we
omit the data from these experiments.

bution. We first show that, to perfectly reconstruct general graphs,
nothing better than looking at the first pair of infected nodes in a
trace can really be done. We additionally show that the remainder
of a trace contains rich information that can reduce the trace com-
plexity of the task for special case graphs. Finally, we build on the
previous results to develop extremely simple and efficient recon-
struction algorithms that exhibit competitive inference performance
with the more elaborate and computationally costly ones.

8. REFERENCES
[1] E. Adar and L. A. Adamic. Tracking information epidemics in

blogspace. In Proc. of the 2005 IEEE/WIC/ACM Int’l Conf. on Web

Intelligence, 2005.

[2] N. Bailey. The Mathematical Theory of Infectious Diseases and its

Applications. Griffin, London, 1975.

[3] E. Bakshy, J. M. Hofman, W. A. Mason, and D. J. Watts. Everyone’s
an influencer: quantifying influence on twitter. In Proc. of the 4th

ACM Int’l Conf. on Web search and Data Mining, 2011.

[4] A.-L. Barabási and R. Albert. Emergence of Scaling in Random
Networks. Science, 286(5439):509–512, Oct. 1999.

[5] S. G. Bobkov and M. Ledoux. On modified logarithmic sobolev
inequalities for bernoulli and poisson measures. Journal of

Functional Analysis, 156(2):347 – 365, 1998.

[6] T. M. Cover and J. A. Thomas. Elements of information theory.
Wiley-Interscience, New York, NY, USA, 1991.

[7] N. DU, L. Song, A. Smola, and M. Yuan. Learning networks of
heterogeneous influence. In Advances in Neural Information

Processing Systems 25, pages 2789–2797. 2012.

[8] R. Durrett. Probability: Theory and examples. Cambridge Series in
Statistical and Probabilistic Mathematics, 2011.

[9] P. Erdös and A. Rényi. On the evolution of random graphs. In Pub. of

the Mathematical Institute of the Hungarian Academy of Sciences,
pages 17–61, 1960.

[10] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law
relationships of the internet topology. SIGCOMM Comput. Commun.

Rev., 29(4):251–262, Aug. 1999.

[11] T. Gneiting and A. E. Raftery. Strictly proper scoring rules,
prediction, and estimation. J. Amer. Stat. Assoc., 102:359–378, 2007.

[12] M. Gomez-Rodriguez, D. Balduzzi, and B. Schölkopf. Uncovering
the temporal dynamics of diffusion networks. In Proc. of the 28th

Int’l Conf. on Machine Learning, 2011.

[13] M. Gomez-Rodriguez, J. Leskovec, and A. Krause. Inferring
networks of diffusion and influence. In Proc. of the 16th ACM

SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining,
2010.

[14] V. Gripon and M. Rabbat. Reconstructing a graph from path traces.
CoRR, abs/1301.6916, 2013.

[15] D. Gruhl, R. Guha, D. Liben-Nowell, and A. Tomkins. Information
diffusion through blogspace. In Proc. of the 13th Int’l Conf. on World

Wide Web, 2004.

[16] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of
influence through a social network. In Proc. of the 9th ACM SIGKDD

Int’l Conf. on Knowledge Discovery and Data Mining, 2003.

[17] I. Kontoyiannis and M. Madiman. Measure concentration for
compound poisson distributions. Electron. Commun. Probab., 11:no.
5, 45–57, 2006.

[18] A. Mislove, B. Viswanath, K. Gummadi, and P. Druschel. You are
who you know: Inferring user profiles in online social networks. In
Proc. 3rd ACM Int’l. Conf. on Web Search and Data Mining, 2010.

[19] S. Myers and J. Leskovec. On the convexity of latent social network
inference. In Advances in Neural Information Processing Systems 23,
pages 1741–1749. 2010.

[20] P. Netrapalli and S. Sanghavi. Learning the graph of epidemic
cascades. In SIGMETRICS, pages 211–222, 2012.

[21] M. E. J. Newman. The structure and function of complex networks.
SIAM REVIEW, 45:167–256, 2003.

[22] E. M. Rogers and E. Rogers. Diffusion of Innovations. Free Press, 5th
edition, Aug. 2003.

499

	Introduction
	Related Work
	Cascade Model
	The Head of a Trace
	The First-Edge Algorithm
	Lower Bounds
	Reconstructing the Degree Distribution

	The Tail of the Trace
	Reconstructing Trees
	Bounded-Degree Graphs

	Experimental Analysis
	Conclusion
	References

