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ABSTRACT
As datasets become larger, more complex, and more avail-
able to diverse groups of analysts, it would be quite useful
to be able to automatically and generically assess the qual-
ity of estimates, much as we are able to automatically train
and evaluate predictive models such as classifiers. However,
despite the fundamental importance of estimator quality as-
sessment in data analysis, this task has eluded highly auto-
matic solutions. While the bootstrap provides perhaps the
most promising step in this direction, its level of automa-
tion is limited by the difficulty of evaluating its finite sample
performance and even its asymptotic consistency. Thus, we
present here a general diagnostic procedure which directly
and automatically evaluates the accuracy of the bootstrap’s
outputs, determining whether or not the bootstrap is per-
forming satisfactorily when applied to a given dataset and
estimator. We show that our proposed diagnostic is effective
via an extensive empirical evaluation on a variety of estima-
tors and simulated and real datasets, including a real-world
query workload from Conviva, Inc. involving 1.7TB of data
(i.e., approximately 0.5 billion data points).

Categories and Subject Descriptors
G.3 [Probability and Statistics]: nonparametric statis-
tics, statistical computing

Keywords
bootstrap; performance; diagnostic; estimator quality as-
sessment

1. INTRODUCTION
Modern datasets are growing rapidly in size and are in-

creasingly subjected to diverse, rapidly evolving sets of
complex and exploratory queries, often crafted by non-
statisticians. These developments render generic applica-
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bility and automation of data analysis methodology par-
ticularly desirable, both to allow the statistician to work
more efficiently and to allow the non-statistician to cor-
rectly and effectively utilize more sophisticated inferential
techniques. For example, the development of generic tech-
niques for training classifiers and evaluating their general-
ization ability has allowed this methodology to spread well
beyond the boundaries of the machine learning and statistics
research community, to great practical benefit. More gen-
erally, estimation techniques for a variety of settings have
been rendered generically usable. However, except in some
restricted settings, the fundamental inferential problem of
assessing the quality of estimates based upon finite data has
eluded a highly automated solution.

Assessment of an estimate’s quality—for example, its vari-
ability (e.g., in the form of a confidence region), its bias, or
its risk—is essential to both its interpretation and use. In-
deed, such quality assessments underlie a variety of core sta-
tistical tasks, such as calibrated inference regarding param-
eter values, bias correction, and hypothesis testing. Beyond
simply enabling other statistical methodology, however, esti-
mator quality assessments can also have more direct utility,
whether by improving human interpretation of inferential
outputs or by allowing more efficient management of data
collection and processing resources. For instance, we might
seek to collect or process only as much data as is required
to yield estimates of some desired quality, thereby avoiding
the cost (e.g., in time or money) of collecting or processing
more data than is necessary. Such an approach in fact con-
stitutes an active line of work in research on large database
systems, which seeks to answer queries on massive datasets
quickly by only applying them to subsamples of the total
available data [1, 15]. The result of applying a query to only
a subsample is in fact an estimate of the query’s output if
applied to the full dataset, and effective implementation of
a system using this technique requires an automatic ability
to accurately assess the quality of such estimates for generic
queries.

In recent decades, the bootstrap [7, 9] has emerged as
a powerful and widely used means of assessing estimator
quality, with its popularity due in no small part to its rela-
tively generic applicability. Unlike classical methods—which
have generally relied upon analytic asymptotic approxima-
tions requiring deep analysis of specific classes of estimators
in specific settings [17]—the bootstrap can be straightfor-
wardly applied, via a simple computational mechanism, to
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a broad range of estimators. Since its inception, theoretical
work has shown that the bootstrap is broadly consistent [3,
10, 20] and can be higher-order correct [11]. As a result,
the bootstrap (and its various relatives and extensions) pro-
vides perhaps the most promising avenue for obtaining a
generically applicable, automated estimator quality assess-
ment capability.

Unfortunately, however, while the bootstrap is relatively
automatic in comparison to its classical predecessors, it re-
mains far from being truly automatically usable, as eval-
uating and ensuring its accuracy is often a challenge even
for experts in the methodology. Indeed, like any inferential
procedure, despite its excellent theoretical properties and
frequently excellent empirical performance, the bootstrap is
not infallible. For example, it may fail to be consistent in
particular settings (i.e., for particular pairs of estimators
and data generating distributions) [19, 4]. While theoreti-
cal conditions yielding consistency are well known, they can
be non-trivial to verify analytically and provide little useful
guidance in the absence of manual analysis. Furthermore,
even if consistent, the bootstrap may exhibit poor perfor-
mance on finite samples.

Thus, it would be quite advantageous to have some means
of diagnosing poor performance or failure of the bootstrap in
an automatic, data-driven fashion, without requiring signif-
icant manual analysis. That is, we would like a diagnostic
procedure which is analogous to the manner in which we
evaluate performance in the setting of supervised learning
(e.g., classification), in which we directly and empirically
evaluate generalization error (e.g., via a held-out validation
set or cross-validation). Unfortunately, prior work on boot-
strap diagnostics (see [5] for a comprehensive survey) does
not provide a satisfactory solution, as existing diagnostic
methods target only specific bootstrap failure modes, are
often brittle or difficult to apply, and generally lack sub-
stantive empirical evaluations. For example, a theoretical
result of Beran regarding bootstrap asymptotics has been
proposed as the basis of a diagnostic for bootstrap inconsis-
tency [2]; however, it is unclear how to reliably construct and
interpret the diagnostic plots required by this proposal, and
the limited existing empirical evaluation reveals it to be of
questionable practical utility [5]. Other work has sought to
diagnose bootstrap failure specifically due to incorrect stan-
dardization of the quantity being bootstrapped (which could
occur if an estimator’s convergence rate is unknown or incor-
rectly determined), use of an incorrect resampling model (if,
for example, the data has a correlation structure that is not
fully known a priori), or violation of an assumption of piv-
otality of the quantity being bootstrapped [5]. Additionally,
jackknife-after-bootstrap and bootstrap-after-bootstrap cal-
culations have been proposed as a means of evaluating the
stability of the bootstrap’s outputs [8, 5]; while such proce-
dures can be useful data analysis tools, their utility as the
basis of a diagnostic remains limited, as, among other things,
it is unclear whether they will behave correctly in settings
where the bootstrap is inconsistent.

In contrast to prior work, we present here a general boot-
strap performance diagnostic which does not target any par-
ticular bootstrap failure mode but rather directly and auto-
matically determines whether or not the bootstrap is per-
forming satisfactorily (i.e., providing sufficiently accurate
outputs) when applied to a given dataset and estimator. The
key difficulty in evaluating the accuracy of the bootstrap’s

(or any estimator quality assessment procedure’s) outputs
is the lack of ready availability of even approximate com-
parisons to ground truth estimate quality. While compar-
isons to ground truth labels are readily obtained in the case
of supervised learning via use of a held-out validation set
or cross-validation, comparing to ground truth in the con-
text of estimator quality assessment requires access to the
(unknown) sampling distribution of the estimator in ques-
tion. We surmount this difficulty by constructing a proxy
to ground truth for various small sample sizes (smaller than
that of our full observed dataset) and comparing the boot-
strap’s outputs to this proxy, requiring that they converge
to the ground truth proxy as the sample size is increased.
This approach is enabled by the increasing availability of
large datasets and more powerful computational resources.
We show via an extensive empirical evaluation, on a variety
of estimators and simulated and real data, that the resulting
diagnostic is effective in determining—fully automatically—
whether or not the bootstrap is performing satisfactorily in
a given setting.

In Section 2, we formalize our statistical setting and nota-
tion. We introduce our diagnostic in full detail in Section 3.
Sections 4 and 5 present the results of our evaluations on
simulated and real data, respectively. Finally, we conclude
in Section 6.

2. SETTING AND NOTATION
We assume that we observe n data points D =

(X1, . . . , Xn) sampled i.i.d. from some unknown distribu-
tion P ; let Pn = n−1∑n

i=1 δXi be the empirical distribution
of the observed data. Based upon this dataset, we form an
estimate θ̂(D) of some parameter θ(P ) of P ; note that, un-

like θ(P ), θ̂(D) is a random quantity due to its dependence
on the data D. We then seek to form an assessment ξ(P, n)

of the quality of the estimate θ̂(D), which consists of a sum-
mary of the distribution Qn of some quantity u(D, P ). Our
choice of summary and form for u depends upon our infer-
ential goals and our knowledge of the properties of θ̂. For
instance, ξ(P, n) might compute an interquantile range for

u(D, P ) = θ̂(D), the expectation of u(D, P ) = θ̂(D) − θ(P )
(i.e., the bias), or a confidence interval based on the distri-

bution of u(D, P ) = n1/2(θ̂(D) − θ(P )). Unfortunately, we
cannot compute ξ(P, n) directly because P and Qn are un-
known, and so we must resort to estimating ξ(P, n) based
upon a single observed dataset D.

The bootstrap addresses this problem by estimating the
unknown ξ(P, n) via the plug-in approximation ξ(Pn, n). Al-
though computing ξ(Pn, n) exactly is typically intractable,
we can obtain an accurate approximation using a simple
Monte Carlo procedure: repeatedly form simulated datasets
D∗ of size n by sampling n points i.i.d. from Pn, compute
u(D∗,Pn) for each simulated dataset, form the empirical dis-
tribution Qn of the computed values of u, and return the
desired summary of this distribution. We overload nota-
tion somewhat by referring to this final bootstrap output as
ξ(Qn, n), allowing ξ to take as its first argument either a
data generating distribution or a distribution of u values.

For ease of exposition, we assume below that ξ is real-
valued, though the proposed methodology can be straight-
forwardly generalized (e.g., to contexts in which ξ produces
elements of a vector space).
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3. THE DIAGNOSTIC
We frame the task of evaluating whether or not the boot-

strap is performing satisfactorily in a given setting as a de-
cision problem: for a given estimator, data generating dis-
tribution P , and dataset size n, is the bootstrap’s output
sufficiently likely to be sufficiently near the ground truth
value ξ(P, n)? This formulation avoids the difficulty of pro-
ducing uniformly precise quantifications of the bootstrap’s
accuracy by requiring only that a decision be rendered based
upon some definition of “sufficiently likely” and “sufficiently
near the ground truth.” Nonetheless, in developing a diag-
nostic procedure to address this decision problem, we face
the key difficulties of determining the distribution of the
bootstrap’s outputs on datasets of size n and of obtaining
even an approximation to the ground truth value against
which to evaluate this distribution.

Ideally, we might approximate ξ(P, n) for a given value of
n by observing many independent datasets, each of size n.
For each dataset, we would compute the corresponding value
of u, and the resulting collection of u values would approxi-
mate the distribution Qn, which would in turn yield a direct
approximation of the ground truth value ξ(P, n). Further-
more, we could approximate the distribution of bootstrap
outputs by simply running the bootstrap on each dataset of
size n. Unfortunately, however, in practice we only observe
a single set of n data points, rendering this approach an
unachievable ideal.

To surmount this difficulty, our diagnostic (Algorithm 1)
executes this ideal procedure for dataset sizes smaller than
n. That is, for a given p ∈ N and b ≤ bn/pc, we randomly
sample p disjoint subsets of the observed dataset D, each of
size b. For each subset, we compute the value of u; the re-
sulting collection of u values approximates the distribution
Qb, in turn yielding a direct approximation of ξ(P, b), the
ground truth value for the smaller dataset size b. Addition-
ally, we run the bootstrap on each of the p subsets of size b,
and comparing the distribution of the resulting p bootstrap
outputs to our ground truth approximation, we can deter-
mine whether or not the bootstrap performs acceptably well
at sample size b.

It then remains to use this ability to evaluate the boot-
strap’s performance at smaller sample sizes to determine
whether or not it is performing satisfactorily at the full sam-
ple size n. To that end, we evaluate the bootstrap’s perfor-
mance at multiple smaller sample sizes to determine whether
or not the distribution of its outputs is in fact converging to
the ground truth as the sample size increases, thereby allow-
ing us to generalize our conclusions regarding performance
from smaller to larger sample sizes. Indeed, determining
whether or not the bootstrap is performing satisfactorily for
a single smaller sample size b alone is inadequate for our
purposes, as the bootstrap’s performance may degrade as
sample size increases, so that it fails at sample size n despite
appearing to perform sufficiently well at smaller sample size
b. Conversely, the bootstrap may exhibit mediocre perfor-
mance for small sample sizes but improve as it is applied to
more data.

Thus, our diagnostic compares the distribution of boot-
strap outputs to the ground truth approximation for an in-
creasing sequence of sample sizes b1, . . . , bk, with bk ≤ bn/pc;
subsamples of each of these sizes are constructed and pro-
cessed in the outer for loop of Algorithm 1. In order to
conclude that the bootstrap is performing satisfactorily at

sample size n, the diagnostic requires that the distribution
of its outputs converges monotonically to the ground truth
approximation for all of the smaller sample sizes b1, . . . , bk.
Convergence is assessed based on absolute relative devia-
tion of the mean of the bootstrap outputs from the ground
truth approximation (which must decrease with increasing
sample size) and size of the standard deviation of the boot-
strap outputs relative to the ground truth approximation
(which must also decrease with increasing sample size). In
Algorithm 1, this convergence assessment is performed by
conditions (1) and (2). As a practical matter, these con-
ditions do not require continuing decreases in the absolute
relative mean deviation ∆i or relative standard deviation
σi when these quantities are below some threshold (given
by c1 and c2, respectively) due to inevitable stochastic er-
ror in their estimation: when these quantities are sufficiently
small, stochastic error due to the fact that we have only used
p subsamples prevents reliable determination of whether or
not decreases are in fact occurring. We have found that
c1 = c2 = 0.2 is a reasonable choice of the relevant thresh-
olds. Figures 1 and 2 highlight the use of conditions (1)
and (2) in both positive and negative settings for the boot-
strap.

Progressive convergence of the bootstrap’s outputs to the
ground truth is not alone sufficient, however; although the
bootstrap’s performance may be improving as sample size
increases, a particular value of n may not be sufficiently
large to yield satisfactory performance. Therefore, beyond
the convergence assessment discussed above, we must also
determine whether or not the bootstrap is in fact perform-
ing sufficiently well for the user’s purposes at sample size
n. We define “sufficiently well” as meaning that with prob-
ability at least α ∈ [0, 1], the output of the bootstrap when
run on a dataset of size n will have absolute relative devia-
tion from ground truth of at most c3 (the absolute relative
deviation of a quantity γ from a quantity γo is defined as
|γ − γo|/|γo|); the constants α and c3 are specified by the
user of the diagnostic procedure based on the user’s inferen-
tial goals. Because we can only directly evaluate the boot-
strap’s performance at smaller sample sizes (and not at the
full sample size n), we take a conservative approach, mo-
tivated by the assumption that a false positive (incorrectly
concluding that the bootstrap is performing satisfactorily) is
substantially less desirable than a false negative. In particu-
lar, as embodied in condition (3) of Algorithm 1, we require
that the bootstrap is performing sufficiently well under the
aforementioned definition at the sample size bk. Satisfying
this condition, in conjunction with satisfying the preceding
conditions indicating continuing convergence to the ground
truth, is taken to imply that the bootstrap will continue to
perform satisfactorily when applied to the full sample size n
(in fact, the bootstrap’s performance at sample size n will
likely exceed that implied by α and c3 due to the diagnostic’s
conservatism).

It is worth noting that this diagnostic procedure reposes
on the availability in modern data analysis of both sub-
stantial quantities of data and substantial computational
resources. For example, with p = 100 (an empirically ef-
fective choice), using bk = 1, 000 or bk = 10, 000 requires
n ≥ 105 or n ≥ 106, respectively. Fortuitously, datasets
of such sizes are now commonplace. Regarding its computa-
tional requirements, our procedure benefits from the modern
shift toward parallel and distributed computing, as the vast
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Algorithm 1: Bootstrap Performance Diagnostic

Input: D = (X1, . . . , Xn): observed data
u: quantity whose distribution is summarized to yield estimator quality assessments
ξ: estimator quality assessment
p: number of disjoint subsamples used to compute ground truth approximations (e.g., 100)
b1, . . . , bk: increasing sequence of subsample sizes for which ground truth approximations are computed,

with bk ≤ bn/pc (e.g., bi = bn/(p2k−i)c with k = 3)
c1 ≥ 0: tolerance for decreases in absolute relative deviation of mean bootstrap output (e.g., 0.2)
c2 ≥ 0: tolerance for decreases in relative standard deviation of bootstrap output (e.g., 0.2)
c3 ≥ 0, α ∈ [0, 1]: desired probability α that bootstrap output at sample size n has absolute relative

deviation from ground truth less than or equal to c3 (e.g., c3 = 0.5, α = 0.95)
Output: true if the bootstrap is deemed to be performing satisfactorily, and false otherwise

Pn ← n−1∑n
i=1 δXi

for i← 1 to k do
Di1, . . . ,Dip ← random disjoint subsets of D, each containing bi data points
for j ← 1 to p do

uij ← u(Dij ,Pn)
ξ∗ij ← bootstrap(ξ, u, bi,Dij)

end
// Compute ground truth approximation for sample size bi
Qbi ←

∑p
j=1 δuij

ξ̃i ← ξ(Qbi , bi)
// Compute absolute relative deviation of mean of bootstrap outputs and

// relative standard deviation of bootstrap outputs for sample size bi

∆i ←
∣∣∣∣mean(ξ∗i1,...,ξ∗ip)−ξ̃iξ̃i

∣∣∣∣ σi ←
∣∣∣ stddev(ξ∗i1,...,ξ∗ip)

ξ̃i

∣∣∣
end
return true if all of the following hold, and false otherwise:

∆i+1 < ∆i OR ∆i+1 ≤ c1, ∀i = 1, . . . , k, (1)

σi+1 < σi OR σi+1 ≤ c2, ∀i = 1, . . . , k, (2)

#

{
j ∈ 1, . . . , p :

∣∣∣∣ ξ∗kj−ξ̃k
ξ̃k

∣∣∣∣ ≤ c3}
p

≥ α (3)

majority of the required computation occurs in the inner
for loop of Algorithm 1, the iterations of which are inde-
pendent and individually process only small data subsets.
Additionally, we have sought to reduce the procedure’s com-
putational costs by using an identical number of subsamples
p for each subsample size b1, . . . , bk; one could presumably
improve statistical performance by using larger numbers of
subsamples for smaller subsample sizes.

The guidelines given in Algorithm 1 for setting the di-
agnostic procedure’s hyperparameters are motivated by the
procedure’s structure and have proven to be empirically ef-
fective. We recommend exponential spacing of the b1, . . . , bk
to help ensure that reliable comparisons of bootstrap per-
formance can be made across adjacent sample sizes bi and
bi+1. However, by construction, setting the b1, . . . , bk to be
too close together should primarily cause an increase in the
false negative rate (the probability that the diagnostic incor-
rectly concludes that the bootstrap is not performing satis-
factorily), rather than a less desirable increase in the false
positive rate. Similarly, setting c1 or c2 to be too low should
also primarily result in an increase in the false negative rate.
Regarding c3 and α, these hyperparameters should be deter-
mined by the user’s bootstrap performance desiderata. We
nonetheless expect that fairly lenient settings of c3—such as

c3 = 0.5, which corresponds to allowing the bootstrap to
deviate from ground truth by up to 50%—to be reasonable
in many cases. This expectation stems from the fact that
the actual or targeted quality of estimators on fairly large
datasets is frequently high, leading to estimator quality as-
sessments, such as interquantile ranges, which are small in
absolute value; in these cases, it follows that a seemingly
large relative error in bootstrap outputs (e.g., 50%) corre-
sponds to a small absolute error.

As we demonstrate via an extensive empirical evaluation
on both synthetic and real data in the following sections, our
proposed bootstrap performance diagnostic is quite effective,
with false positive rates that are generally extremely low or
zero and false negative rates that generally approach zero as
the subsample sizes b1, . . . , bk are increased. Of course, like
any inferential procedure, our procedure does have some un-
avoidable limitations, such as in cases where the data gen-
erating distribution has very fine-grained adverse features
which cannot be reliably observed in datasets of size bk; we
discuss these issues further below.

4. SIMULATION STUDY
We first evaluate the diagnostic’s effectiveness on data

generated from a variety of different synthetic distributions
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Figure 1: Illustration of the quantities computed by the diagnostic on a dataset and estimator for which the
bootstrap performs satisfactorily. The left plot shows bootstrap outputs (means with standard deviations) and
ground truth approximations for sample sizes b1, . . . , b3. The right plot shows the absolute relative deviation
of the mean of the bootstrap outputs and the relative standard deviation of the bootstrap outputs for each
sample size.
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Figure 2: Illustration of the quantities computed by the diagnostic on a dataset and estimator for which
the bootstrap does not perform satisfactorily. The left plot shows bootstrap outputs (means with standard
deviations) and ground truth approximations for sample sizes b1, . . . , b3. The right plot shows the absolute
relative deviation of the mean of the bootstrap outputs and the relative standard deviation of the bootstrap
outputs for each sample size.

paired with a variety of different estimators. Using simu-
lated data here allows direct knowledge of the ground truth
value ξ(P, n), and by selecting different synthetic distribu-
tions, we can design settings that pose different challenges
to the diagnostic procedure. For each distribution-estimator
pair and sample size n considered, we perform multiple in-
dependent runs of the diagnostic on independently gener-
ated datasets of size n to compute the Diagnostic True Rate
(DTR), the probability that the diagnostic outputs true in
that setting. We then evaluate this DTR against the boot-
strap’s actual performance on datasets of size n; because the
underlying data generating distributions here are known, we
can also compare to known theoretical expectations of boot-
strap consistency.

More precisely, we consider the following data gener-
ating distributions: Normal(0, 1), Uniform(0, 10), Stu-
dentT(1.5), StudentT(3), Cauchy(0, 1), 0.95Normal(0, 1)
+ 0.05Cauchy(0, 1), and 0.99Normal(0, 1) +
0.01Cauchy(104, 1). In our plots, we denote these dis-
tributions using the following abbreviations: Normal,
Uniform, StuT(1.5), StuT(3), Cauchy, Mixture1, and

Mixture2. We also consider the following estimators θ̂
(abbreviations, if any, are given in parentheses): mean,
median (med), variance (var), standard deviation (std),
sample maximum (max), and 95th percentile (perc). The
estimator quality assessment ξ in all experiments computes
the interquantile range between the 0.025 and 0.975 quan-
tiles of the distribution of u(D, P ) = θ̂(D). For all runs of
the bootstrap, we use between 200 and 500 resamples, with
the precise number of resamples determined by the adaptive
hyperparameter selection procedure given by [13]. All runs
of the diagnostic use the hyperparameter guidelines given
in Algorithm 1: p = 100, k = 3, bi = bn/(p2k−i)c, c1 =
0.2, c2 = 0.2, c3 = 0.5, α = 0.95. We consider sample sizes
n = 105 and n = 106.

For each distribution-estimator pair and sample size n,
we first compute the ground truth value ξ(P, n) as the in-
terquantile range of the u values for 5,000 independently
generated datasets of size n. We also approximate the dis-
tribution of bootstrap outputs on datasets of size n by run-
ning the bootstrap on 100 independently generated datasets
of this size. Whether or not this distribution of bootstrap
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Figure 3: Diagnostic and bootstrap performance on simulated data. Dark blue indicates cases where bootstrap
is performing satisfactorily on datasets of size n (based on ground truth computations) and is expected
theoretically to be consistent; red indicates cases where neither of these statements is true; light purple
indicates cases where bootstrap is performing satisfactorily on datasets of size n (based on ground truth
computations) but is not expected theoretically to be consistent. Left and middle plots: for each distribution-
estimator pair, fraction of 100 independent trials for which the diagnostic outputs true. For the left plot,
n = 105; for the middle plot, n = 106. Right plot: for each distribution-estimator pair, 95th percentile of
absolute relative deviation of bootstrap output from ground truth, over 100 independent trials on datasets
of size n = 106.
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outputs satisfies the performance criterion defined by c3, α—
that is, whether or not the α quantile of the absolute relative
deviation of bootstrap outputs from ξ(P, n) is less than or
equal to c3—determines the ground truth conclusion regard-
ing whether or not the bootstrap is performing satisfactorily
in a given setting. To actually evaluate the diagnostic’s ef-
fectiveness, we then run it on 100 independently generated
datasets of size n and estimate the DTR as the fraction
of these datasets for which the diagnostic returns true. If
the ground truth computations deemed the bootstrap to be
performing satisfactorily in a given setting, then the DTR
would ideally be 1, and otherwise it would ideally be 0.

Figure 3 presents our results for all distribution-estimator
pairs and both sample sizes n considered. In these plots,
dark blue indicates cases in which the ground truth com-
putations on datasets of size n deemed the bootstrap to be
performing satisfactorily and the bootstrap is expected the-
oretically to be consistent (i.e., the DTR should ideally be
1); red indicates cases in which neither of these statements
is true (i.e., the DTR should ideally be 0); and light pur-
ple indicates cases in which the ground truth computations
on datasets of size n deemed the bootstrap to be performing
satisfactorily but the bootstrap is not expected theoretically
to be consistent (i.e., the DTR should ideally be 1).

As seen in the lefthand and middle plots (which show
DTRs for n = 105 and n = 106, respectively), our proposed
diagnostic performs quite well across a range of data gen-
erating distributions and estimators, and its performance
improves as it is provided with more data. For the smaller
sample size n = 105, in the dark blue and light purple cases,
the DTR is generally markedly greater than 0.5; further-
more, when the sample size is increased to n = 106, the
DTRs in all of the dark blue and light purple cases increase
to become uniformly near 1, indicating low false negative
rates (i.e., the diagnostic nearly always deems the bootstrap
to be performing satisfactorily when it is indeed perform-
ing satisfactorily). In the red cases, for both sample sizes,
the DTR is nearly always zero, indicating that false positive
rates are nearly always zero (i.e., the diagnostic only rarely
deems the bootstrap to be performing satisfactorily when it
is in fact not performing satisfactorily). Mixture2-var and
Mixture2-std with n = 106 provide the only exceptions to
this result, which is unsurprising given that Mixture2 was
specifically designed to include a small heavy-tailed com-
ponent which is problematic for the bootstrap but cannot
be reliably detected at the smaller sample sizes b1, . . . , bk;
nonetheless, even in these cases, the righthand plot indicates
that the ground truth computations very nearly deemed the
bootstrap to be performing satisfactorily. Interestingly, the
bootstrap’s finite sample performance for the settings con-
sidered nearly always agrees with theoretical expectations
regarding consistency; disagreement occurs only when Mix-
ture2 is paired with the estimators mean, var, or std, which
is again unsurprising given the properties of Mixture2.

5. REAL DATA
We next evaluate the diagnostic’s effectiveness on real

datasets obtained from Conviva, Inc. [6], which are routinely
subjected to analysis by practitioners. Our first set of exper-
iments pairs this real data with the (synthetic) estimators
considered in the previous section; we then consider a larger
dataset paired with a set of 268 production SQL queries.

Synthetic Estimators
We present here the results of experiments on three real
datasets obtained from [6], which describe different at-
tributes of large numbers of video streams viewed by Inter-
net users. These datasets are routinely subjected to a variety
of different analyses by practitioners and are the subject of
ongoing efforts to improve the computational efficiency of
database systems by processing only data subsamples and
quantifying the resulting estimation error [1].

We designate the three (scalar-valued) datasets as fol-
lows, with their sizes (i.e., numbers of constituent data
points) given in parentheses: Conviva1 (30,470,092), Con-
viva2 (1,111,798,565), and Conviva3 (2,952,651,449). His-
tograms of the three datasets are given in Figure 4; note
that the datasets are heavily skewed and also contain large
numbers of repeated values. Due to privacy considerations,
we are unable to provide the precise values and correspond-
ing frequencies represented in the data, but the histograms
nonetheless convey the shapes of the datasets’ empirical dis-
tributions.

To circumvent the fact that ground truth values for indi-
vidual real datasets cannot be obtained, we do not directly
apply our diagnostic to these three datasets. Rather, we
treat the empirical distribution of each dataset as an under-
lying data generating distribution which is used to generate
the datasets used in our experiments. With this setup, our
experiments on these real datasets proceed identically to the
experiments in Section 4 above, but now with data sampled
from the aforementioned empirical distributions rather than
from synthetic distributions.

Figure 5 presents the results of our experiments on the
Conviva data. The color scheme used in these plots is iden-
tical to that in Figure 3, with the addition of magenta, which
indicates cases in which the ground truth computations on
datasets of size n deemed the bootstrap to not be performing
satisfactorily but the bootstrap is expected theoretically to
be consistent (i.e., the DTR should ideally be 0). Given that
the data generating distributions used in these experiments
all have finite support, the bootstrap is expected theoreti-
cally to be consistent for all estimators considered except the
sample maximum. However, as seen in the righthand plot of
Figure 5, the bootstrap’s finite sample performance is often
quite poor even in cases where consistency is expected; in
this regard (as well as in other ways), the real data setting
of this section differs substantially from the synthetic data
setting considered in Section 4 above.

The lefthand and middle plots of Figure 5 demonstrate
that our diagnostic procedure again performs quite well. In-
deed, the DTR is again nearly always zero (or is quite small
if positive) in the red and magenta cases, indicating false
positive rates that are nearly always zero. The dark blue
cases generally have DTRs markedly greater than 0.5 for
n = 105 (lefthand plot), with DTRs in these cases generally
increasing to become nearly 1 for n = 106, indicating low
false negative rates; no light purple cases occur for the real
data. Beyond these broad conclusions, it is worth noting
that the Conviva2-max, Conviva2-perc, and Conviva3-med
settings exhibit rather surprising behavior relative to our
other results, in that the diagnostic’s performance seems to
degrade when the sample size is increased. We believe that
this behavior is related to the particularly high redundancy
(i.e., degree of repetition of values) in Conviva2 and Con-
viva3, and it will be the subject of future work.
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Figure 4: Histograms for the real datasets Conviva1, Conviva2, and Conviva3. Note that the y axes give
frequencies on a log scale.

Production Estimators
We finally evaluate the diagnostic’s effectiveness on a larger
real dataset and accompanying real-world analytical work-
load derived from a SQL-based ad-hoc querying system at
Conviva, Inc. [6]. This dataset is 1.7TB in size and contains
approximately 0.5 billion records extracted from access logs
describing video streams viewed by Internet users during a
thirty day time span. We treat each record, which has 104
attributes (such as video genre, web browser type, request
response time, etc.), as a data point.

This data is routinely processed by data analysts, who is-
sue SQL queries which are run over the dataset to compute
quantities of interest. For example, a typical query might fil-
ter the underlying data based on various attributes and then
compute a quantity derived from other attributes (such as
those given by Conviva1, Conviva2, and Conviva3 above).
This computed quantity might correspond to a standard es-
timator (e.g., the sample mean or percentile), or it might
be the result of an arbitrary computation performed by a
User-Defined Function (UDF). We study a set of 268 queries
selected randomly from the set of obtainable queries which
were issued in a production setting against our dataset; 113
out of these 268 queries include UDFs which may perform
arbitrary computations rather than simply using standard
SQL operators.

In our experiments, we treat each query as an esti-
mator which seeks to compute some real-valued popula-
tion quantity; our estimator quality assessment ξ is again
the interquantile range used in our previous experiments.
To obtain ground truth conclusions regarding bootstrap
performance, we randomly split the full dataset into dis-
joint chunks, each of size 5GB (approximately 2.5 million
records), and compute both the point estimate and the boot-
strap output for each chunk. We also run the diagnostic for
each query; as in the experiments in preceding sections, we
use the hyperparameter guidelines given in Algorithm 1 (i.e,.
p = 100, k = 3, c1 = 0.2, c2 = 0.2, c3 = 0.5, α = 0.95), with
the exception of now using bi = 105/2k−i due to the large
quantity of available data.

Recall that a query typically filters its input data on one
or more attributes before computing its output. To address
cases in which queries are highly selective and hence effec-
tively operate on severely reduced quantities of data, we do
not consider the 17 out of our 268 queries which filter out
more than 99% of the data in any of the diagnostic subsam-
ples; one might consider the diagnostic as simply not being

applicable to such queries because the available subsamples
are not sufficiently large after the queries apply their filters.

Of the remaining 251 queries, the diagnostic deemed the
bootstrap to be performing satisfactorily on 224, with 9 false
negatives and 7 false positives. Thus, on this real dataset
with accompanying query workload, the diagnostic exhibited
low false negative and false positive rates of 3.6% and 2.8%,
respectively.

6. CONCLUSION
We have presented a general diagnostic procedure which

permits automatic determination of whether or not the boot-
strap is performing satisfactorily when applied to a given
dataset and estimator; we have demonstrated the effective-
ness of our procedure via an empirical evaluation on a va-
riety of estimators and simulated and real data. A number
of avenues of potential future work remain. For example,
it would be interesting to apply our diagnostic procedure
to other estimator quality assessment methods [4, 17, 13]
and to devise extensions of the diagnostic which are suitable
for variants of the bootstrap designed to handle non-i.i.d.
data [9, 12, 14, 16, 18]. Additionally, it should be possible to
characterize theoretically the consistency of our diagnostic
procedure, showing that its false positive and false negative
rates approach zero as b1, . . . , bk, p→∞ and c1, c2 → 0, un-
der some assumptions (e.g., monotonicity of the bootstrap’s
convergence to ground truth in cases where it is performing
satisfactorily). It would be interesting to make such a result
precise.
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