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ABSTRACT
There has been an explosion in the amount of digital text
information available in recent years, leading to challenges
of scale for traditional inference algorithms for topic mod-
els. Recent advances in stochastic variational inference al-
gorithms for latent Dirichlet allocation (LDA) have made it
feasible to learn topic models on very large-scale corpora,
but these methods do not currently take full advantage of
the collapsed representation of the model. We propose a
stochastic algorithm for collapsed variational Bayesian in-
ference for LDA, which is simpler and more efficient than
the state of the art method. In experiments on large-scale
text corpora, the algorithm was found to converge faster and
often to a better solution than previous methods. Human-
subject experiments also demonstrated that the method can
learn coherent topics in seconds on small corpora, facilitat-
ing the use of topic models in interactive document analysis
software.

Categories and Subject Descriptors
I.5.1 [Models]: Statistical; I.2.7 [Natural Language Pro-
cessing]: Text analysis

General Terms
Algorithms, Experimentation, Performance
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Topic models, variational inference, stochastic learning

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD’13, August 11–14, 2013, Chicago, Illinois, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2174-7/13/08 ...$15.00.

1. INTRODUCTION
Topic models such as latent Dirichlet allocation (LDA)

[7] are now widely used in modern machine learning. Infer-
ence algorithms for topic models provide a low-dimensional
representation of text corpora that is typically semantically
meaningful, despite being completely unsupervised. Their
use has spread beyond machine learning to become a stan-
dard analysis tool for researchers in many fields [15, 4, 8]. In
the internet era, there is a need for tools to learn topic mod-
els at the “web scale”, especially in an industrial setting. For
example, news aggregators such as Yahoo! News publish a
continually updated stream of online articles. These applica-
tions need to analyze candidate articles for topical diversity
and relevance to current trends, which can be facilitated by
topic models [1].

In this context it would be useful to have the tools to
build topic models that scale to such large corpora, taking
advantage of the large amounts of available data to create
models that are both more complex (e.g. have more topics)
and more accurate. Traditional inference techniques such
as Gibbs sampling and variational inference do not readily
scale to corpora containing millions of documents or more.
In such cases it is very time-consuming to run even a single
iteration of the standard collapsed Gibbs sampling [12] or
variational Bayesian inference algorithms [7], let alone run
them until convergence. For these algorithms, the first few
passes through the data are inhibited by randomly initialized
values of the parameters and latent variables which misin-
form the updates, so multiple such expensive iterations are
required to learn the topics.

A significant recent advance was made by Hoffman et al.
[13], who proposed a stochastic variational inference algo-
rithm for LDA topic models. Because the algorithm does
not need to see all of the documents before updating the
topics, this method can often learn good topics before a sin-
gle iteration of the traditional batch inference algorithms
would be completed. The algorithm processes documents in
an online fashion, so it can be applied to corpora of any size,
or even to never-ending streams of documents. A more scal-
able variant of this algorithm was proposed by Mimno et al.
[16], which approximates the gradient updates in a sparse
way in order to improve performance for larger vocabularies
and greater numbers of topics.
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A complementary direction that has been useful for im-
proving inference in LDA is to take advantage of its “col-
lapsed” representation, where parameters are marginalized
out, leaving only latent variables. It is possible to perform
inference in the collapsed space and recover estimates of the
parameters afterwards. For inference techniques that oper-
ate in a batch setting, the algorithms that operate in the
collapsed space are more efficient at improving held-out log
probability than their uncollapsed counterparts, both per
iteration and in wall-clock time per iteration [12, 24, 3].
Reasons for this advantage include the per-token updates
which propagate updated information sooner, simpler up-
date equations, fewer parameters to update, no expensive
calls to the digamma function, and the avoidance of tightly
coupled pairs of parameters which inhibit mixing for Gibbs
sampling [10, 3, 24]. For variational inference, perhaps the
most important advantage of the collapsed representation is
that the variational bound is strictly better than that for
the uncollapsed representation, leading to the potential for
collapsed variational algorithms to learn more accurate topic
models than uncollapsed variational algorithms [24]. Exist-
ing online inference algorithms for LDA do not fully take
advantage of the collapsed representation. An exception is
the sparse online LDA algorithm of Mimno et al. [16] which
collapses out per-document parameters θ, however the topics
themselves are not collapsed out.

In this work, we develop a stochastic algorithm for LDA
that operates fully in the collapsed space, thus transferring
the aforementioned advantages of collapsed inference to the
online setting. This facilitates learning topic models both
more accurately and more quickly on large datasets. The
proposed algorithm is also very simple to implement, re-
quiring only basic arithmetic operations. In addition to ex-
periments on large datasets, we also explore the benefit of
our method on small problems, showing that it is feasible to
learn human-interpretable topics in seconds.

2. BACKGROUND
Probabilistic topic models such as LDA [7] use latent vari-

ables to encode co-occurrence patterns between words in
text corpora and other bag-of-words data. In the LDA
model, there are K topics φk, k ∈ {1, . . . ,K}, each of which
are discrete distributions over words (see Table 1 for relevant
notation). For example, a topic on baseball might give high
probabilities to words such as “pitcher,” “bat” and “base”.
The assumed generative process for the LDA model is

Generate each topic φk ∼ Dirichlet(η), k ∈ {1, . . . ,K}
For each document j

Generate a distribution over topics θj ∼ Dirichlet(α)
For each word i in document j

Sample a topic zij ∼ Discrete(θj)
Sample the word wij ∼ Discrete(φzij )

To scale LDA inference to very large datasets, a stochastic
variational inference algorithm was proposed by Hoffman et
al. [13]. We will discuss its more general form [14], which ap-
plies to graphical models whose parameters can be split into
“global” parameters G and “local” parameters Lj pertain-
ing to each data point xj , and whose complete conditional
distributions for each variable are exponential family distri-
butions. The algorithm examines one data point at a time
to learn that data point’s local variational parameters, such
as θj in LDA. It then updates global variational parameters,

K Number of topics
D Number of documents
C Number of words in corpus
Cj Number of words in document j
zij Topic for (i, j), the ith word of the jth document
wij Dictionary index for word (i, j)
θj Distribution over topics for document j, K × 1
φk Distribution over words for topic k, W × 1
α Dirichlet prior parameters for θ, K × 1
η Dirichlet prior parameters for Φ, W × 1
γij Variational distribution for word (i, j), 1×K
NΘ Expected topic counts per document, D ×K
NΦ Expected topic counts per word, W ×K
NZ Expected topic counts overall, 1×K

Y(ij) Estimate of NΦ based only on word (i, j), W ×K
M Minibatch, a set of documents

N̂Φ Estimate of NΦ from current minibatch, W ×K

N̂Z Estimate of NZ from current minibatch, 1×K
ρΘt Step size for NΘ at timestep t
ρΦt Step size for NΦ and NZ at timestep t
waj Dictionary index for ath distinct word of j
maj Count of ath distinct word of j
γaj Variational dist. for ath distinct word of j, 1×K

Table 1: Summary of notation

Algorithm 1 Stochastic Variational Inference (Hoffman et
al.)

• Input: Data points x1, . . . , xD (e.g. word count his-
tograms for documents), step sizes ρt, t = 1 : m (where
m is the maximum number of iterations)

• Randomly initialize “global” (e.g. topic) parameters G
• For t = 1 : m

– Select a random data point xj , j ∈ {1, . . . , D}
– Compute“local” (e.g. document-level) variational

parameters Lj

– Ĝ = DLj

– G := (1− ρt)G+ ρtĜ

such as topics φk, via a stochastic natural gradient update.
Their general scheme is given in Algorithm 1.

For an appropriate local update and sequence of step sizes
ρ, this algorithm is guaranteed to converge to the optimal
variational solution [14]. In the case of LDA, let λk be the
parameter vector for a variational Dirichlet distribution on
topic φk. For each document j, the method computes vari-
ational distributions for both the topic assignments and the
document’s distribution over topics using regular VB up-
dates. These values are then used to update the topics.
Specifically, for each topic k the algorithm computes λ̂k, an
estimate of what λk would be if all D documents were iden-
tical to document j. The algorithm then updates the λk’s
via a natural gradient update, which takes the form

λk := (1− ρt)λk + ρtλ̂k . (1)

In a somewhat broader context, the online EM algorithm
of Cappe and Moulines [9] is another general-purpose method
for learning latent variable models in an online setting. This
EM algorithm alternates between a standard M-step which
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maximizes the EM lower bound with respect to parameters
θ, and a stochastic expectation step, which updates expo-
nential family sufficient statistics s with an online average

s := (1− ρt)s+ ρtŝ(Yn+1; θ) , (2)

with Yn+1 being a new data point, θ being the current pa-
rameters, and ŝ(Yn+1; θ) being an estimate of the sufficient
statistics based on these values.

In this article, we show how to perform stochastic varia-
tional inference in the collapsed representation of LDA, us-
ing an algorithm inspired by both the online algorithms of
Hoffman et al. and Cappe and Moulines. This new algo-
rithm takes advantage of a fast collapsed inference method
called“CVB0”[3] to further improve the efficiency of stochas-
tic LDA inference.

2.1 CVB0
In the collapsed representation of LDA, we marginalize

out topics Θ and distributions over topics Φ, and perform
inference only on the topic assignments Z. The collapsed
variational Bayesian inference (CVB) approach of Teh et al.
[24] maintains variational discrete distributions γij over the
K topic assignment probabilities for each word i in each
document j. The coordinate ascent updates to optimize
the evidence lower bound with respect to γ are intractable.
Nonetheless, Teh et al. showed that an algorithm using ap-
proximate updates works well in practice, outperforming the
classical VB algorithm in terms of prediction performance.
Asuncion et al. [3] later showed that a simpler version of this
method called CVB0, based on additional approximations,
is much faster while still maintaining the accuracy of CVB.
The CVB0 algorithm iteratively updates each γij via

γijk :∝
NΦ¬ij

wijk
+ ηwij

NZ¬ij
k +

∑
w ηw

(NΘ¬ij
jk + αk) (3)

for each topic k, with wij corresponding to the word index
for the jth document’s ith word, and where a :∝ b denotes
that a is assigned to be proportional to b. The NZ , NΘ and
NΦ variables, henceforth referred to as the CVB0 statistics,
are variational expected counts corresponding to their in-
dices, and the ¬ij superscript indicates the exclusion of the
current value of γij . Specifically, NZ is the vector of ex-
pected number of words assigned to each topic, NΘ

j is the
equivalent vector for document j only, and each entry w, k
of matrix NΦ is the expected number of times word w is
assigned to topic k across the corpus,

NZ
k �

∑

ij

γijk NΘ
jk �

∑

i

γijk NΦ
wk �

∑

ij:wij=w

γijk .

(4)

Note that NΘ
j +α is an unnormalized variational estimate

of the posterior mean of document j’s distribution over top-
ics θj , and column k ofNΦ+η is an unnormalized variational
estimate of the posterior mean of topic φk.

CVB0 is currently the fastest known technique for LDA
inference for single-core batch inference in terms of conver-
gence rate [3]. It is also as simple to implement as collapsed
Gibbs sampling, and has a very similar update procedure
except that the update is deterministic. Sato and Naka-
gawa [22] showed that the terms in the CVB0 update can
be understood as optimizing the α-divergence, with different

values of α for each term. The α-divergence is a generaliza-
tion of the KL-divergence that variational Bayes minimizes,
and optimizing it is known as power expectation propagation
[17]. A disadvantage of CVB0 is that the memory require-
ments are large as it needs to store a variational distribution
γ for every token in the corpus (although this can be im-
proved slightly by “clumping” every occurrence of a specific
word in each document together and storing a single γ for
them).

3. STOCHASTIC CVB0
Given the discussion above, a desirable stochastic algo-

rithm would be one that exploits both (a) the efficiency and
simplicity of CVB0, and (b) the improved variational bound
of the collapsed representation. Such an algorithm should
not need to maintain the γ variables, thus circumventing
the memory requirements of CVB0. It should also be able
to provide an estimate for the topics when only a subset of
the data have been visited. Recall that the CVB0 statistics
NZ , NΘ and NΦ are all that are needed to both perform a
CVB0 update and to recover estimates of the topics. Given
this, we wish to estimate the CVB0 statistics based only on
the subset of tokens we have observed.

Suppose we have seen a token wij , and its associated γij .
The information this gives us about the statistics depends on
how the token was drawn. If the token was drawn uniformly
at random from all of the tokens in the corpus, the expected
value of NZ with respect to the sampling distribution is
Cγij , where C is the number of words in the corpus. For
the same sampling procedure, the expectation of the word-
topic expected counts matrix NΦ is CY(ij), where Y(ij) is a
W ×K matrix with the wijth row being γij and with zeros
in the other entries. Now if the token was drawn uniformly
from the tokens in document j, the expected value of NΘ

j is

Cjγij , where Cj is the length of document j.1

Since we may not maintain the γ’s, we cannot perform
these sampling procedures directly. However, with a current
guess at the CVB0 statistics we can update a token’s varia-
tional distribution, and observe its new value. We can then
use this γij to improve our estimate of the CVB0 statistics.
This suggests an iterative procedure, alternating between a
“maximization” step, approximately optimizing the evidence
lower bound with respect to a particular γij via CVB0, and
an “expectation” step, where we update the expected count
statistics to take into account the new γij . As the algorithm
continues, the γij ’s we observe will change, so we cannot
simply average them. Instead, we can follow Cappe and
Moulines [9] and perform an online average of these statis-
tics via Equation 2.

In the proposed algorithm, we process the corpus one to-
ken at a time, examining the tokens from each document in
turn. For each token, we first compute a new γij . We do
not store the γ’s, but compute (updated versions of) them
as needed via CVB0. This means we must make a small ad-
ditional approximation in that we cannot subtract current
values of γij in Equation 3. With large corpora and large
documents this difference is negligible. The update becomes

1Other sampling schemes are possible, which would lead to
different algorithms. For example, one could sample from
the set of tokens with word index w to estimate NΦ

w. Our
choice leads to an algorithm that is practical in the online
setting.
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γijk :∝ NΦ
wijk

+ ηwij

NZ
k +

∑
w ηw

(NΘ
jk + αk) . (5)

We then use this to re-estimate our CVB0 statistics. We
use one sequence of step-sizes ρΦ for NΦ and NZ , and an-
other sequence ρΘ for NΘ. While we are processing ran-
domly ordered tokens i of document j, we are effectively
drawing random tokens from it, so the expectation of NΘ

j is

Cjγij . We update NΘ
j with an online average of the current

value and its expected value,

NΘ
j := (1− ρΘt )N

Θ
j + ρΘt Cjγij . (6)

Although we process one document at a time, we even-
tually process all of the words in the corpus. So for the
purposes of updating NΦ and NZ , in the long-run the algo-
rithm is effectively drawing tokens from the entire corpus.
The expected NΦ after observing one γij is CY(ij), and the
expected NZ is Cγij . In practice, it is too expensive to
update the entire NΦ after every token, suggesting the use
of minibatch updates. The expected NΦ after observing a
minibatch M is the average of the per-token estimates, and
similarly for NZ , leading to the updates:

NΦ := (1− ρΦt )N
Φ + ρΦt N̂

Φ (7)

NZ := (1− ρΦt )N
Z + ρΦt N̂

Z (8)

where N̂Φ = C
|M|

∑
ij∈M Y(ij) and N̂Z = C

|M|
∑

ij∈M γij .

Depending on the lengths of the documents and the num-
ber of topics, it may also be beneficial to perform a small
number of extra passes to learn the document statistics be-
fore updating the topic statistics. We found empirically that
one such burn-in pass was sufficient in all of the datasets we
tried in our experiments. Pseudo-code for the algorithm,
which we refer to as “Stochastic CVB0” (SCVB0) is given in
Algorithm 2.

Algorithm 2 Stochastic CVB0

• Randomly initialize NΦ, NΘ; NZ :=
∑

w NΦ
w

• For each minibatch M

– N̂Φ := 0; N̂Z := 0
– For each document j in M

• For zero or more “burn-in” passes

– For each token i

• Update γij (Equation 5)
• Update NΘ

j (Equation 6)

• For each token i

– Update γij (Equation 5)
– Update NΘ

j (Equation 6)

– N̂wij := N̂wij +Cγij

– N̂Z := N̂Z +Cγij

– Update NΦ (Equation 7)
– Update NZ (Equation 8)

An optional additional optimization of the above algo-
rithm is to only perform one update for each distinct token
in each document, and scale the update by the number of
copies in the document. This process, often called “clump-
ing,” is standard practice for fast implementations of all LDA

inference algorithms (e.g. see Teh et al. [24] and Jonathan
Chang’s R package for LDA2), though it is only exact for
uncollapsed algorithms, where the zij ’s are D-separated by
θj . Suppose we have observed waj , which occurs maj times
in document j. Plugging Equation 6 into itself maj times
and noticing that all but one of the resulting terms form a
geometric series, we can see that performing maj updates
for NΘ

j while holding γaj fixed is equivalent to

NΘ
j := (1− ρΘt )

majNΘ
j + Cjγaj(1− (1− ρΘt )

maj ) . (9)

4. EXPERIMENTS
This section describes an experimental analysis of the

proposed SCVB0 algorithm, with direct comparison to the
stochastic variational Bayes algorithm of Hoffman et al.,
hereafter referred to as SVB. As well as performing an anal-
ysis on several large-scale problems, we also investigate the
effectiveness of the stochastic LDA inference algorithms at
learning topics in near real-time on small corpora.

4.1 Large-Scale Experiments
We studied the performance of the algorithms on three

large corpora. The corpora are:

• PubMed Central : A corpus of full-text scientific arti-
cles from the open-access PubMed Central database of
scientific literature in the biomedical and life sciences.3

After processing to remove stopwords and words oc-
curring less than 300 times, the corpus contained ap-
proximated 320M tokens across 165,000 articles, with
a vocabulary size of around 38,500 words.

• New York Times: A corpus containing 1.8 million arti-
cles from the New York Times, published between 1987
and 2007. After removing stopwords and words occur-
ring less than 500 times, the corpus had a dictionary
of about 50,000 words and contained 475M distinct
tokens.

• Wikipedia: This collection contains 4.6 million articles
from the online encyclopedia Wikipedia. We used the
dictionary of 7,700 words extracted by Hoffman et al.
for their experiments on an earlier extracted Wikipedia
corpus. There were 811M tokens in the corpus.

We explored predictive performance versus wall-clock time
for both SCVB0 and SVB. To compare the algorithms fairly,
we implemented both of them in the fast high-level language
Julia [6]. Our implementation of SVB closely follows the
python implementation provided by Hoffman, and has sev-
eral optimizations not mentioned in the original paper in-
cluding handling the latent topic assignments z implicitly,
“clumping” of like tokens, and sparse updates of the topic
matrix. The SCVB0 algorithm was implemented as it is
written in Algorithm 2, using the clumping optimization but
with no additional algorithmic optimizations. Specifically,
neither implementation used the complicated optimizations
taking advantage of sparsity that are exploited by the Vow-
pal Wabbit implementation of SVB4 and in the variant of

2http://cran.r-project.org/web/packages/lda/
3http://www.ncbi.nlm.nih.gov/pmc/tools/ftp/
4https://github.com/JohnLangford/vowpal_wabbit/wiki
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SVB proposed by Mimno [16]. Instead, our implementa-
tions represent a “best-effort” attempt to implement each
algorithm efficiently yet following the spirit of the original
pseudo-code.

In all experiments, each algorithm was trained using mini-
batches of size 100. We used a step-size schedule of s

(τ+t)κ

for document iteration t, with s = 10, τ = 1000 and κ = 0.9.
For SCVB0, the document parameters were updated using
the same schedule with s = 1, τ = 10 and κ = 0.9, with
t referring to the word iteration of the current document.
We used LDA hyper-parameters α = 0.1 and η = 0.01 for
SCVB0. For SVB, we tried both these same hyperparame-
ter values as well as shifting by 0.5 as recommended by [3]
to compensate for the implicit bias in how uncollapsed VB
treats hyper-parameters. We used a single pass to learn doc-
ument parameters for SCVB0, and tried both a single pass
and five passes for SVB.

For each experiment we held out 10,000 documents and
trained on the remaining documents. We split each test
document in half, estimated document parameters on one
half and computed the log-probability of the remaining half
of the document. Figures 1(a) through 1(c) show held-out
log-likelihood versus wall-clock time for each algorithm. In
the figures, SVB-Bx-Oy corresponds to running SVB with x
“burn-in” passes per document and with hyper-parameters
offset from α = 0.1 and η = 0.01 by y.

For the PubMed Central data, we found that all algo-
rithms perform similarly after about an hour, but prior to
that SCVB0 is better, indicating that SCVB0 makes bet-
ter use of its time. All algorithms perform similarly per-
iteration (see Figure 2), but SCVB0 is able to benefit by
processing more documents in the same amount of time.
The per-iteration plots for the other datasets were similar.

Our experiments show that SCVB0 shows a more sub-
stantial benefit when employed on larger datasets. For both
the New York Times and Wikipedia datasets (which are
each significantly larger than the PubMed Central dataset
in terms of the number of documents), SCVB0 converged
to a better solution than SVB for any of its parameter set-
tings. Furthermore, SCVB0 outperforms SVB throughout
the run. The superior performance of SCVB0 over the un-
collapsed SVB method is consistent with the fact that the
variational bound for the collapsed representation is strictly
better than the bound for the uncollapsed representation of
LDA [24].

For completeness, we also compared SCVB0 to the batch
VB algorithm on the Wikipedia dataset (Figure 3); other
standard batch algorithms such as Gibbs sampling tend to
perform similarly to VB at convergence, particularly if the
hyper-parameters are learned for each algorithm [3]. Note
that it was not possible to perform even a single iteration of
batch VB on the full dataset in the allotted time of twelve
hours. Following Hoffman et al., we show instead the per-
formance of the algorithms on subsets of the data. This
facilitates faster convergence, but reduces the quality of the
final solution as the algorithms are consequently unable to
exploit all of the data. In contrast, the stochastic algorithms
are able to make use of large datasets while still converging
quickly.
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Figure 1: Log-likelihood vs Time experiments
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Figure 2: Log-likelihood vs Iteration for the
PubMed Central experiments.
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Figure 3: Log-likelihood vs Iteration compared to
batch VB for the Wikipedia experiments, where N
is the number of documents used for training.

4.2 Small-Scale Experiments
Stochastic algorithms for LDA have previously only been

used on large corpora, however they have the potential to
be useful for finding topics very quickly on small corpora
as well. The ability to learn interpretable topics in a mat-
ter of seconds is very beneficial for exploratory data anal-
ysis (EDA) applications, with a human in the loop. Near
real-time topic modeling opens the way for the use of topic
models in interactive software tools for document analysis.

We investigated the performance of the stochastic algo-
rithms in this small-scale scenario using a corpus of 1740
scientific articles from years 1987 – 1999 of the machine
learning conference NIPS. We ran the two stochastic infer-
ence algorithms for five seconds each, using the parameter
settings from the previous experiments but with 20 topics.

Each algorithm was run ten times. In the five seconds of
training, SCVB0 was typically able to examine 3300 docu-
ments, while SVB was typically able to examine around 600
documents.

With the EDA application in mind, we performed a human-
subject experiment in the vein of the experiments proposed
by Chang and Blei [11]. The sets of topics returned by each
run were randomly assigned across seven human subjects.
The participants were all machine learning researchers with
technical expertise in the subjects of interest to the NIPS
community. The subjects did not know which algorithms
generated which runs. The top ten words of the topics in
each run were shown to the subjects, who were given the
following instructions:

Here are 20 collections of related words. Some
words may not seem to “belong” with the other
words. Count the total number of words in each
collection that don’t “belong.”

The results provide an estimate of the number of “errors”
that a topic model inference algorithm makes, relative to
human judgement. It was found that the SCVB0 algorithm
had 0.76 errors per topic on average, with a standard de-
viation of 1.1, while SVB had 1.6 errors per topic on aver-
age, with standard deviation 1.2. A one-sided two sample
t-test rejected the hypothesis that the means of the errors
per topic were equal, with significance level α = 0.05. Ran-
domly selected example topics are shown in Table 2. As can
be seen from the table, both algorithms successfully learned
coherent topics in this relatively short time frame.

We also performed a similar experiment on Amazon Turk
using the New York Times corpus. We ran the two stochas-
tic inference algorithms for 60 seconds each using the same
parameter settings as above but with 50 topics. Each user
was presented with 20 random topics from each algorithm.
Again, the subjects did not know which algorithms gener-
ated each set of topics. We included two easy questions with
obvious answers and removed results from users who did not
answer them correctly. This step eliminated 4 users, and the
analysis was performed with the data from the remaining 52
participants. Comparing the number of “errors” for SCVB0
to SVB for each user, we find that SCVB0 had 2.1 errors
per topic on average, with standard deviation 1.0, and SVB
had 4.4 errors on average with standard deviation 2.4. A
paired t-test finds these differences significant for the sam-
pled population at the α = .05 level, with p-value < .001.
Example topics selected uniformly at random from a ran-
domly selected run of each algorithm are shown in Table
3, illustrating the relative difference in the coherence of the
topics recovered by the two methods in this time period.

5. CONVERGENCE ANALYSIS AND CON-
NECTIONS TO MAP ESTIMATION

In the SCVB0 algorithm, because the γ’s are not main-
tained we must approximate Equation 3 with Equation 5,
neglecting the subtraction of the previous value of γij from
the CVB0 statistics when updating γij . In an extended ver-
sion of this paper, available on the arXiv,5, we show that this
approximation results in an algorithm which is equivalent to
an EM algorithm for MAP estimation, due to Asuncion et

5http://arxiv.org/abs/1305.2452.
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SCVB0 SVB
receptor data learning model results visual
protein classification function set learning data

secondary vector network data distribution activity
proteins class neural training information saliency

transducer classifier networks learning map noise
binding set time error activity similarity

concentration algorithm order parameters time model
odor feature error markov figure neural

morphology space dynamics estimate networks representations
junction vectors point speech state functions

Table 2: Randomly selected example topics after five seconds running time on the NIPS corpus.

SCVB SVB
county station league president year mr
district company goals midshipmen cantatas company
village railway years open edward mep
north business club forrester computing husbands
river services clubs archives main net
area market season iraq years state
east line played left area builder
town industry cup back withdraw offense
lake stations career times households obscure
west owned team saving brain advocacy

Table 3: Randomly selected example topics after sixty seconds running time on the NYT corpus.

al. [3], which operates on an unnormalized parameteriza-
tion of LDA. Using this interpretation of the algorithm, we
can alternatively derive SCVB0 as an adapted version of
Cappe and Moulines’ online EM algorithm [9], where the
algorithm is extended to perform MAP estimation and to
handle document-specific parameters. Therefore, the ap-
proximate collapsed variational updates of SCVB0 can also
be understood as MAP estimation updates. The MAP in-
terpretation of the algorithm implicitly uses adjusted values
of the hyperparameters, so this does not contradict the orig-
inal CVB interpretation, but suggests that there is a close
relationship between the optimal solutions of the CVB and
MAP estimation problems.

It is difficult to establish the convergence properties of
the original CVB0 algorithm, as its updates are approxi-
mate. However, the alternative view of the algorithm is more
amenable to convergence analysis as the MAP updates are
exact. Under the MAP estimation interpretation of SCVB0,
it can be shown that the algorithm converges to a station-
ary point of the MAP objective function, computed as if the
prior were modified by increasing the hyper-parameters by
one. The proof strategy broadly follows that of Cappe and
Moulines. First, the algorithm is written as a Robbins and
Monro [20] stochastic approximation (SA) algorithm. Then,
it is shown that there exists a Lyapunov function satisfying
the conditions of Andreiu et al. [2], which are sufficient to
establish convergence for an SA algorithm. In the context of
an SA algorithm, a Lyapunov function can be understood as
an “objective function” which, in the absence of stochastic
noise, the SA would improve monotonically if small enough
steps were taken in the direction of the updates. We refer
the reader to the extended version of this paper for details.5

The MAP estimation interpretation of SCVB0 may also
help to explain the improvement in predictive performance
relative to SVB. The MAP estimate approximates the pos-
terior distribution by a delta function at its mode, while
mean field variational Bayes approximates the posterior by
a factorized distribution. As the amount of training data
increases, the posterior distribution should become more
peaked around the mode, i.e. more similar to the delta func-
tion at the MAP. The factorized distribution of mean field,
on the other hand, may not be able to accurately represent
the posterior distribution in the large data regime. So we
conjecture that in many cases, given enough data it may be
preferable to perform MAP estimation instead of variational
inference. This observation seems particularly relevant in
the case where stochastic algorithms are necessary due to
the large amount of data available.

6. DISCUSSION / RELATED WORK
Connections can be drawn between SCVB0 and other

methods in the literature. The SCVB0 scheme is reminis-
cent of the online EM algorithm of Cappe and Moulines [9],
which also alternates between per data-point parameter up-
dates and online estimates of the expected values of sufficient
statistics. Online EM optimizes the EM lower bound on the
log-likelihood in the M-step and computes online averages
of exponential family sufficient statistics, while SCVB0 (ap-
proximately) updates the mean-field evidence lower bound
in the M-step and computes online averages of sufficient
statistics required for a CVB0 update in the E-step. As
discussed in the previous section, when viewed as a MAP
estimation algorithm SCVB0 can also be derived as an ex-
tension of online EM, applied to LDA.
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The SCVB0 algorithm also has a very similar structure
to SVB, alternating between passes through a document
(the optional “burn-in” passes) to learn document param-
eters, and updating variables associated with topics. How-
ever, SCVB0 is stochastic at the word-level while SVB is
stochastic at the document level. In the general framework
of Hoffman et al., inference is performed on “local” param-
eters specific to a data point, which are used to perform a
stochastic update on the “global” parameters. For SVB, the
document parameters Θj are local parameters for document
j, and topics are global parameters. For SCVB0, the γij ’s
are local parameters for a word, and both document param-
eters NΘ and topic parameters NΦ are global parameters.
This means that updates to document parameters can be
made before processing all of the words in the document.

The incremental algorithm of Banerjee and Basu [5], for
MAP inference in LDA, is also closely related to the pro-
posed algorithm. They estimate topic probabilities for each
word sequentially, and update MAP estimates of Φ and Θ
incrementally, using the expected assignments of words to
topics in the current document. SCVB0 can be understood
as the collapsed, stochastic variational version of Banerjee
and Basu’s incremental uncollapsed MAP estimation algo-
rithm. Interpreting SCVB0 as a MAP estimation algorithm,
SCVB0 is the online EM algorithm for MAP estimation op-
erating on the unnormalized representation of LDA, while
Banerjee and Basu’s algorithm is the incremental EM al-
gorithm operating on the usual normalized representation
of LDA. A related algorithm is the sequential Monte Carlo
(SMC) approach used by Ahmed et al. [1], which sequen-
tially Gibbs samples the topic assignments of each document
for each of F importance-weighted particles. This method
updates count statistics for each particle incrementally via
sampling, while SCVB0 updates count statistics with online-
averaged updates via optimization.

Another stochastic algorithm for LDA, due to Mimno et
al. [16], operates in a partially collapsed space, placing it in-
between SVB and SCVB0 in terms of representation. Their
algorithm collapses out Θ but does not collapse out Φ. Esti-
mates of online natural gradient update directions are com-
puted by performing Gibbs sampling on the topic assign-
ments of the words in each document, and averaging over the
samples. The gradient estimate is non-zero only for word-
topic pairs which occurred in the samples. When carefully
implemented to take advantage of the sparsity, the updates
scale sub-linearly in the number of topics, causing large im-
provements in high-dimensional regimes. For SCVB0, the
minibatch updates are sparse in the rows (words), so some
performance enhancements along the lines of those used by
Mimno et al. are likely to be possible.

There has been a substantial amount of other work on
speeding up LDA inference in the literature. Porteous et al.
[19] improved the efficiency of the sampling step for the col-
lapsed Gibbs sampler, and Yao, Mimno and McCallum [26]
explore a number of alternatives for improving the efficiency
of LDA. The Vowpal Wabbit system for fast machine learn-
ing,4 due to John Langford and collaborators, has a version
of SVB that has been engineered to be extremely efficient.
Parallelization is another approach for improving the effi-
ciency of topic models. Newman et al. [18] introduced an
approximate parallel algorithm for LDA where data is dis-
tributed across multiple machines, and an exact algorithm
for an extension of LDA which takes into account the dis-

tributed storage. Smola and Narayanamurthy developed an
efficient architecture for parallel LDA inference [23], using a
distributed (key, value) storage for synchronizing the state of
the sampler between machines. All of these computational
improvements are somewhat orthogonal to those proposed
in this paper, and it is likely that some of these ideas could
be adapted to apply to SCVB0 as well.

7. CONCLUSIONS
This paper introduces SCVB0, an algorithm for perform-

ing fast stochastic collapsed variational inference in LDA,
and shows that it outperforms stochastic VB on several large
document corpora, converging faster and often to a better
solution. The algorithm is relatively simple to implement,
with intuitive update rules consisting only of basic arith-
metic operations. We also found that the algorithm was ef-
fective at learning good topics from small corpora in seconds,
finding topics that were superior than those of stochastic VB
according to human judgement.

There are many directions for future work. The method
could potentially be adapted to Teh et al. [25]’s hierarchi-
cal Dirichlet process version of LDA, leveraging the work of
Sato et al. [21]. The speed of the method could likely be im-
proved by exploiting sparsity, using techniques such as those
employed by Mimno et al. [16]. Furthermore, the collapsed
representation facilitates the use of the parallelization tech-
niques explored by Newman et al. in [18]. Finally, SCVB0
could be incorporated into an interactive software tool for
exploring the topics of document corpora in real-time.
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