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ABSTRACT
People use various social media for different purposes. The
information on an individual site is often incomplete. When
sources of complementary information are integrated, a bet-
ter profile of a user can be built to improve online services
such as verifying online information. To integrate these
sources of information, it is necessary to identify individ-
uals across social media sites. This paper aims to address
the cross-media user identification problem. We introduce
a methodology (MOBIUS) for finding a mapping among
identities of individuals across social media sites. It con-
sists of three key components: the first component identifies
users’ unique behavioral patterns that lead to information
redundancies across sites; the second component constructs
features that exploit information redundancies due to these
behavioral patterns; and the third component employs ma-
chine learning for effective user identification. We formally
define the cross-media user identification problem and show
that MOBIUS is effective in identifying users across social
media sites. This study paves the way for analysis and min-
ing across social media sites, and facilitates the creation of
novel online services across sites.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data mining

Keywords
User Identification; Cross-Media Analysis; MOBIUS

1. INTRODUCTION
Verifying ages online is important as it attempts to deter-

mine whether someone is “an 11-year-old girl or a 45-year-
old man”. Its significance is convincingly pointed out by
The New York Times [16], which reported “Skout, a mobile
social networking app, discovered that, within two weeks,
three adults had masqueraded as 13- to 17-year olds. In

three separate incidents, they contacted children and, the
police say, sexually assaulted them.” Age verification is also
an elusive problem to solve. In 2008, a serious effort was
made to evaluate age verification technologies when the In-
ternet Safety Technical Task Force was convened with ex-
perts from academia and Web companies. The same report
mentions that “four years later, members of that task force
sound, at best, deflated” and that “an informal survey of
major figures in the Artificial Intelligence industry revealed
that little, if any, research is being done on age verification”.
The New York Times report suggests that age verification is
even more difficult for social media, where people can expect
a degree of anonymity.

This paper proposes an alternative solution addressing the
age verification problem by exploiting the nature of social
media and its networks. Social media can provide rich, di-
verse, sometimes spurious, information otherwise not avail-
able. It is an easy and conducive platform for people of all
walks of life participating, sharing, and interacting with a
large number of users anytime and anywhere. Many users
likely have multiple accounts at different social media sites
to serve their disparate needs. When false information (e.g.,
incorrect age) is provided, information inconsistencies likely
arise across sites, as well depicted in the saying, “a thousand
lies are needed to hide one lie”. Detecting these inconsisten-
cies can help provide a first line of security toward solving
the age verification problem. One way to detect these in-
consistencies is to start connecting the different identities
of a user across social media sites. For example, if a user
has multiple user accounts that are associated with incon-
sistent profile information, a further investigation should be
warranted to verify the individual’s claimed age.

Connecting user identities across social media sites is not
a straightforward task. The primary obstacle is that con-
nectivity among user identities across different sites is often
unavailable. This disconnection happens since most sites
maintain the anonymity of users by allowing them to freely
select usernames instead of their real identities, and also be-
cause different websites employ different user-naming and
authentication systems. Moreover, websites rarely link their
user accounts with other sites or adopt Single-Sign-On tech-
nologies such as openID, where users can logon to differ-
ent sites using a single username (e.g., users can login to
Google+ and YouTube with their GMail accounts). Re-
gardless, there exists a mapping between usernames across
different sites that connects the real identities behind them.
Can we find this mapping?
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In this paper, we introduce a methodology (MOBIUS)
for finding the mapping among identities across social me-
dia sites. Our methodology is based on behavioral patterns
that users exhibit in social media, and has roots in behav-
ioral theories in sociology and psychology. Unique behav-
iors due to environment, personality, or even human limita-
tions can create redundant information across social media
sites. Our methodology exploits such redundancies to iden-
tify users across social media sites. We use the minimum
amount of information available across sites.

Section 2 formally presents the user identification prob-
lem across social media sites. Section 3 describes behavioral
patterns that users exhibit in social media that can be har-
nessed to develop a user identification technique. Section 4
details experiments for identifying corresponding identities,
followed by related work in Section 5. Section 6 concludes
this research with directions for future work.

2. PROBLEM STATEMENT
Information shared by users on social media sites provides

a social fingerprint of them and can help identify users across
different sites. We start with the minimum amount of infor-
mation that is available on all sites. In terms of information
availability, usernames seem to be the minimum common
factor available on all social media sites. Usernames are of-
ten alphanumeric strings or email addresses, without which
users are incapable of joining sites. Usernames are unique
on each site and can help identify individuals, whereas most
personal information, even “first name + last name” com-
binations, are non-unique. We formalize our problem by
using usernames as the atomic entities available across all
sites. Other profile attributes, such as gender, location, in-
terests, profile pictures, language, etc., when added to user-
names, should help better identify individuals; however, the
lack of consistency in the available information across all so-
cial media, directs us toward formulating with usernames.
When considering usernames, two general problems need to
be solved for user identification:

I. Given two usernames u1 and u2, can we determine if
they belong to the same individual?

II. Given a single username u from individual I, can we
find other usernames of I?

Question I can be answered in two steps: 1) we find the
set of all usernames C that are likely to belong to individual
I. We denote set C as candidate usernames and, 2) for all
candidate usernames c ∈ C, we check if c and u belong to
the same individual. Hence, if candidate usernames C are
known, question II reduces to question I. Since finding can-
didate usernames has been discussed in detail in [19], from
now on, we focus on question I. One can answer question I
by learning an identification function f(u, c),

f(u, c) =

{
1 If c and u belong to same I ;
0 Otherwise.

(1)

Without loss of generality, we can assume that username
u is known to be owned by some individual I and c is the
candidate username whose ownership by I we would like to
verify. In other words, u is the prior information (history)
provided for I. Our function can be generalized by assuming
that our prior is a set 1 of usernames U = {u1, u2, . . . , un}
1Mathematically, a set can only contain distinct values; how-
ever, here a user may use the same username on more than

Figure 1: MOBIUS: Modeling Behavior for
Identifying Users across Sites

(hereafter referred to as “prior usernames”). Informally, the
usernames of an individual on some sites are given and we
have a candidate username on another site whose ownership
we need to verify; e.g., usernames ut and uf of someone are
given on Twitter and Facebook, respectively; can we verify
if c is her username on Flickr?

Definition. User Identification across Social Media
Sites. Given a set of n usernames (prior usernames) U =
{u1, u2, . . . , un}, owned by individual I and a candidate
username c, a user identification procedure attempts to learn
an identification function f(., .) such that

f(U, c) =

{
1 If c and set U belong to I ;
0 Otherwise.

(2)

Our methodology for MOdeling Behavior for Identifying
Users across Sites (MOBIUS) 2 is outlined in Figure 1.
When individuals select usernames, they exhibit certain be-
havioral patterns. This often leads to information redun-
dancy, helping learn the identification function. In MO-
BIUS, these redundancies can be captured in terms of data
features. Following the tradition in machine learning and
data mining research, we can learn an identification function
by employing a supervised learning framework that utilizes
these features and prior information (labeled data). In our
case, the labeled data is sets of usernames with known own-
ers. Supervised learning in MOBIUS can be performed via
either classification or regression. Depending on the learn-
ing framework, one can even learn the probability that an
individual owns the candidate username, generalizing our
binary f function to a probabilistic model (f(U, c) = p).
This probability can help select the most likely individual
who owns the candidate username. The learning compo-
nent of MOBIUS is the most straightforward. Therefore, we
next elaborate how to analyze behavioral patterns related to
user identification and how features can be constructed to
capture information redundancies due to these patterns. To
summarize, MOBIUS contains 1) behavioral patterns, 2) fea-
tures constructed to capture information redundancies due
to these patterns, and 3) a learning framework. Due to the
interdependent nature of behaviors and feature construction,
we discuss them together next.

one site. In our definition of username set, it is implied that
usernames are distinct when used on different sites, even
though they can consist of the same character sequence.
2The resemblance to the Möbius strip comes from its single-
boundary (representing a single individual) and its connect-
edness (representing connected identities of the individual
across social media).
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3. MOBIUS: BEHAVIORAL PATTERNS
AND FEATURE CONSTRUCTION

Individuals often exhibit consistent behavioral patterns
while selecting their usernames. These patterns result in in-
formation redundancies that help identify individuals across
social media sites.

Individuals can avoid such redundancies by selecting user-
names on different sites in a way such that they are com-
pletely different from their other usernames. In other words,
their usernames are so different that given one username, no
information can be extracted regarding the others. Theoret-
ically, to achieve these independent usernames, one needs to
select a username with Maximum Entropy [6]. That is, a
long username string, as long as the site allows, with char-
acters from those that the system permits, with no redun-
dancy - an entirely random string.

Unfortunately, all of these requirements are contrary to
human abilities. Humans have difficulty storing long se-
quences with short-term memory capacity of 7±2 items [18].
Human memory also has limited capability in storing ran-
dom content and often, selectively stores content that con-
tains familiar items, known as “chunks” [18]. Finally, human
memory thrives on redundancy, and humans can remember
material that can be encoded in multiple ways [18]. These
limitations result in individuals selecting usernames that are
generally not long, not random, and have abundant redun-
dancy. These properties can be captured using specific fea-
tures which in turn can help learn an identification function.
In this study, we find a set of consistent behavioral patterns
among individuals while selecting usernames. These behav-
ioral patterns can be categorized as follows:

1. Patterns due to Human Limitations

2. Exogenous Factors

3. Endogenous Factors

The features designed to capture information generated
by these patterns can be divided into three categories:

1. (Candidate) Username Features: these features
are extracted directly from the candidate username c,
e.g., its length,

2. Prior-Usernames Features: these features describe
the set of prior usernames of an individual, e.g., the
number of observed prior usernames, and

3. Username↔Prior-Usernames Features: these fea-
tures describe the relation between the candidate user-
name and prior usernames, e.g., their similarity.

We will discuss behaviors in each of the above mentioned
categories, and features that can be designed to harness the
information hidden in usernames as a result of the pattern’s
existence. Note that these features may or may not help in
learning an identification function. As long as these features
could be obtained for learning the identification function,
they are added to our feature set. Later on in Section 4,
we will analyze the effectiveness of all features, and if it is
necessary to find as many features as possible.

3.1 Patterns due to Human Limitations
In general, as humans, we have 1) limited time and mem-

ory and 2) limited knowledge. Both create biases that can
affect our username selection behavior.

3.1.1 Limitations in Time and Memory
Selecting the Same Username. As studied recently [19],
59% of individuals prefer to use the same username(s) re-
peatedly, mostly for ease of remembering. Therefore, when
a candidate username c is among prior usernames U , that
is a strong indication that it may be owned by the same
individual who also owns the prior usernames. As a result,
we consider the number of times candidate username c is
repeated in prior usernames as a feature.

Username Length Likelihood. Similarly, users commonly
have a limited set of potential usernames from which they
select one, once asked to create a new username. These
usernames have different lengths and, as a result, a length
distribution L. Let lc be the candidate username length and
lu be the length for username u ∈ U (prior usernames). We
believe that for any new username, it is more likely to have,

min
u∈U

lu ≤ lc ≤ max
u∈U

lu; (3)

for example, if an individual is inclined to select usernames
of length 8 or 9, it is unlikely for the individual to consider
creating usernames with lengths longer or shorter than that.
Therefore, we consider the candidate username’s length lc
and the length distribution L for prior usernames as fea-
tures. The length distribution can be compactly represented
by a fixed number of features. We describe distribution L,
observed via discrete values {lu}u∈U as a 5-tuple feature,

(E[lu], σ[lu],med[lu],min
u∈U

lu,max
u∈U

lu), (4)

where E is the mean, σ is the standard deviation, and med
is the median of the values {lu}u∈U , respectively. Note that
this procedure for compressing distributions as a fixed num-
ber of features can be employed for discrete distributions D,
observed via discrete values {di}ni=1.

Unique Username Creation Likelihood. Users often
prefer not to create new usernames. One might be inter-
ested in the effort users are willing to put into creating new
usernames. This can be approximated by the number of
unique usernames (uniq(U)) among prior usernames U ,

uniqueness =
|uniq(U)|
|U | . (5)

Uniqueness is a feature in our feature set. One can think of
1/uniqueness as an individual’s username capacity, i.e., the
average number of times an individual employs a username
on different sites before deciding to create a new one.

3.1.2 Knowledge Limitation
Limited Vocabulary. Our vocabulary is limited in any
language. It is highly likely for native speakers of a lan-
guage to know more words in that language than individuals
speaking it as a second language. We assume the individ-
ual’s vocabulary size in a language is a feature for identifying
them, and, as a result, we consider the number of dictionary
words that are substrings of the username as a feature. Sim-
ilar to username length feature, the number of dictionary
words in the candidate username is a scalar; however, when
counting dictionary words in prior usernames, the outcome
is a distribution of numbers. We employ the technique out-
lined in Eq. (4) for compressing distributions to represent
this distribution as features.
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Limited Alphabet. Unfortunately, it is a tedious task to
consider dictionary words in all languages, and this feature
can be used for a handful of languages. However, we ob-
serve that the alphabet letters used in the usernames are
highly dependent on language. For instance, while the let-
ter x is common when a Chinese speaker selects a username,
it is rarely used by an Arabic speaker, since no Arabic word
transcribed in English contains the letter x. Thus, we con-
sider the number of alphabet letters used as a feature, both
for the candidate username as well as prior usernames.

3.2 Exogenous Factors
Exogenous factors are behaviors observed due to cultural

influences or the environment that the user is living in.

Typing Patterns. One can think of keyboards as a gen-
eral constraint imposed by the environment. It has been
shown [9] that the layout of the keyboard significantly im-
pacts how random usernames are selected; e.g., qwer1234

and aoeusnth are two well-known passwords commonly se-
lected by QWERTY and DVORAK users, respectively. Most
people use one of two well-known keyboards DVORAK and
QWERTY (or slight variants such as QWERTZ or AZERTY)
[17]. To capture keyboard-related regularities, we construct
the following 15 features for each keyboard layout (a total
of 30 for both):

1. (1 feature) The percentage of keys typed using the
same hand used for the previous key. The higher this
value the less users had to change hands for typing.

2. (1 feature) Percentage of keys typed using the same
finger used for the previous key.

3. (8 features) The percentage of keys typed using each
finger. Thumbs are not included.

4. (4 features) The percentage of keys pressed on rows:
Top Row, Home Row, Bottom Row, and Number Row.
Space bar is not included.

5. (1 feature) The approximate distance (in meters) trav-
eled for typing a username. Normal typing keys are
assumed to be (1.8cm)2 (including gap between keys).

We construct these features for candidate username and
each prior username. Thus, for all prior usernames, each
feature has a set of values. Adopting the technique outlined
in Eq. (4) for compressing distributions as features, we con-
struct 15× 5 = 75 additional features for prior usernames.

Language Patterns. In addition to environmental fac-
tors, cultural priors such as language also affect the user-
name selection procedure. Users often use the same or the
same set of languages when selecting usernames. There-
fore, when detecting languages of different usernames be-
longing to the same individual, one expects fairly consis-
tent results. We consider the language of the username
as a feature in our dataset. To detect the language, we
trained an n-gram statistical language detector [10] over
the European Parliament Proceedings Parallel Corpus 3,
which consists of text in 21 European languages (Bulgarian,
Czech, Danish, German, Greek, English, Spanish, Estonian,
Finnish, French, Hungarian, Italian, Lithuanian, Latvian,
Dutch, Polish, Portuguese, Romanian, Slovak, Slovene, and
Swedish) from 1996-2006 with more than 40 million words
per language. The trained model detects the candidate user-
name language, which is a feature in our feature set. The

3http://www.statmt.org/europarl/

language detector is also used on prior usernames, providing
us with a language distribution for prior usernames, which
again is compressed as features using Eq. (4). The detected
language feature is limited to European languages. Our lan-
guage detector will not detect other languages. The lan-
guage detector is also challenged when dealing with words
that may not follow the statistical patterns of a language,
such as location names, etc. However, these issues can be
tackled from a different angle, as we discuss next.

3.3 Endogenous Factors
Endogenous factors play a major role when individuals se-

lect usernames. Some of these factors are due to 1) personal
attributes (name, age, gender, roles and positions, etc.) and
2) characteristics, e.g., a female selecting username fun-

girl09, a father selecting geekdad, or a PlayStation 3 fan
selecting PS3lover2009. Others are due to 3) habits, such
as abbreviating usernames or adding prefixes/suffixes.

3.3.1 Personal Attributes and Personality Traits
Personal Information. As mentioned, our language de-
tection model is incapable of detecting several languages, as
well as specific names, such as locations, or others that are
of specific interest to the individual selecting the username.
For instance, the language detection model is incapable of
detecting the language of usernames Kalambo, a waterfall in
Zambia, or K2 and Rakaposhi, both mountains in Pakistan.
However, the patterns in these words can be captured by
analyzing the alphabet distribution. For instance, a user
selecting username Kalambo most of the time will create an
alphabet distribution where letter ‘a’ is repeated twice more
than other letters. Hence, we save the alphabet distribution
of both candidate username and prior usernames as features.
This will easily capture patterns like an excessive use of ‘i’
in languages such as Arabic or Tajik [7, 11], where language
detection fails. Another benefit of using alphabet distribu-
tion is that not only is it language-independent, but it can
also capture words that are meaningful only to the user.

Username Randomness. As mentioned before, individ-
uals who select totally random usernames generate no in-
formation redundancy. One can quantify the randomness
of usernames of an individual and consider that as a fea-
ture that can describe individuals’ level of privacy and help
identify them. For measuring randomness, we consider the
entropy [6] of the candidate username’s alphabet distribu-
tion as a feature. We also measure entropy for each prior
username. This results in an entropy distribution that is en-
coded as features using aforementioned technique in Eq. (4).

3.3.2 Habits
“Old habits, die hard”, and these habits have a significant

effect on how usernames are created. Common habits are,

Username Modification. Individuals often select new
usernames by changing their previous usernames. Some,

1. add prefixes or suffixes,
• e.g., mark.brown → mark.brown2008,

2. abbreviate their usernames,
• e.g., ivan.sears → isears, or

3. change characters or add characters in between.
• e.g., beth.smith → b3th.smith.

Any combination of these operations is also possible. The
following approaches are taken to capture the modifications:
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• To detect added prefixes or suffixes, one can check if
one username is the substring of the other. Hence, we
consider the length of the Longest Common Substring
(LCS) as an informative feature about how similar the
username is to prior usernames. We perform a pair-
wise computation of LCS length between the candidate
username and all prior usernames. This will gener-
ate a distribution of LCS length values, quantizied as
features using Eq. (4). To get values in range [0,1],
we also perform a normalized LCS (normalized by the
maximum length of the two strings) and store the dis-
tribution as a feature as well.
• For detecting abbreviations, Longest Common Subse-

quence length is used since it can detect non-consecutive
letters that match in two strings. We perform a pair-
wise calculation of it between the candidate username
and prior usernames and store the distribution as fea-
tures using aforementioned technique in Eq. (4). We
also store the normalized version as another distribu-
tion feature.
• For swapped letters and added letters, we use the nor-

malized and unnormalized versions of both Edit (Lev-
enshtein) Distance, and Dynamic Time Warping (DTW)
distance as measures. Again, the end results are dis-
tributions, which are saved as features.

Generating Similar Usernames. Users tend to gener-
ate similar usernames. The similarity between usernames
is sometimes hard to capture using approaches discussed
for detecting username modification. For instance, gateman
and nametag are highly similar due to one being the other
spelled backward, but their similarity is not recognized by
discussed methods. Since we store the alphabet distribution
for both the candidate username and prior usernames, we
can compare these using different similarity measures. The
Kullback-Liebler divergence (KL) [6] is commonly the mea-
sure of choice; however, since KL isn’t a metric, comparison
among values becomes difficult. To compare distributions,
we use the Jensen-Shannon divergence (JS) [13], which is a
metric computed from KL,

JS(P ||Q) =
1

2
[KL(P ||M) +KL(Q||M)], (6)

where M = 1
2
(P +Q), and KL divergence is

KL(P ||Q) =
∑|P |

i=1
Pi · log(

Pi

Qi
). (7)

Here, P and Q are the alphabet distributions for the candi-
date username and prior usernames. As an alternative, we
also consider cosine similarity between the two distributions
as a feature. Note that Jensen-Shannon divergence does not
measure the overlap between the alphabets. To compute
alphabet overlaps, we add Jaccard Distance as a feature.

Username Observation Likelihood. Finally, we believe
the order in which users juxtapose letters to create user-
names depends on their prior knowledge. Given this prior
knowledge, we can estimate the probability of observing can-
didate username. Prior knowledge can be gleaned based on
how letters come after one another in prior usernames. In
statistical language modeling, the probability of observing
username u, denoted in characters as u = c1c2 . . . cn, is

p(u) = Πn
i=1p(ci|c1c2 . . . ci−1). (8)

Figure 2: Individual Behavioral Patterns
when Selecting Usernames

We approximate this probability using an n-gram model,

p(u) ≈ Πn
i=1p(ci|ci−(n−1) . . . ci−1). (9)

Commonly, to denote the beginning and the end of a word,
special symbols are added: ? and •. So, for username jon,
the probability approximated using a 2-gram model is

p(jon) ≈ p(j|?)p(o|j)p(n|o)p(•|n). (10)

To estimate the observation probability of the candidate
username using an n-gram model, we first need to compute
the probability of observing its comprising n-grams. The
probability of observing these n-grams can be computed
using prior usernames. These probabilities are often hard
to estimate, since some letters never occur after others in
prior usernames while appearing in the candidate username.
For instance, for candidate username test12 and prior user-
names {test, testing}, the probability of p(1| ? test) = 0
and therefore p(test12) = 0, which seems unreasonable. To
estimate probabilities of unobserved n-grams, a smoothing
technique can be used. We use the state-of-the-art Modi-
fied Kneser-Ney (MKN) smoothing technique [4], which has
discount parameters for n-grams observed once, twice, and
three times or more. The discounted values are then dis-
tributed among unobserved n-grams. The model has demon-
strated excellent performance in various domains [4]. We
include the candidate username observation probability, es-
timated by an MKN-smoothed 6-gram model, as a feature.

We have demonstrated how behavioral patterns can be
translated into meaningful features for the task of user iden-
tification. These features are constructed to mine informa-
tion hidden in usernames due to individual behaviors when
creating usernames. Overall, we construct 414 features for
the candidate username and prior usernames. Figure 2 de-
picts a summary of these behavioral patterns observed in
individuals when selecting usernames.

Clearly, our features do not cover all aspects of username
creation, and with more theories and behaviors in place,
more features can be constructed. We will empirically study
if it is necessary to use all features and the effect of adding
more features on learning performance of user identification.

Following MOBIUS methodology, we compute the feature
values over labeled data, and verify the effectiveness of MO-
BIUS by learning an identification function. Next, experi-
ments for evaluating MOBIUS are detailed.
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4. EXPERIMENTS
The MOBIUS methodology is systematically evaluated in

this section. First, we verify if MOBIUS can learn an accu-
rate identification function, comparing with some baselines.
Second, we examine if different learning algorithms make a
significant difference in learning performance using acquired
features. Then, we perform feature importance analysis, and
investigate how the number of usernames and the number of
features impact learning performance. Before we present our
experiments, we detail how experimental data is collected.

4.1 Data Preparation
A simple method for gathering identities across social net-

works is to conduct surveys and ask users to provide their
usernames across social networks. This method can be ex-
pensive in terms of resource consumption, and the amount
of gathered data is often limited. Companies such as Yahoo!
or Facebook ask users to provide this kind of information;
however, this information is not publicly available.

Another method for identifying usernames across sites is
by finding users manually. Users, more often than not, pro-
vide personal information such as their real names, E-mail
addresses, location, gender, profile photos, and age on these
websites. This information can be employed to map users
on different sites to the same individual. However, manually
finding users on sites can be quite challenging.

Fortunately, there exist websites where users have the op-
portunity of listing their identities (user accounts) on dif-
ferent sites. This can be thought of as labeled data for our
learning task, providing a mapping between identities. In
particular, we find social networking sites, blogging and blog
advertisement portals, and forums to be valuable sources for
collecting multiple identities of the same user.

Social Networking Sites. On most social networking sites
such as Google+ or Facebook, users can list their IDs on
other sites. This provides usernames of the same individual
on different sites.

Blogging and Blog Advertisement Portals: To adver-
tise their blogs, individuals often join blog cataloging sites to
list not only blogs, but also their profiles on other sites. For
instance, users in BlogCatalog are provided with a feature
called “My Communities”. This feature allows users to list
their usernames in other social media sites.

Forums: Many forums use generic Content Management
Systems (CMS), designed specifically for creating forums.
These applications usually allow users to add their user-
names on social media sites to their profiles. Examples of
these applications that contain this feature include, but are
not limited to: vBulletin, phpBB, and Phorum.

We utilize these sources for collecting usernames, guar-
anteed to belong to the same individual. Overall, 100,179
(c-U) pairs are collected, where c is a username and U is the
set of prior usernames. Both c and U belong to the same
individual. The dataset contains usernames from 32 sites,
such as Flickr, Reddit, StumbleUpon, and YouTube.

The collected pairs are considered as positive instances in
our dataset. For negative instances, we construct instances
by randomly creating pairs (ci-Uj), such that ci is from one
positive instance and Uj is from a different positive instance
(i 6= j) to guarantee that they are not from the same individ-
ual. We generated different numbers of negative instances
(up to 1 million instances), but its effect on the accuracy

of learning the identification function was negligible, so we
continue with a dataset where the class balance is 50% for
each label (100,179 positive + 100,179 negative ≈200,000 in-
stances). Then, we compute our 414 feature values for this
data and employ this dataset for our learning framework.

4.2 Learning the Identification Function
To evaluate MOBIUS, the first step is to verify if it can

learn an accurate identification function. Given our labeled
dataset where all feature values are calculated, learning the
identification function can be realized by performing super-
vised learning on our dataset. We mentioned earlier that
a probabilistic classifier can generalize our binary identifi-
cation function to a probabilistic one, where the probabil-
ity of a candidate username belonging to an individual is
measured. Probabilistic classification can be achieved by
a variety of Bayesian approaches. We select Naive Bayes.
Naive Bayes, using 10-fold cross validation, correctly classi-
fies 91.38% of our data instances.

There is a need to compare MOBIUS performance to other
methods as well. To the best of our knowledge, methods
from Zafarani et al. [19] and Perito et al. [15] are the only
methods that tackle the same problem. The ad hoc method
of Zafarani et al. employs two features: 1) exact match
between usernames and 2) substring match between user-
names. Perito et al.’s method uses a single feature. This fea-
ture, similar to our username-observation likelihood, utilizes
a 1-gram model to compute the username observation prob-
ability. Table 1 reports the performance of these techniques
over our datasets. Our method outperforms the method of
Zafarani et al. by 38% and the method of Perito et al. by
18%. The key difference between MOBIUS and the methods
in comparison is that MOBIUS takes a behavioral modeling
approach that systematically generates features for effective
user identification.

To evaluate the effectiveness of MOBIUS, we also devise
three baseline methods for comparison. When people are
asked to match usernames of individuals, commonly used
methods are “exact username matching”, “substring match-
ing”, or finding “patterns in letters”. Hence, they form our
three baselines, b1, b2, and b3:

b1: Exact Username Match. It considers an instance
positive if the candidate username is an exact match to α%
of the prior usernames. To set α accurately, we computed
the percentage of prior usernames that are exact matches to
the candidate username in each of our positive instances and
averaged it over all positive instances to get α, α ≈ 54%.
To further analyze the impact, we set 50% ≤ α ≤ 100%.
Among all α values, b1 does not perform better than 77%.

b2: Substring Matching. It considers an instance positive
if the mean of the candidate username’s normalized longest
common substring distance to prior usernames is below some
threshold θ. We conduct the experiment for the range 0 ≤
θ ≤ 1. In the best case, b2 achieves 63.12% accuracy.

b3: Patterns in Letters. For finding letter patterns, b3
uses the alphabet distribution for the candidate username
and the prior usernames as features. Using our data labels,
we perform logistic regression. b3 achieves 49.25% accuracy.

Our proposed technique outperforms baseline b1, b2, and
b3 by 19%, 45%, and 86%, respectively. The performance for
Naive Bayes, other methods, and baselines are summarized
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Table 1: MOBIUS Performance
Technique Accuracy

MOBIUS (Naive Bayes) 91.38%
Method of Zafarani et al. [19] 66.00%
Method of Perito et al. [15] 77.59%
Baseline b1: Exact Username Match 77.00%
Baseline b2: Substring Matching 63.12%
Baseline b3: Patterns in Letters 49.25%

Table 2: MOBIUS Performance for Different
Classification Techniques

Technique AUC Accuracy

J48 Decision Tree Learning 0.894 90.87%
Naive Bayes 0.937 91.38%
Random Forest 0.957 93.59%
`2-Regularized `2-Loss SVM 0.950 93.70%
`1-Regularized `2-Loss SVM 0.951 93.71%
`2-Regularized Logistic Regression 0.950 93.77%
`1-Regularized Logistic Regression 0.951 93.80%

in Table 1. Now, we would like to see if different learning
algorithms can further improve the learning performance.

4.3 Choice of Learning Algorithm
To evaluate the choice of learning algorithm, we perform

the classification task using a range of learning techniques
and 10-fold cross validation. The AUCs and accuracy rates
are available in Table 2. These techniques have different
learning biases, and one expects to observe different perfor-
mances for the same task. As seen in the table, results are
not significantly different among these methods. This shows
that when sufficient information is available in features, the
user identification task becomes reasonably accurate and is
not sensitive to the choice of learning algorithm. In our ex-
periments, `1-Regularized Logistic Regression is shown to
be the most accurate method; hence, we use it in the follow-
ing experiments as the method of choice. The classification
employs all 414 features. Designing 414 features and com-
puting their values is computationally expensive. Therefore,
we try to empirically determine 1) whether all features are
necessary, and 2) whether it makes economic sense to add
more features, in Sections 4.4 and 4.5.

4.4 Feature Importance Analysis
Feature Importance Analysis analyzes how important dif-

ferent features are in learning the identification function.
In other words, it finds features that contribute the most
to the classification task. This can be performed by stan-
dard feature selection measures such as Information Gain,
χ2, among others. We utilize odds-ratios (logistic regression
coefficients) for feature importance analysis and ranking fea-
tures. The top 10 important features are as follows:

1. Standard deviation of normalized edit distance between
the candidate username and prior usernames,

2. Standard deviation of normalized longest common sub-
string between the username and prior usernames,

3. Username observation likelihood,
4. Uniqueness of prior usernames,
5. Exact match: number of times candidate username is

seen among prior usernames,
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Figure 3: User Identification Performance for Users
with Different Number of Usernames

6. Jaccard similarity between the alphabet distribution
of the candidate username and prior usernames,

7. Standard deviation of the distance traveled when typ-
ing prior usernames using the QWERTY keyboard,

8. Distance traveled when typing the candidate username
using the QWERTY keyboard,

9. Standard deviation of the longest common substring
between the username and prior usernames, and

10. Median of the longest common subsequence between
the candidate username and prior usernames.

In fact, a classification using only these 10 features and
logistic regression provides an accuracy of 92.72%, which is
very close to that of using the entire feature set. We also
notice that in our ranked features,

• Numbers [0-9] are on average ranked higher than En-
glish alphabet letters [a-z], showing that numbers in
usernames help better identify individuals, and
• Non-English alphabet letters or special characters, e.g.,
Â,Ã,+, or &, are among the features that could easily
help identify individuals across sites, i.e., have higher
odds-ratios on average.

Although these 10 features perform reasonably well, it is of
practical importance to analyze how we can further improve
the performance of our methodology in different scenarios,
such as by adding usernames or features.

4.5 Diminishing Returns for Adding
More Usernames and More Features

It is often assumed that when more prior usernames of an
individual are known, the task of identifying the individual
becomes easier. If true, to improve identification perfor-
mance, we need to provide MOBIUS with extra prior infor-
mation (known usernames). In our dataset, users have from
1 to a maximum of 30 prior usernames. To verify helpfulness
of adding prior usernames, we partition the dataset into 30
datasets {di}30i=1, where dataset di contains individuals that
have i prior usernames. The user identification accuracy on
these 30 datasets are shown in Figure 3. We observe a mono-
tonically increasing trend in identification performance, and
even for a single prior username, the identification is 90.72%
accurate and approaches 100% when 25 or more usernames
are available. Note that the identification task is hardest
when only a single prior username is available.

Rarely are 25 prior usernames of an individual available
across sites. It is more practical to know the minimum
number of usernames required for user identification such
that further improvements are nominal. The relative per-
formance improvement with respect to number of usernames
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Figure 4: Relative User Identification Performance
Improvement with respect to Number of Usernames
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Figure 5: Relative Change in Number of Features
Required with respect to Number of Usernames

can help us measure this minimum. Figure 4 shows this im-
provement for adding usernames. We observe a diminishing
return property, where the improvement becomes marginal
as we add usernames and is negligible for more than 7 user-
names. A power function (g(x) = 2.44x−1.79), found with
95% confidence, fits to this curve with adjusted R2 = 0.976.
The exponent -1.79 denotes that the relative improvement
by adding n usernames is ≈ 1/n1.79 times smaller than that
by adding a single username, e.g., for 7 usernames, relative
identification performance improvement is ≈ 1/33 times
smaller than that of a single username.

Similar to adding more prior usernames, one can change
number of features. More practically, we would like to ana-
lyze how adding features correlates with adding prior user-
names. For instance, if we double the number of prior user-
names, how many features should we construct (or can be
removed) to guarantee reaching a required performance?

To measure this, for each number of prior usernames n, we
compute the average number of features such that MOBIUS
can achieve fixed accuracy θ. We set θ to the minimum
accuracy achievable, independent of number of usernames
(90% here). We then compute the relative change in the
number of required features when usernames are added.

Figure 5 plots this relationship. We observe the same di-
minishing return property, and as one adds more usernames,
fewer features are required to achieve a fixed accuracy. A
power function (g(x) = 0.1359x−0.875), found with 95% con-
fidence, fits to this curve with adjusted R2 = 0.987. The ex-
ponent -0.875 denotes that the number of features required
for n usernames is ≈ 1/n0.875 times smaller than that of a
single username.

Finally, if one is left with a set of usernames and a set of
features, should we aim at adding more usernames or con-
struct better features? Let f(n, k) denote the performance

Figure 6: The δ(n, k) function, for n usernames and
k features. Values larger than 1 show that adding
usernames will improve performance more and val-
ues smaller than 1 show adding features is better.

of our method for n usernames and k features. Let

δ(n, k) =
f(n+ 1, k)− f(n, k)

f(n, k + 1)− f(n, k)
. (11)

The δ function is a finite difference approximation for the
derivative ratio with respect to n and k. When δ(n, k) >
1, adding usernames improves performance more and when
δ(n, k) < 1, adding features is better. To compute f(n, k),
for different values of n, we select random subsets of size
k. We denote the average performance over these random
subsets as f(n, k). Figure 6 plots the δ(n, k) function. We
plot plane z = 1 to better show where adding features is
more helpful and where usernames are more beneficial. We
observe that for small values of n and k, i.e., when fewer
usernames and features are available, features help best, but
for all other cases adding usernames is more beneficial.

5. RELATED WORK
In this section, we focus on summarizing research related

to identifying individuals in social media. We provided a
review of directly relevant techniques to our study in Section
4. In addition to those methods, there exists related research
about 1) identifying content produced by an individual on the
web or 2) identifying individuals in a single social network.

Identifying Content Authorship. In [1], the authors
look at the content generation behavior of the same indi-
viduals in several collections of documents. Based on the
overlap between contributions, they propose a method for
detecting pages created by the same individual across dif-
ferent collections of documents. They use a method called
detection by compression, where Normalized Compression
Distance (NCD) [5] is used to compare the similarity be-
tween the documents already known to be authored by the
individual and other documents. Author detection has been
well discussed in restricted domains. In particular, machine
learning techniques have been employed to detect authors
in online messages [20] and in E-mails [8]. Although, one
can think of usernames as the content generated by individ-
uals across sites; however, in content authorship detection,
it is common to assume large collections of documents, with
thousands of words, available for each user, whereas for user-
names, the information available is limited to one word.

User Identification on One Site. Deanonymization is
an avenue of research related to identifying individuals on a
single site. Social networks are commonly represented using
graphs where nodes are the users and edges are the con-
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nections. To preserve privacy, an anonymization process
replaces these users with meaningless, randomly generated,
unique IDs. To identify these masked users, a deanonymiza-
tion technique is performed. Deanonymization of social net-
works is tightly coupled with the research in privacy preserv-
ing data mining or Identity Theft attacks [3]. In [2], Back-
strom et al. present such process where one can identify in-
dividuals in these anonymized networks by either manipulat-
ing networks before they are anonymized or by having prior
knowledge about certain anonymized nodes. Narayanan and
Shmatikov in [14] present statistical deanonymization tech-
nique against high-dimensional data. They argue that given
little information about an individual one can easily identify
the individual’s record in the dataset. They demonstrate the
performance of their method by uncovering some users on
the Netflix prize dataset using IMDB information as their
source for background knowledge. Our work differs from
these techniques, as it deals with multiple sites. Moreover,
it avoids using link information, which is not always avail-
able on different social media sites.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have demonstrated a methodology for

connecting individuals across social media sites (MOBIUS).
MOBIUS takes a behavioral modeling approach for system-
atic feature construction and assessment, which allows in-
tegration of additional features when required. MOBIUS
employs minimal information available on all social media
sites (usernames) to derive a large number of features that
can be used by supervised learning to effectively connect
users across sites. Users often exhibit certain behavioral
patterns when selecting usernames. The proposed behav-
ioral modeling approach exploits information redundancy
due to these behavioral patterns. We categorize these be-
havioral patterns into (1) human limitations, (2) exogenous
factors, and (3) endogenous factors. In each category of
behaviors, various features are constructed to capture in-
formation redundancy. MOBIUS employs supervised learn-
ing to connect users. Our empirical results show the ad-
vantages of this principled, behavioral modeling approach
over earlier methods. The experiments demonstrate that (1)
constructed features contain sufficient information for user
identification; (2) importance or relevance of features can be
assessed, thus features can be selected based on particular
application needs; and (3) adding more features can further
improve learning performance but with diminishing returns;
hence, facing a limited budget, one can make informed de-
cisions on what additional features should be added.

MOBIUS can help solve the problem of age verification
in a collective effort of protecting youth on the web against
predators. For example, profiles of individuals across sites
can be connected and inconsistencies on reported age can be
checked. Detecting these inconsistencies can help provide a
first line of security toward solving the age verification prob-
lem. Identifying users across social media sites opens the
door to many interesting applications. Studying user be-
haviors across social media such as user migration [12] is an
example of the many areas that can benefit from the results
of this study. Future work includes analyzing these possi-
bilities and discovering features indigenous to specific sites,
beyond those constricted to usernames, and incorporating
them into MOBIUS for future needs.
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