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ABSTRACT
Many data sets contain rich information about objects, as
well as pairwise relations between them. For instance, in
networks of websites, scientific papers, and other documents,
each node has content consisting of a collection of words, as
well as hyperlinks or citations to other nodes. In order to
perform inference on such data sets, and make predictions
and recommendations, it is useful to have models that are
able to capture the processes which generate the text at
each node and the links between them. In this paper, we
combine classic ideas in topic modeling with a variant of
the mixed-membership block model recently developed in
the statistical physics community. The resulting model has
the advantage that its parameters, including the mixture
of topics of each document and the resulting overlapping
communities, can be inferred with a simple and scalable
expectation-maximization algorithm. We test our model on
three data sets, performing unsupervised topic classification
and link prediction. For both tasks, our model outperforms
several existing state-of-the-art methods, achieving higher
accuracy with significantly less computation, analyzing a
data set with 1.3 million words and 44 thousand links in
a few minutes.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
I.2 [ARTIFICIAL INTELLIGENCE]: Learning

Keywords
Document classification; Topic modeling; Link prediction;
Stochastic block model

1. INTRODUCTION
Many modern data sets contain not only rich information

about each object, but also pairwise relationships between
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them, forming networks where each object is a node and
links represent the relationships. In document networks, for
example, each node is a document containing a sequence of
words, and the links between nodes are citations or hyper-
links. Both the content of the documents and the topology
of the links between them are meaningful.

Over the past few years, two disparate communities have
been approaching these data sets from different points of
view. In the data mining community, the goal has been to
augment traditional approaches to learning and data min-
ing by including relations between objects [15, 23, 33]: for
instance, using the links between documents to help us la-
bel them by topic. In the network community, including
its subset in statistical physics, the goal has been to aug-
ment traditional community structure algorithms such as
the stochastic block model [14, 19, 30] by taking node at-
tributes into account: for instance, to use the content of
documents, rather than just the topological links between
them, to help us understand their community structure.

In the original stochastic block model, each node has a dis-
crete label, assigning it to one of k communities. These la-
bels, and the k×k matrix of probabilities with which a given
pair of nodes with a given pair of labels have a link between
them, can be inferred using Monte Carlo algorithms (e.g.
[26]) or, more efficiently, with belief propagation [12, 11] or
pseudolikelihood approaches [7]. However, in real networks
communities often overlap, and a given node can belong to
multiple communities. This led to the mixed-membership
block model [1], where the goal is to infer, for each node v,
a distribution or mixture of labels θv describing to what ex-
tent it belongs to each community. If we assume that links
are assortative, i.e., that nodes are more likely to link to
others in the same community, then the probability of a link
between two nodes v and v′ depends on some measure of
similarity (say, the inner product) of θv and θv′ .

These mixed-membership block models fit nicely with clas-
sic ideas in topic modeling. In models such as Probabilistic
Latent Semantic Analysis (plsa) [18] and Latent Dirichlet
Allocation (lda) [4], each document d has a mixture θd of
topics. Each topic corresponds in turn to a probability dis-
tribution over words, and each word in d is generated in-
dependently from the resulting mixture of distributions. If
we think of θd as both the mixture of topics for generating
words and the mixture of communities for generating links,
then we can infer {θd} jointly from the documents’ content
and the presence or absence of links between them.
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There are many possible such models, and we are far from
the first to think along these lines. Our innovation is to take
as our starting point a particular mixed-membership block
model recently developed in the physics community [2], which
we call the bknmodel. It differs from the mixed-membership
stochastic block model (mmsb) of [1] in several ways:

1. The bknmodel treats the community membership mix-
tures θd directly as parameters to be inferred. In con-
trast, mmsb treats θd as hidden variables generated by
a Dirichlet distribution, and infers the hyperparame-
ters of that distribution. The situation between plsa
and lda is similar; plsa infers the topic mixtures θd,
while lda generates them from a Dirichlet distribution.

2. The mmsb model generates each link according to a
Bernoulli distribution, with an extra parameter for
sparsity. Instead, bkn treats the links as a random
multigraph, where the number of links Add′ between
each pair of nodes is Poisson-distributed. As a result,
the derivatives of the log-likelihood with respect to θd
and the other parameters are particularly simple.

These two factors make it possible to fit the bkn model
using an efficient and exact expectation-maximization (EM)
algorithm, making its inference highly scalable. The bkn
model has another advantage as well:

3. The bkn model is degree-corrected, in that it takes the
observed degrees of the nodes into account when com-
puting the expected number of edges between them.
Thus it recognizes that two documents that have very
different degrees might in fact have the same mix of
topics; one may simply be more popular than the other.

In our work, we use a slight variant of the bkn model
to generate the links, and we use plsa to generate the text.
We present an EM algorithm for inferring the topic mixtures
and other parameters. (While we do not impose a Dirichlet
prior on the topic mixtures, it is easy to add a corresponding
term to the update equations.) Our algorithm is scalable in
the sense that each iteration takes O(K(N +M +R)) time
for networks with K topics, N documents, and M links,
where R is the sum over documents of the number of distinct
words appearing in each one. In practice, our EM algorithm
converges within a small number of iterations, making the
total running time linear in the size of the corpus.
Our model can be used for a variety of learning and gen-

eralization tasks, including document classification or link
prediction. For document classification, we can obtain hard
labels for each document by taking its most-likely topic with
respect to θd, and optionally improve these labels further
with local search. For link prediction, we train the model
using a subset of the links, and then ask it to rank the re-
maining pairs of documents according to the probability of a
link between them. For each task we determine the optimal
relative weight of the content vs. the link information.
We performed experiments on three real-world data sets,

with thousands of documents and millions of words. Our
results show that our algorithm is more accurate, and con-
siderably faster, than previous techniques for both document
classification and link prediction.
The rest of the paper is organized as follows. Section 2 de-

scribes our generative model, and compares it with related
models in the literature. Section 3 gives our EM algorithm

and analyzes its running time. Section 4 contains our exper-
imental results for document classification and link predic-
tion, comparing our accuracy and running time with other
techniques. In Section 5, we conclude, and offer some direc-
tions for further work.

2. OUR MODEL AND PREVIOUS WORK
In this section, we give our proposed model, which we call

the Poisson mixed-topic link model (pmtlm) and its degree-
corrected variant pmtlm-dc.

2.1 The Generative Model
Consider a network of N documents. Each document d

has a fixed length Ld, and consists of a string of words wd`

for 1 ≤ ` ≤ Ld, where 1 ≤ wd` ≤ W where W is the number
of distinct words. In addition, each pair of documents d, d′

has an integer number of links connecting them, giving an
adjacency matrix Add′ . There are K topics, which play the
dual role of the overlapping communities in the network.

Our model generates both the content {wd`} and the links
{Add′} as follows. We generate the content using the plsa
model [18]. Each topic z is associated with a probabil-
ity distribution βz over words, and each document has a
probability distribution θd over topics. For each document
1 ≤ d ≤ N and each 1 ≤ ` ≤ Ld, we independently
choose a topic z = zd` ∼ Multi(θd), and choose the word
wd` ∼ Multi(βz). Thus the total probability that wd` is a
given word w is

Pr[wd` = w] =

K∑
z=1

θdzβzw . (1)

We assume that the number of topics K is fixed. The dis-
tributions βz and θd are parameters to be inferred.

We generate the links using a version of the Ball-Karrer-
Newman (bkn) model [2]. Each topic z is associated with a
link density ηz. For each pair of documents d, d′ and each
topic z, we independently generate a number of links which
is Poisson-distributed with mean θdzθd′zηz. Since the sum of
independent Poisson variables is Poisson, the total number
of links between d and d′ is distributed as

Add′ ∼ Poi

(∑
z

θdzθd′zηz

)
. (2)

Since Add′ can exceed 1, this gives a random multigraph.
In the data sets we study below, Add′ is 1 or 0 depending
on whether d cites d′, giving a simple graph. On the other
hand, in the sparse case the event that Add′ > 1 has low
probability in our model. Moreover, the fact that Add′ is
Poisson-distributed rather than Bernoulli makes the deriva-
tives of the likelihood with respect to the parameters θdz
and ηz very simple, allowing us to write down an efficient
EM algorithm for inferring them.

This version of the model assumes that links are assor-
tative, i.e., that links between documents only form to the
extent that they belong to the same topic. One can easily
generalize the model to include disassortative links as well,
replacing ηz with a matrix ηzz′ that allows documents with
distinct topics z, z′ to link [2].

We also consider degree-corrected versions of this model,
where in addition to its topic mixture θd, each document
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Figure 1: Graphical models for link generation.

has a propensity Sd of forming links. In that case,

Add′ ∼ Poi

(
SdSd′

∑
z

θdzθd′zηz

)
. (3)

We call this variant the Poisson Mixed-Topic Link Model
with Degree Correction (pmtlm-dc).

2.2 Prior Work on Content–Link Models
Most models for document networks generate content us-

ing either plsa [18], as we do, or lda [4]. The distinction
is that plsa treats the document mixtures θd as parame-
ters, while in lda they are hidden variables, integrated over
a Dirichlet distribution. As we show in Section 3, our ap-
proach gives a simple, exact EM algorithm, avoiding the
need for sampling or variational methods. While we do not
impose a Dirichlet prior on θd in this paper, it is easy to add
a corresponding term to the update equations for the EM
algorithm, with no loss of efficiency.
There are a variety of methods in the literature to gener-

ate links between documents. phits-plsa [10], link-lda [13]
and link-plsa-lda [27] use the phits [9] model for link gen-
eration. phits treats each document as an additional term
in the vocabulary, so two documents are similar if they link
to the same documents. This is analogous to a mixture
model for networks studied in [28]. In contrast, block mod-
els like ours treat documents as similar if they link to similar
documents, as opposed to literally the same ones.
The pairwise link-lda model [27], like ours, generates

the links with a mixed-topic block model, although as in
mmsb [1] and lda [4] it treats the θd as hidden variables
integrated over a Dirichlet prior. They fit their model with
a variational method that requires N2 parameters, making
it less scalable than our approach.
In the c-pldc model [32], the link probability from d to

d′ is determined by their topic mixtures θd, θd′ and the pop-
ularity td′ of d

′, which is drawn from a Gamma distribution
with hyperparameters a and b. Thus td′ plays a role sim-
ilar to the degree-correcting parameter Sd′ in our model,
although we correct for the degree of d as well. However,
c-pldc does not generate the content, but takes it as given.

The Relational Topic Model (rtm) [5, 6] assumes that the
link probability between d and d′ depends on the topics of
the words appearing in their text. In contrast, our model
uses the underlying topic mixtures θd to generate both the
content and the links. Like our model, rtm defines the sim-
ilarity of two topics as a weighted inner product of their
topic mixtures: however, in rtm the probability of a link is
a nonlinear function of this similarity, which can be logistic,
exponential or normal, of this similarity.

Although it deals with a slightly different kind of dataset,
our model is closest in spirit to the Latent Topic Hypertext
Model (lthm) [17]. This is a generative model for hypertext
networks, where each link from d to d′ is associated with a
specific word w in d. If we sum over all words in d, the total
number of links Add′ from d to d′ that lthm would generate
follows a binomial distribution

Add′ ∼ Bin

(
Ld, λd′

∑
z

θdzθd′z

)
, (4)

where λd′ is, in our terms, a degree-correction parameter.
When Ld is large this becomes a Poisson distribution with
mean Ldλd′

∑
z θdzθd′z. Our model differs from this in two

ways: our parameters ηz give a link density associated with
each topic z, and our degree correction Sd does not assume
that the number of links from d is proportional to its length.

We briefly mention several other approaches. The au-
thors of [15] extend the probabilistic relational model (prm)
framework and proposed a unified generative model for both
content and links in a relational structure. In [24], the au-
thors proposed a link-based model that describes both node
attributes and links. The htm model [31] treats links as
fixed rather than generating them, and only generates the
text. Finally, the lmmg model [21] treats the appearance or
absence of a word as a binary attribute of each document,
and uses a logistic or exponential function of these attributes
to determine the link probabilities.

In Section 4 below, we compare our model to phits-plsa,
link-lda, c-pldc, and rtm. Graphical models for the link
generation components of these models, and ours, are shown
in Figure 1.

3. A SCALABLE EM ALGORITHM
Here we describe an efficient Expectation-Maximization

algorithm to find the maximum-likelihood estimates of the
parameters of our model. Each update takes O(K(N +M +
R)) time for a document network with K topics, N docu-
ments, and M links, where R is the sum over the documents
of the number of distinct words in each one. Thus the run-
ning time per iteration is linear in the size of the corpus.

For simplicity we describe the algorithm for the simpler
version of our model, pmtlm. The algorithm for the degree-
corrected version, pmtlm-dc, is similar.

3.1 The likelihood
Let Cdw denote the number of times a word w appears in

document d. From (1), the log-likelihood of d’s content is

Lcontent
d = logP (wd1, . . . , wdLd | θd, β)

=

W∑
w=1

Cdw log

(
K∑

z=1

θdzβzw

)
. (5)
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Similarly, from (2), the log-likelihood for the links Add′ is

Llinks = logP (A | θ, η)

=
1

2

∑
dd′

Add′ log

(∑
z

θdzθd′zηz

)

− 1

2

∑
dd′

∑
z

θdzθd′zηz . (6)

We ignore the constant term −
∑

dd′ logAdd′ ! from the de-
nominator of the Poisson distribution, since it has no bearing
on the parameters.

3.2 Balancing Content and Links
While we can use the total likelihood

∑
d L

content
d +Llinks

directly, in practice we can improve our performance signifi-
cantly by better balancing the information in the content vs.
that in the links. In particular, the log-likelihood Lcontent

d of
each document is proportional to its length, while its contri-
bution to Llinks is proportional to its degree. Since a typical
document has many more words than links, Lcontent tends
to be much larger than Llinks.
Following [18], we can provide this balance in two ways.

One is to normalize Lcontent by the length Ld, and another
is to add a parameter α that reweights the relative contribu-
tions of the two terms Lcontent and Llinks. We then maximize

L = α
∑
d

1

Ld
Lcontent

d + (1− α)Llinks . (7)

Varying α from 0 to 1 lets us interpolate between two ex-
tremes: studying the document network purely in terms of
its topology, or purely in terms of the documents’ content.
Indeed, we will see in Section 4 that the optimal value of
α depends on which task we are performing: closer to 0 for
link prediction, and closer to 1 for topic classification.

3.3 Update Equations and Running Time
We maximize L as a function of {θ, β, η} using an EM al-

gorithm, very similar to the one introduced by [2] for over-
lapping community detection. We start with a standard
trick to change the log of a sum into a sum of logs, writing

Lcontent
d ≥

W∑
w=1

Cdw

K∑
z=1

hdw(z) log
θdzβzw

hdw(z)

Llinks ≥ 1

2

∑
dd′

K∑
z=1

Add′qdd′(z) log
θdzθd′zηz
qdd′(z)

− 1

2

∑
dd′

K∑
z=1

θdzθd′zηz . (8)

Here hdw(z) is the probability that a given appearance of w
in d is due to topic z, and qdd′(z) is the probability that a
given link from d and d′ is due to topic z. This lower bound
holds with equality when

hdw(z) =
θdzβzw∑
z′ θdz′βz′w

, qdd′(z) =
θdzθd′zηz∑

z′ θdz′θd′z′ηz′
, (9)

giving us the E step of the algorithm.
For the M step, we derive update equations for the param-

eters {θ, β, η}. By taking derivatives of the log-likelihood (7)

(see the online version for details) we obtain

ηz =

∑
dd′ Add′qdd′(z)(∑

d θdz
)2 (10)

βzw =

∑
d(1/Ld)Cdwhdw(z)∑

d(1/Ld)
∑

w′ Cdw′hdw′(z)
(11)

θdz =
(α/Ld)

∑
w Cdwhdw(z) + (1− α)

∑
d′ Add′qdd′(z)

α+ (1− α)κd
.

(12)

Here κd =
∑

d′ Add′ is the degree of document d.
To analyze the running time, let Rd denote the number

of distinct words in document d, and let R =
∑

d Rd. Then
only KR of the parameters hdw(z) are nonzero. Similarly,
qdd′(z) only appears if Add′ 6= 0, so in a network with M
links only KM of the qdd′(z) are nonzero. The total num-
ber of nonzero terms appearing in (9)–(12), and hence the
running time of the E and M steps, is thus O(K(N+M+R)).

As in [2], we can speed up the algorithm if θ is sparse, i.e.
if many documents belong to fewer than K topics, so that
many of the θdz are zero. According to (9), if θdz = 0 then
hd`(z) = qdd′(z) = 0, in which case (12) implies that θdz = 0
for all future iterations. If we choose a threshold below which
θdz is effectively zero, then as θ becomes sparser we can
maintain just those hd`(z) and qdd′(z) where θdz 6= 0. This
in turn simplifies the updates for η and β in (10) and (11).

We note that the simplicity of our update equations comes
from the fact that the Add′ is Poisson, and that its mean is a
multilinear function of the parameters. Models where Add′

is Bernoulli-distributed with a more complicated link prob-
ability, such as a logistic function, have more complicated
derivatives of the likelihood, and therefore more complicated
update equations.

Note also that this EM algorithm is exact, in the sense

that the maximum-likelihood estimators {θ̂, β̂, η̂} are fixed
points of the update equations. This is because the E step (9)
is exact, since the conditional distribution of topics associ-
ated with each word occurrence and each link is a product
distribution, which we can describe exactly with hdw and
qdd′ . (There are typically multiple fixed points, so in practice
we run our algorithm with many different initial conditions,
and take the fixed point with the highest likelihood.)

This exactness is due to the fact that the topic mixtures
θd are parameters to be inferred. In models such as lda
and mmsb where θd is a hidden variable integrated over a
Dirichlet prior, the topics associated with each word and link
have a complicated joint distribution that can only be ap-
proximated using sampling or variational methods. (To be
fair, recent advances such as stochastic optimization based
on network subsampling [16] have shown that approximate
inference in these models can be carried out quite efficiently.)

On the other hand, in the context of finding communities
in networks, models with Dirichlet priors have been observed
to generalize more successfully than Poisson models such as
bkn [16]. Happily, we can impose a Dirichlet prior on θd
with no loss of efficiency, simply by including pseudocounts
in the update equations—in essence adding additional words
and links that are known to come from each topic. This lets
us obtain a maximum a posteriori (MAP) estimate of an
lda-like model. We leave this as a direction for future work.
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3.4 Discrete Labels and Local Search
Our model, like plsa and the bkn model, lets us infer a

soft classification—a mixture of topic labels or community
memberships for each document. However, we often want to
infer categorical labels, where each document d is assigned
to a single topic 1 ≤ zd ≤ K. A natural way to do this
is to let zd be the most-likely label in the inferred mixture,
ẑd = argmaxz θdz. This is equivalent to rounding θd to a
delta function, θdz = 1 for z = ẑd and 0 for z 6= ẑd.
If we wish, we can improve these discrete labels further

using local search. If each document has just a single topic,
the log-likelihood of our model is

Lcontent
d =

W∑
w=1

Cdw log βzdw (13)

Llinks =
1

2

∑
dd′

Add′ log ηzdzd′ . (14)

Note that here η is a matrix, with off-diagonal entries that al-
low documents with different topics zd, zd′to be linked. Oth-
erwise, these discrete labels would cause the network to split
into K separate components.
Let nz denote the number of documents of topic z, let

Lz =
∑

d:zd=z Ld be their total length, and let Czw =∑
d:zd=z Cdw be the total number of times w appears in

them. Let mzz′ denote the total number of links between
documents of topics z and z′, counting each link twice if
z = z′. Then the MLEs for β and η are

β̂zw =
Czw

Lz
, η̂zz′ =

mzz′

nznz′
. (15)

Applying these MLEs in (13) and (14) gives us a point es-
timate of the likelihood of a discrete topic assignment zd,
which we can normalize or reweight as discussed in Sec-
tion 3.2 if we like. We can then maximize this likelihood
using local search: for instance, using the Kernighan-Lin
heuristic as in [20] or a Monte Carlo algorithm to find a lo-
cal maximum of the likelihood in the vicinity of ẑ. Each step
of these algorithms changes the label of a single document
d, so we can update the values of nz, Lz, Czw, and mzz′ and
compute the new likelihood in O(K+Rd +κd) time. In our
experiments we used the KL heuristic, and found that for
some data sets it noticeably improved the accuracy of our
algorithm for the document classification task.

4. EXPERIMENTAL RESULTS
In this section we present empirical results on our model

and our algorithm for unsupervised document classification
and link prediction. We compare its accuracy and running
time with those of several other methods, testing it on three
real-world document citation networks.

4.1 Data Sets
The top portion of Table 1 lists the basic statistics for

three real-world corpora [29]: Cora, Citeseer, and PubMed1.
Cora and Citeseer contain papers in machine learning, with
K = 7 topics for Cora and K = 6 for Citeseer. PubMed
consists of medical research papers on K = 3 topics, namely
three types of diabetes. All three corpora have ground-truth
topic labels provided by human curators.

1These data sets are available for download at http://www.
cs.umd.edu/projects/linqs/projects/lbc/

The data sets for the three corpora are slightly different.
PubMed contains the number of times Cdw each word ap-
peared in each document, while Cora and Citeseer record
whether or not a word occurred at least once in the docu-
ment. For Cora and Citeseer, we treat Cdw as 0 or 1.

4.2 Models and Implementations
We compare the Poisson Mixed-Topic Link Model (pmtlm)

and its degree-corrected variant, denoted pmtlm-dc, with
phits-plsa, link-lda, c-pldc, and rtm (see Section 2.2).
We used our own implementation of both phits-plsa and
rtm. For rtm, we implemented the variational EM algo-
rithm given in [6]. The implementation is based on the lda
code available from the authors2. We also tried the code
provided by J. Chang3, which uses a Monte Carlo algorithm
for the E step, but we found the variational algorithm works
better on our data sets. While rtm includes a variety of link
probability functions, we only used the sigmoid function.
We also assume a symmetric Dirichlet prior. The results for
link-lda and c-pldc are taken from [32].

Each E and M step of the variational algorithm for rtm
performs multiple iterations until they converge on estimates
for the posterior and the parameters [6]. This is quite dif-
ferent from our EM algorithm: since our E step is exact, we
update the parameters only once in each iteration. Our con-
vergence condition for the E step and for the entire EM al-
gorithm are that the fractional increase of the log-likelihood
between iterations is less than 10−6; we performed a maxi-
mum of 50 iterations in each E step and a maximum of 500
EM iterations for the entire algorithm. To optimize the η
parameters (see the graphical model in Section 2.2) rtm uses
a tunable regularization parameter ρ, which can be thought
of as the number of observed non-links. We tried various set-
tings for ρ, namely 0.1M, 0.2M, 0.5M,M, 2M, 5M and 10M
where M is the number of observed links, and tuned ρ sep-
arately for each data set and each task. We used gradient
descent to optimize the η parameters in each M step.

As described in Section 3.2, for pmtlm, pmtlm-dc and
phits-plsa we vary the relative weight α of the likelihood
of the content vs. the links, tuning α to its best possible
value for each data set and each task. For the PubMed data
set, we also normalized the content likelihood by the length
of the documents.

4.3 Document Classification

4.3.1 Experimental Setting
For pmtlm, pmtlm-dc and phits-plsa, we performed 500

independent runs of the EM algorithm, each with random
initial values of the parameters and topic mixtures. For each
run we iterated the EM algorithm up to 5000 times; we found
that it typically converges in fewer iterations, with the crite-
rion that the fractional increase of the log-likelihood for two
successive iterations is less than 10−7. Figure 2 shows that
the log-likelihood as a function of the number of iterations
are quite similar for all three data sets, even though these
corpora have very different sizes. This indicates that even
for large data sets, our algorithm converges within a small
number of iterations, making its total running time linear in
the size of the corpus.

2See http://www.cs.princeton.edu/~blei/lda-c/
3See http://www.cs.princeton.edu/~blei/lda/
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are the initial and final log-likelihood for 5000 EM
iterations. Each points is the average over 100 in-
dependent runs. In both models and all three data
sets, we approach 1 after just 1000 iterations, show-
ing that the convergence time is roughly constant as
a function of the size of the corpus.

For pmtlm and pmtlm-dc, we obtain discrete topic la-
bels by running our EM algorithm and rounding the topic
mixtures as described in Section 3.4. We also tested improv-
ing these labels with local search, using the Kernighan-Lin
heuristic to change the label of one document at a time until
we reach a local optimum of the likelihood. More precisely,
of those 500 runs, we took the T best fixed points of the EM
algorithm (i.e., with the highest likelihood) and attempted
to improve them further with the KL heuristic. We used
T = 50 for Cora and Citeseer and T = 5 for PubMed.
For rtm, in each E step, we initialize the variational pa-

rameters randomly, and in each M step we initialize the hy-
perparameters randomly. We execute 500 independent runs
for each setting of the tunable parameter ρ.

4.3.2 Metrics
For each algorithm, we used several measures of the accu-

racy of the inferred labels as compared to the human-curated
ones. The Normalized Mutual Information (NMI) between
two labelings C1 and C2 is defined as

NMI(C1, C2) =
MI(C1, C2)

max(H(C1),H(C2))
. (16)

Here MI(C1, C2) is the mutual information between C1 and
C2, and H(C1) and H(C2) are the entropies of C1 and C2

respectively. Thus the NMI is a measure of how much infor-
mation the inferred labels give us about the true ones. We
also used the Pairwise F-measure (PWF) [3] and the Varia-
tion of Information (VI) [25] (which we wish to minimize).

4.3.3 Results
The best NMI, VI, and PWF we observed for each algo-

rithm are given in Table 2, where for link-lda and c-pldc
we quote results from [32]. The metrics of NMI and PWF
used in [32] are identical to ours. For algorithms with tun-
able parameters, including ours, phits-plsa and rtm, we
tuned them based on the entire data set in order to measure
its best possible performance. Of course, in practice one
would tune these parameters based on partial knowledge,

Cora Citeseer PubMed

Statistics

K 7 6 3
N 2,708 3,312 19,717
M 5,429 4,608 44,335
W 1,433 3,703 4,209
R 49,216 105,165 1,333,397

Time (sec)

EM (plsa) 28 61 362
EM (phits-plsa) 40 67 445
EM (pmtlm) 33 64 419
EM (pmtlm-dc) 36 64 402
EM (rtm) 992 597 2,194
KL (pmtlm) 375 618 13,723
KL (pmtlm-dc) 421 565 13,014

Table 1: The statistics of the three data sets, and
the mean running time, for the EM algorithms in
our model PMTLM, its degree-corrected variant
PMTLM-DC, and PLSA, PHITS-PLSA, and RTM.
Each corpus has K topics, N documents, M links, a
vocabulary of size W , and a total size R. Running
times for our algorithm, PLSA, and PHITS-PLSA
are given for one run of 5000 EM iterations. Run-
ning times for RTM consist of up to 500 EM itera-
tions, or until the convergence criteria are reached.
Our EM algorithm is highly scalable, with a running
time that grows linearly with the size of the corpus.
In particular, it is much faster than the variational
algorithm for RTM. Improving discrete labels with
the Kernighan-Lin heuristic (KL) increases our al-
gorithm’s running time, but improves its accuracy
for document classification in Cora and Citeseer.

such as the topics of a validation set of documents, and then
use those parameter values to generalize to the test set.

We see that even without the additional step of local
search, our algorithm does very well, outperforming all other
methods we tried on Citeseer and PubMed and all but c-pldc
on Cora. (Note that we did not test link-lda or c-pldc on
PubMed.) Degree correction (pmtlm-dc) improves accu-
racy significantly for PubMed.

Refining our labeling with the KL heuristic improved the
performance of our algorithm significantly for Cora and Cite-
seer, giving us a higher accuracy than all the other methods
we tested. For PubMed, local search did not increase accu-
racy in a statistically significant way. In fact, on some runs
it decreased the accuracy slightly compared to the initial
labeling ẑ obtained from our EM algorithm; this is coun-
terintuitive, but it shows that increasing the likelihood of a
labeling in the model can decrease its accuracy.

In Figure 3, we show how the performance of pmtlm,
pmtlm-dc, and phits-plsa varies as a function of α, the
relative weight of content vs. links. Recall that at α = 0
these algorithms label documents solely on the basis of their
links, while at α = 1 they only pay attention to the content.
Each point consists of the top 20 runs with that value of α.

Figure 3 also shows that the optimal α and its sensitiv-
ity to performance differs between data sets. For Cora and
Citeseer, there is an intermediate value of α at which pmtlm
and pmtlm-dc have the best accuracy. However, this peak
is fairly broad, showing that we do not have to tune α very
carefully. For PubMed, where we also normalized the con-
tent information by document length, pmtlm-dc performs
best at a particular value of α.
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Cora Citeseer PubMed

Algorithm NMI VI PWF NMI VI PWF NMI VI PWF

phits-plsa 0.382 (.4) 2.285 (.4) 0.447 (.3) 0.366 (.5) 2.226 (.5) 0.480 (.5) 0.233 (1.0) 1.633 (1.0) 0.486 (1.0)
link-lda 0.359† — 0.397† 0.192† — 0.305† — — —
c-pldc 0.489† — 0.464† 0.276† — 0.361† — — —

rtm 0.349 2.306 0.422 0.369 2.209 0.480 0.228 1.646 0.482
pmtlm 0.467 (.4) 1.957 (.4) 0.509 (.3) 0.399 (.4) 2.106 (.4) 0.509 (.3) 0.232 (.9) 1.639 (1.0) 0.486 (.9)

pmtlm (kl) 0.514 (.4) 1.778 (.4) 0.525 (.4) 0.414 (.6) 2.057 (.6) 0.518 (.5) 0.233 (.9) 1.642 (.9) 0.488 (.9)
pmtlm-dc 0.474 (.3) 1.930 (.3) 0.498 (.3) 0.402 (.3) 2.096 (.3) 0.518 (.3) 0.270 (.8) 1.556 (.8) 0.496 (.8)

pmtlm-dc (kl) 0.491 (.3) 1.865 (.3) 0.511 (.3) 0.406 (.3) 2.084 (.3) 0.520 (.3) 0.260 (.8) 1.577 (.8) 0.492 (.8)

Table 2: The best normalized mutual information (NMI), variational of information (VI) and pairwise F-
measure (PWF) achieved by each algorithm. Values marked by † are quoted from [32]; other values are based
on our implementation. The best values are shown in bold; note that we seek to maximize NMI and PWF,
and minimize VI. For PHITS-PLSA, PMTLM, and PMTLM-DC, the number in parentheses is the best value
of the relative weight α of content vs. links. Refining the labeling returned by the EM algorithm with the
Kernighan-Lin heuristic is indicated by (KL).

We compare the running time of these algorithms, includ-
ing pmtlm and pmtlm-dc with and without the kl heuris-
tic, in Table 1. For algorithms with tunable parameters, we
show the running time for a single value of that parameter.
For our algorithms and phits-plsa, we show the running
time for α = 0.5, giving the content and the links equal
weight. We see that our EM algorithm is much faster than
the variational EM algorithm for rtm, and is scalable in that
it grows linearly with the size of the corpus.

4.4 Link Prediction
Link prediction (e.g. [8, 22, 34]) is a natural generalization

task in networks, and another way to measure the quality of
our model and our EM algorithm. Based on a training set
consisting of a subset of the links, our goal is to rank all pairs
without an observed link according to the probability of a
link between them. For our models, we rank pairs according
to the expected number of links Add′ in the Poisson distri-
bution, (2) and (3), which is monotonic in the probability
that at least one link exists.
We can then predict links between those pairs where this

probability exceeds some threshold. Since we are agnostic
about this threshold and about the cost of Type I vs. Type
II errors, we follow other work in this area by defining the
accuracy of our model as the AUC, i.e. the probability that
a random true positive link is ranked above a random true
non-link. Equivalently, this is the area under the receiver op-
erating characteristic curve (ROC). Our goal is to do better
than the baseline AUC of 1/2, corresponding to a random
ranking of the pairs.
We carried out 10-fold cross-validation, in which the links

in the original graph are partitioned into 10 subsets with
equal size. For each fold, we use one subset as the test
links, and train the model using the links in the other 9
folds. We evaluated the AUC on the held-out links and
the non-links. For Cora and Citeseer, all the non-links are
used. For PubMed, we randomly chose 10% of the non-
links for comparison. We trained the models with the same
settings as those for document classification in Section 4.3;
we executed 100 independent runs for each test. Note that
unlike the document classification task, here we used the full
topic mixtures to predict links, not just the discrete labels
consisting of the most-likely topic for each document.

Note that pmtlm-dc assigns Sd to be zero if the degree of
d is zero. This makes it impossible for d to have any test link
with others if its observed degree is zero in the training data.
One way to solve this is to assign a small positive value to
Sd even if d’s degree is zero. Our approach assigns Sd to be
the smallest value among those Sd′ that are non-zero.

Figure 4(a) gives the AUC values for pmtlm and pmtlm-dc
as a function of the relative weight α of content vs. links.
The green horizontal line in each of those subplots represent
the highest AUC value achieved by the rtm model for each
data set, using the best value of ρ among those specified
in Section 4.3. Note that the optimal value of the tunable
parameters is task-dependent: the optimal value ρ in rtm,
or α in our algorithms and phits-plsa, is not necessarily the
same for link prediction as it is for document classification.
Interestingly, for Cora and Citeseer the optimal value of α
is smaller than in Figure 3, showing that content is less im-
portant for link prediction than for document classification.
Thus, according to our experiments on both document clas-
sification and link prediction, the best choice of α depends
not only on the data set, but also on the task.

We also plot the receiver operating characteristic (ROC)
curves and precision-recall curves that achieve the highest
AUC values in Figure 4(b) and Figure 4(c) respectively. We
see that, for all three data sets, our models outperform rtm,
and that the degree-corrected model pmtlm-dc is signifi-
cantly more accurate than the uncorrected one.

5. CONCLUSIONS
We have introduced a new generative model for document

networks. It is a marriage between Probabilistic Latent Se-
mantic Analysis [18] and the Ball-Karrer-Newman mixed
membership block model [2]. Because of its mathematical
simplicity, its parameters can be inferred with a particu-
larly simple and scalable EM algorithm. Our experiments
on document classification and link prediction show that it
achieves high accuracy and efficiency for a variety of data
sets, outperforming other methods. In future work, we plan
to apply it to other tasks including semisupervised learn-
ing and content prediction, i.e., predicting the presence or
absence of words in a document based on its links to other
documents and/or a subset of its text.
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Figure 3: The accuracy of PMTLM, PMTLM-DC, and PHITS-PLSA on the document classification task,
measured by the NMI, as a function of the relative weight α of the content vs. the links. At α = 0 these
algorithms label documents solely on the basis of their links, while at α = 1 they pay attention only to the
content. For Cora and Citeseer, there is a broad range of α that maximizes the accuracy. For PubMed, the
degree-corrected model PMTLM-DC performs best at a particular value of α.
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(b) ROC curves achieving the highest AUC values.
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(c) Precision-recall curves achieving the highest AUC values.

Figure 4: Performance on the link prediction task. For all three data sets and all the α values, the PMTLM-DC
model achieves higher accuracy than the PMTLM model. In contrast to Figure 3, for this task the optimal
value of α is relatively small, showing that the content is less important, and the topology is more important,
for link prediction than for document classification. The green line in Figure 4(a) indicates the highest AUC
achieved by the RTM model, maximized over the tunable parameter ρ. Our models outperform RTM on all
three data sets. In addition, the degree-corrected model (PMTLM-DC) does significantly better than the
uncorrected version (PMTLM).
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