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ABSTRACT
When analyzing data that originated from a dynamical sys-
tem, a common practice is to encompass the problem in
the well known frameworks of Markov Decision Processes
(MDPs) and Reinforcement Learning (RL). The state space
in these solutions is usually chosen in some heuristic fashion
and the formed MDP can then be used to simulate and pre-
dict data, as well as indicate the best possible action in each
state. The model chosen to characterize the data affects the
complexity and accuracy of any further action we may wish
to apply, yet few methods that rely on the dynamic structure
to select such a model were suggested.
In this work we address the problem of how to use time

series data to choose from a finite set of candidate discrete
state spaces, where these spaces are constructed by a do-
main expert. We formalize the notion of model selection
consistency in the proposed setup. We then discuss the dif-
ference between our proposed framework and the classical
Maximum Likelihood (ML) framework, and give an example
where ML fails. Afterwards, we suggest alternative selection
criteria and show them to be weakly consistent. We then
define weak consistency for a model construction algorithm
and show a simple algorithm that is weakly consistent. Fi-
nally, we test the performance of the suggested criteria and
algorithm on both simulated and real world data.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Markov Processes; J.1
[Computer Applications]: Administrative Data Process-
ing—Marketing
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1. INTRODUCTION
Markov decision processes (MDPs) can describe dynami-

cal problems found in artificial intelligence, control, opera-
tions research and many other fields. Algorithms that use
MDPs for optimizing and evaluating policies in different de-
cision problems almost always start with the assumption
that the state space is known. In practice, this is gener-
ally not the case. In many situations the practitioner must
choose from a candidate set of state spaces, usually con-
structed by a domain expert, before applying an optimiza-
tion algorithm.

Our work is motivated by the following scenario: a stream
of data describing some goal oriented dynamics is given and
a domain expert analyzes the observations and suggests dif-
ferent models that might generate the suggested data. We
focus on selecting the most suitable model among these sug-
gested. Our findings offer conceptual and practical contri-
butions. The conceptual contribution include a new frame-
work for model selection of stochastic processes, which devi-
ates from the classical maximum likelihood (ML) framework.
Our proposed framework is more suitable for the path that
engineers usually undertake: (1) receiving the raw data; (2)
applying different preprocessing, discretization and feature
selection procedures; and (3) choosing the model that rep-
resents their data most faithfully. In contrast, in the ML
framework all these stages are performed at once based on
the observations directly. Thus, integrating domain expert
knowledge regarding the feature selection is more difficult.

Next, we discuss the practical contribution. A natural
question that arises in this context is the following: Does
an ML based approach still yields a reasonable result? The
first result in this paper establishes that this standard ap-
proach, which works well in some settings, may fail to choose
the correct model for MDPs. We then present alternative
criteria for model selection in MDPs, one that is based on
transitions and one that is based on rewards; We show that
these criteria are consistent under appropriate assumptions.
In addition, the computation of these criteria scales linearly
with the size of the data set and they contain a natural
way of regularizing the number of states according to the
amount of data available. At last, these criteria can be ex-
tended to build a simple model construction algorithm which
converges to a refinement of the correct state space.

Finally, we make use of our methods in a marketing prob-
lem in which a firm decides whether to send each client
a mail, and the reward depends on the client’s response.
Specifically, we examine the data from the KDD cup in 1998
[9], where donation requests were sent to many individuals
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and the reward was based on the donation received. We
construct candidate models of different sizes using a simple
clustering algorithm to inspect the behavior of the differ-
ent criteria, and examine the performance of our own model
construction in comparison.
The paper is organized as follows. In Section 2 we de-

scribe the setup and define the notations. In Section 3 we
review previous research. In Section 4 we discuss penalized
maximum likelihood based criteria and show that they are
not necessarily consistent in MDPs. In Section 5 we describe
a criterion for choosing models among a nested set, where
in Section 6 we expand the results to any general case. We
propose different reward based criteria in Section 7. Section
8 presents the notion of weak consistency for algorithms that
build a specific model, as well as a simple algorithm that is
weakly consistent. In Section 9 we illustrate the findings on
simulated and real-world data. We conclude in Section 10.

2. SETUP
The setup is defined in the Markov decision process frame-

work [16]; We begin with a formal definition:

Definition 1. A Markov Decision Process (MDP) is a tu-
ple (S,U , P,R,O), where S is the state space set, U is the
actions space, P : S × S × U 7→ [0, 1] is the transition prob-
ability function, the reward R ∈ R is a random variable
dependant on the state and the action, and the observation
O ∈ O, where O is the observation space, is a random vari-
able dependant on the state.

The system dynamics are the following: in each time step
t = 0, 1, ..., the system is at some state st ∈ S. An ob-
servation ot is generated according to the current state and
viewed as an output to the user. The user then chooses an
action ut ∈ U . A reward rt is generated according to the last
state and action, and the state in the succeeding time step
t+1 is chosen according to the transition matrix, st and ut

such that st+1 ∼ P (·|st, ut). The time t is incremented by 1
and the process repeats itself.
Throughout this work, we assume some regularity condi-

tions regarding the MDP since other cases are of less interest
in our context. These conditions are summarized in the fol-
lowing assumptions.

Assumption 1. For increasingly more data samples from
the MDP, each state-action pair appears infinitely often.

Assumption 2. The data were generated by applying a
constant policy.

Assumption 3. For every s ∈ S, o ∈ O, if P (o|s) > 0 then
∀s′ ∈ S \ {s} : P (o|s′) = 0, i.e., for each observation o ∈ O
there is a unique possible state s ∈ S that it could have
originated from, denoted by s(o).

Assumption 1 guarantees estimates of the MDP’s param-
eters P,E[R] based on increasingly more samples will con-
verge to their correct values. Assumption 2 guarantees es-
timates of the incorrect MDP’s parameters will converge to
some policy dependent value as well. Thus, these are cru-
cial to the notion of weak consistency which will be pre-
sented later. Assumption 3 may seem too harsh and it is in
fact used to simplify some technicalities. Moreover, in the
framework we have in mind the observations hold excessive

information on the state, which means Assumption 3 will
hold at least with high probability on such cases.

Our basic setup is known as the offline batch setup: We
observe a sequence of T observations, actions and rewards
that occur in some space O×U ×R. The observation space
O is possibly high dimensional, continuous, or processed in
an unknown way that does not allow us to compute its prob-
ability density function. Denote the trajectory by

DT = (o1, u1, r1, o2, u2, r2, . . . , oT , uT , rT ). (1)

These observations and rewards come from an underlying
finite state MDP, denoted by M∗.

Definition 2. A candidate MDP M = (FM ,SM ) is the
empirically induced MDP by the mapping FM : O → SM .

In our problem formulation we are given K candidate MDPs
{M i}Ki=1 where M i = (F i, Si). Each candidate is in fact a
mapping that describes some underlying MDP. Following
Assumption 3 we can define a true candidate model as one
which perfectly represents the underlying state.

Definition 3. Given data generated by an MDP M , a can-
didate MDPM = (F ∗, S∗) is defined to be the correct model
if ∀o1, o2 ∈ O : s(o1) = s(o2) iff F ∗(o1) = F ∗(o2) .

Note that we do not describe how the mappings {F i}Ki=1

are formed. Usually, these mappings are constructed by a
domain expert who applies the appropriate methods for do-
ing feature extraction. We can now define our setup of iden-
tification.

Definition 4. A model selection criterion takes as input
DT and the candidate models M1, . . . ,MK , and chooses one
of the K models as the proposed best model. We denote a
generic model selector by M̂(DT ).

We begin with a nesting assumption on the MDPs, which
we relax in Section 6.

Assumption 4. For all i = 1, . . . ,K, 1 ≤ j < i and ∀o1, o2 ∈
O if F i(o1) = F i(o2) then F j(o1) = F j(o2).

In other words, Assumption 4 states that the candidate
model Mi is a refinement of all candidate models Mj , 1 ≤
j < i. When the nesting assumption holds, it is much easier
to ascertain one candidate is preferable to another since the
model selection problem becomes whether or not a group
of states should be aggregated. In addition, although As-
sumption 4 seems harsh, hierarchical clustering algorithms
naturally create a family of nested candidate models.

Finally, we give a formal definition of criterion’s weak con-
sistency which implies that for enough samples it will select
the correct model.

Definition 5. Consider a model M , a model selection cri-
terion M̂(DT ) and a set of candidate models {M i}Ki=1. De-

fine M̂(DT ) to be a weakly consistent criterion with re-
spect to the given correct model and set of models, if for
1 ≤ i ≤ K, i ̸= j:

Pj
(
M̂(DT ) = i

)
→ 0 as T → ∞,

where Pj is the induced probability when model j is the
correct model.
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We conclude this section with an example which will demon-
strate the setup.

Example 1. Consider an MDP M = (S,U , P,R,O) with
S = {1, 2, 3}, O = s + n1,U = {u}, R = s + n2, where
n1 ∼ U([−0.2, 0.2]), n2 ∼ N (0, 1) and the transitions are
uniform for the only action u. An observation realization
may be:

o = (1.0, 1.01, 0.99, 1.98, 1.99, 3.0, 3.0, 3.0, 2.0, 2.0, 1.08),

r = (0.86, 1.05, 0.9, 1.97, 2.06, 3.1, 2.9, 3.13, 2.07, 2.0, 1.0).

Suppose we have 4 candidate models, M1, . . . ,M4, where
the function F i is the induced clustering from applying the
k-means clustering algorithm [4] on the observations to i
clusters, and the transition matrix and the reward for each
such model are found empirically from the induced trajec-
tory. In our case, forM4 the centers vector is (1, 1.9925, 3, 1.07),
for M3 it is (1.028, 1.9925, 3), for M2 the centers vector is
(1.028, 2.4243), and for M1 the center is (1.842). Therefore,
expressing the states abstractly using the finest state space
S4 = {a, b, c, d} yields

DT =


a a a a a a a a a a a
a a a b b b b b b b a
a a a b b c c c b b a
a a a b b c c c b b d

 ,

where line i depicts the i’th model’s induced trajectory.

3. PREVIOUS WORK
Previous research on model selection for dynamic random

processes includes works on Hidden Markov Models (HMMs;
Elliott et al. 5) and Dynamic Bayesian Networks (DBNs;
Dean and Kanazawa 3). In HMMs, one obtains (corrupted)
observations of a Markov process, where the observations
may be a stochastic function of the underlying process. The
goal is to find the best model that describes the underly-
ing process. The problem of identification in DBNs is to
find a graphical model that compactly describes the relation
between the components of a multivariate random process.
Our setting is somewhat different as we consider observa-
tions which may have gone through preprocessing and from
which domain experts suggest different mappings to candi-
date state spaces.
More recent works investigating model selection in Markov

processes have largely focused on a single state space (see, for
example, Farahmand and Szepesvári 6, Fard and Pineau 7),
selecting state representations in RL focusing on the regret;
see [13], or minimizing the errors of the Bellman operator [6].
These works focused largely on the Q-function rather than
on the model selection thus following a different approach
from ours.
There has also been substantial work on state aggrega-

tion in the RL literature, proposing different aliased states
definitions [11]. Givan et al. [8] suggested the bisimulation
definition for aliased states which we adopt in this paper,
but other aliasing definitions have been proposed as well
(for example according to the Q-function in McCallum [14]
or policy invariance in Jong and Stone [10]). Li et al. [11] re-
viewed the different definitions and found relations between
them. We see our work as another layer in unifying model
selection theory as we focus on the offline problem where
historical data are available.

Another aspect in which much work has been done is find-
ing the aggregated states. For instance one can use the
spectral properties of the transition matrix (see Mahadevan
12 and references therein), while Ravindran [17] suggested
defining and finding aliased states using homomorphisms.
In this aspect our work is most closely related to the works
of Jong and Stone [10] who proposed statistical testing on
the Q-function, while we use them on the models’ transition
probabilities and rewards.

Finally, there are substantial amount of works on finding
a good policy in a dynamic marketing environment. In their
paper on catalog mailing policies, Simester et al. [20] sug-
gested a discretizing heuristic for a continuous state space
with a geometric structure. Although our method of design-
ing a state space is similar, we were able to provide some the-
oretical reasoning to it. [15] conducted experiments showing
that a dynamic policy on data from the KDD cup in 1998 [9]
outperforms a myopic policy which ignores the underlying
dynamics. In contrast to this work and other works in this
area, we focus on a rigorous method to build the state space
which is based on the underlying dynamics.

4. PENALIZED LIKELIHOOD CRITERIA
Penalized Likelihood Criteria are criteria that measure

the fitness of a model based on available data. Suppose
we have a statistical model M that produces data samples
y1, y2, . . . , yT . We are given a parameterized set of candidate
statistical models of degree i that describe the generation of
data denoted by {M i(θ)}θ∈Θ. A conventional way to choose
between the models is to use Maximum Likelihood Estima-
tion (MLE; Duda et al. 4), which assumes that the best
value for missing parameters is the one that maximizes the
observations’ probability. But in many cases, when compar-
ing between models with a varying number of parameters,
the MLE is prone to over-fit the data, i.e., it chooses the
model with the highest number of parameters.

The Minimum Description Length (MDL; [18]) principle
is a formalization of the celebrated Occam’s Razor principle
that copes with the over-fitting problem. According to this
principle, the best hypothesis for a given data set is the one
that leads to the best compression of the data. Define the
maximum likelihood (ML) of the model to be

Li(T ) = max
θ

{P (y1, . . . , yT |M i(θ))}.

We denote the dimension of θ by |M i|. Then, an MDL-style
model estimator has the following structure

MDL(i) , |M i|f(T )− logLi(T ), (2)

where f(T ) is some sub-linear function. In this model, the
goal is to find i such that the MDL(i) is minimized. The
rationale behind this criterion is simple: we look for a model
that best fits the data but is still “simple” in terms of missing
parameters.

Many MDL-style criteria exist and some of them were
developed from an information theory perspective, we men-
tion the two most popular ones as we later compare them
to our algorithm. The first is the Akaike Information Crite-
rion (AIC; Akaike 1). This criterion has the form AIC(i) =
2|M i| − 2 logLi(T ) and it tries to minimize the Kullback-
Leibler divergence between the statistics of the true model
and the candidate model. The second criterion is the Bayesian
Information Criteria (BIC; Schwarz 19) that has the form
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BIC(i) = |M i| log(T )− logLi(T ) and is similar in its nature
to the AIC but was developed in a Bayesian framework. We
will next show that in our setting, where the observations
probabilities cannot be used due to their high dimensional-
ity, continuous and processed nature, these criteria can fail
to find the right model. We do so by presenting an example
that shows the counter-intuitive behavior of standard MDL
criteria.

Theorem 1. For MDPs, there does not exist a consistent
MDL-style criterion in the form of (2).

Proof. We construct a counter example for the general
criterion (2). Suppose the correct model, M∗, is an MDP
with a single action U∗ = {u} and three states, S∗ = {a, b, c}
where Pr(st+1|st, u) = 1/2 if st+1 ̸= st. An illustration of
the process is given in Figure 1. The reward function is
r(a) = 0 and r(b) = r(c) = 1. Consider a candidate model,
denoted by M1, that is a single-state MDP. For the correct
model M∗ the likelihood will be for any trajectory affected
only by the transitions. For the second model the likelihood
will be for any trajectory affected only by the distribution
of the rewards. A straightforward calculation yields:

L∗(T ) = 0.5T , L1(T ) = (
1

3
)
T
3 (

2

3
)
2T
3 ≈ 0.53T .

Now, the likelihood ratio of the two models is:

lim
T→∞

L∗(T )

L1(T )
= 0.

Recalling the MDL-like criteria (2), we see that the pe-
nalizing term can be neglected asymptotically since it scales
sub-linearly with T , while the logarithm of the likelihood
ratio scales linearly. Therefore, the wrong model M1 is cho-
sen. The model M1 is in fact a bad model to describe the
data since the reward sequence of rt = 0, rt+1 = 0 cannot
appear in the actual data, yet the model M1 allows it.

Figure 1: The counterexample given in Theorem 1’s
proof.

We remark that this counter example follows the frame-
work discussed above where the models’ features can be
thought of being constructed by a domain expert and there-
fore do not convey a particular probabilistic behavior. Al-
though the true model M∗ is one of the candidate models,
the candidate model M1 was chosen. In other words, the
feature selection procedure done before applying the ML
criterion leads to the ML approach failure to identify the
right model. In the next section we propose an alternative
criterion for choosing the right model and show that this
criterion is consistent.

5. AGGREGATION BASED CRITERION
We begin with defining aliased states, followed by more

intuitive explanation of this technical and lengthy definition.
This definition is directly related to the containment relation
in Assumption 4.

Definition 6. Consider models M and M̃ , where M̃ is a
refinement of M , and with state spaces S = {s1, . . . , si}
and S̃ = {s̃1, . . . , s̃i+k−1}, respectively. Let P and P̃ , be

the transition matrices of M and M̃ , respectively. Let R(·)
and R̃(·) be the reward functions of M and M̃ , respectively.

Define C to be the set of states common to both S and S̃
(i.e., the mappings from observations to states have the same
inverse image for any one of these states), and let s∗ ∈ S

be aggregation of k states in S̃, denoted by A, such that
C
∪
{s∗} = S and C

∪
A = S̃. Suppose that

1. P̃ (c2| c1, u) = P (c2| c1, u) , ∀c1, c2 ∈ C, u ∈ U ;

2.
∑

a∈A P̃ (a| c, u) = P (s∗| c, u) , ∀c ∈ C, u ∈ U ;

3. P̃ (c| a1, u) = P̃ (c| a2, u) , ∀c ∈ C, a1, a2 ∈ A, u ∈ U ;

4.
∑

a∈A P̃ (a| a1, u) =
∑

a∈A P̃ (a| a2, u) ∀a1, a2 ∈ A, u ∈
U ;

5. R̃ (a1, u) ∼ R̃ (a2, u) ,∀a1, a2 ∈ A, u ∈ U .

Then, we say that the states A in model M̃ are aliased with
respect to model M (or simply aliased).

Discussion: Intuitively, the meaning of aliased states is
the following. In model M , there is a state, s∗, that is
split into k states in model M̃ (denoted by A). Condition
1 suggests that transitions between states that are not in A
are the same in both models. If the probabilities related to
S∗ in model M and the states A in M̃ , satisfy conditions
2-5 we have aliased states. In other words, if we take the
states that belong to A, and we cannot provide a statistical
test that differentiate between them (conditions 2-5) based
on the MDPs parameters, then for all practical purposes we
can aggregate these states and get the same result on M
and M̃ . For example, computing the value function for two
MDPs that differ by having aliased states yields the same
result [8]. Based on this, a natural criterion for identifying
the right model is the following. We look for a model that
best fits the data, but does not contain any aliased states
which unnecessarily complicate it.

How to test whether two states are aliased? A criterion
for that may be the following. The observer examines the
empirical probabilities, analogously to those of Definition 6,
of the candidate aliased states. Then, using a significance
test (or hypothesis testing ; see Cover and Thomas 2) it is
decided whether these states are aliased. I.e., the compari-
son between models is not carried out by applying a scalar
score on the models (an MDL-like score), but by comparing
two models directly and doing some statistical test.

The statistical test examines if a finer model adds informa-
tion comparing to the coarser model. If so, and if the finer
model does not have aliased states, then the observer may
choose the highest order model that does not contain aliased
states. We formally summarize this test for two models.

The idea in the base of statistical testing is the following.

Let Ai be the set of possibly aliased states in modelM i, p̂
(i)
kj,u
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be the empirical probability for the transition from state k

to state j in model i after choosing action u, and r̂
(i)
k,u be

the empirical reward of choosing action u in state k. An
examination of conditions 1 − 5 is now needed: Conditions
1 and 2 are trivially satisfied from the nesting assumption,
but the rest of the conditions have to be tested.
Define

h
(i)
1 ,

{∣∣∣p̂(i)lj,u − p̂
(i)
mj,u

∣∣∣ < ϵi,lm,u, ∀j ∈ C, ∀l,m ∈ Ai,∀u ∈ U
}
,

h
(i)
2 ,

{∣∣∣∣∣∑
j∈A

p̂
(i)
lj,u −

∑
j∈A

p̂
(i)
mj,u

∣∣∣∣∣ < ϵi,lm,u, ∀l,m ∈ Ai,∀u ∈ U

}
,

h
(i)
3 ,

{∣∣∣r̂(i)l,u − r̂(i)m,u

∣∣∣ < ϵi,lm,u, ∀l,m ∈ Ai, ∀u ∈ U
}
,

(3)

where {ϵi,lm,u}l,m∈Ai,u∈U,i=2..K are tolerance parameters that
are to be determined according to the desired level of error
balancing different sources of error. The value of ϵ repre-
sents a tradeoff: if it is too large we may choose a model
that is too refined while if it is too small we may choose a
model that is too fine.
We note that h

(i)
1 , h

(i)
2 , and h

(i)
3 are the empirical analogies

to conditions 3-5 above. Define Hi−1,i , h
(i)
1

∩
h
(i)
2

∩
h
(i)
3

to be the event that models Mi−1 and Mi are statistically
aliased. Based on this, we define a comparison test:

Ci = 1{Outcome contained in Hi−1,i},

and the model selector in this case is

M̂C = max
i

{i : Ci = 0} . (4)

I.e., it is the first index for which aliased states are iden-
tified. For clarity, we summarize how to use our proposed
model selection criterion (4). We set the tolerance param-
eters {ϵi,lm,u}l,m∈Ai,u∈U,i=2..K for each test to a value de-
pending on the type of significance test (proportions / mean)
and the desirable significance level. In effect, if the tolerance
is set too high then the test will falsely mark non-aliased
states as aliased, however low tolerance can cause failure to
identify aliased states when data are limited. Specifically,
we set the tolerance in the following manner:

lim
T→∞

ϵi,lm,u
T

√
T = ∞, lim

T→∞
ϵi,lm,u
T = 0, (5)

in order to guarantee consistency as shown. Next we com-

pute h
(i)
1 , h

(i)
2 and h

(i)
3 for each pair of consecutive candidate

models (i−1, i). Based on their value we compute the event
Hi−1,i. Then, we try to identify the greatest index i such
that Ci = 0, i.e., identifying the finest model that does not
contain aliased states.
As a final note, we point out that hypothesis testing could

have been done using other methods. For example, we could
have used χ2 score to compare the transition probabilities of
different states, this choice was done arbitrarily. We could
have also used some characteristic of the reward distribution
other than the expectation, but since in MDPs this is the
deciding factor our choice here is probably the most suited.
We conclude this section with a theorem that states that

the criterion in (4) is weakly consistent. The proof is a tech-
nical use of Hoeffding’s inequality and is therefore omitted.

Theorem 2. Suppose Assumptions 1 and 4 hold and that
the correct model contains no aliased states. In additon,
assume {ϵi,lm,u}l,m∈Ai,u∈U,i=2..K are chosen as specified in
Eq. (5). Then, for any set of candidate models the model

selector M̂C is weakly consistent.

6. EXTENSION TO ARBITRARY CANDI-
DATES SET

In Section 5 we used Assumption 4 that requires a con-
tainment relation between the models. Yet, strict contain-
ment between models is a harsh assumption that will not
always hold. In this section we show that we can still estab-
lish consistency when the set of candidate models M has no
structure. We emphasize that we still assume that one of
the candidate models is the true model.

We begin by formalizing the nested approach in partial
order formulation (similarly to Li et al. 11).

Definition 7. For two candidate models M1 and M2 de-
fine the aggregation order : M1 <Agg M2 if aliased states in
M1 can be aggregated to obtain M2.

It is easy to see the <Agg order is partial, and that the

aggregation criterion M̂C is equivalent to choosing the can-
didate model with the least number of states among all the
maxima candidates in the given set of nested models. We
can fix the aggregation order such that the aggregation cri-
terion will simply choose the only maximum as the correct
model in any given set.

Definition 8. For two candidate models M1 = (F 1,S1)
and M2 = (F 2,S2) define the fixed aggregation order as
following: let M1×2 = ((F 1, F 2),S1 × S2), then M1 <fAgg

M2 if M1×2 <Agg M2 and not M2 <Agg M1.

The motivation behind Definition 8 is the following: As-
sume that we compare the correct model M1 and some other
model M2. Since the correct model contains all the informa-
tion on the system’s dynamics, it is unnecessary to use the
other model as an additional information source by looking
at M1×2. Therefore M1×2 can be aggregated to the correct
model M1. In other words, the fixed aggregation order as-
serts whether one model contains all the information on the
dynamics that is contained by the other model.

Like the original aggregation order, we can expand the
fixed aggregation order to a model selection criterion and
show it is weakly consistent.

Definition 9. Given a set of models {M i}Ki=1 define the
fixed aggregation criterion:

M̂fAgg = arg max
<fAgg

{
M i

}
. (6)

Theorem 3. Suppose that Assumption 1 holds and that
the correct model contains no aliased states. In addition,
assume that the tolerance parameters are chosen as specified
in Eq. (5). Then, for any set of candidate models the model

selector M̂fAgg is weakly consistent.

A sketch of the proof is as follows: We prove that if the
correct model has no aliased states it is strictly <fAgg bigger
than any other candidate model by going over the possible
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nesting relations between the two models. The main diffi-
culty is to show that no model can be <fAgg bigger than the
correct model; we solve this by proving that it contradicts
the assumption there are no aliased states.
To conclude this section we would like to discuss the com-

putational aspect of our solution. In order to find the correct
model among a set of given models we need to find the max-
imum in this set with respect to the suggested order. When
two models cannot be compared using the <fAgg order, ev-
idently none of them can be correct therefore the maximum
can be found in a single sweep on the candidates. However,
the computation of the order between any two models can
be expensive since naively it requires finding aliased states
from |S1|·|S2| states. Even so, there are cases when only few
states from |S1| · |S2| exists; For example, if the models are
nested then there are only max(|S1|, |S2|) different states.

7. REWARD BASED CRITERIA
In the previous sections we introduced two aggregation

based orders. However, in the improper case when the cor-
rect model is not in the given set of candidate models ag-
gregation based criteria hold no ground. In this section we
suggest another reward-based criterion that has a meaning
in the predictive sense on the MDP.

Definition 10. For a given model M , a trajectory DT =
(ot, at, rt)

T
t=1 and a constant d ∈ N0 define the d-delayed

Reward Error (REd) value as

REd(M) =
1

T

T−d∑
t=1

(rt+d − Ê[Rt+d|st, at])
2 + |S| f(T )

T
, (7)

where Ê[Rt+d|st, at] is the empirical expectation of rewards
obtained from the state-action pair (st, at) after d steps, and

f(T ) is a sublinear function that satisfies limT→∞
f(T )√

T
= ∞.

The REd score for a given model is the reward prediction
error, with an additional penalty function which prevents
empirical fluctuations from tilting the score to more refined
models. Another important property of the REd score is
that if two sets of data were generated from different policies,
asymptotically their REd score would be different even for
the correct model. We can formalize a REd based criterion
by trying to minimize it:

Definition 11. Define the REd order as the induced order
by the REd score, and the REd model criterion as selecting
the minimal model with respect to the REd order. If there
are multiple candidate models achieving the minimal value,
then the REd criterion chooses arbitrarily among these with
the least number of states.

Observe for instance the example given in the proof of
Theorem 1. The rewards for the correct model M∗ are de-
terministic, while the rewards for the one-state model M1

are distributed Bernoulli(1/3). Therefore, we obtain that

RE0(M
∗) = 0 + 3 f(T )

T
and RE0(M

1) = 2
9
+ f(T )

T
. So that

the chosen model asymptotically will be M∗.

Theorem 4. If ∀s1, s2 ∈ S : E[Rt+d|st = s1] ̸= E[Rt+d|st =
s2], then the REd criterion is weakly consistent.

A proof sketch is as follows: we would like to show that
the minimal REd is achieved by the correct model. Refine-
ments can be shown to have asymptotically lower REd score

due to the penalty function added. Models that are neither
the correct model nor its refinements necessarily contain an
abstract state that originated from two original states. Ac-
cording to the assumption in the theorem, these two states
ought to have different expected rewards. Therefore, the es-
timated mean reward for the abstract space is composed of
two different means and its prediction will yield higher error
than estimating these means separately.

The RE0 criterion was suitable for the example in Theo-
rem 1’s proof, but it will often fail in real world problems
where the rewards are sparse, which means many candidate
models will have the same RE0 value. For example, in [20]
the reward is zero in most of the states. In this case higher
values of d can be used, since these include the dynamics of
the system as well as the immediate rewards. While on one
hand the d-step reward is spread over more states and there-
fore might be less distinctive, it originates from the transi-
tion probabilities and therefore considers model information
not available in the RE0 criterion. An example where the
RE0 criterion fails but the RE1 criterion works is illustrated
in Figure 2.

Figure 2: An example where RE0 fail and RE1 suc-
ceeds.

In Figure 2, the upper drawing is the correct single-action
MDP. Assume that the data are generated from the given
MDP, and two candidate models: The correct model M1,
and another model M2 given in the lower drawing with 2
states - a and another state d which is the aggregation of the
states b and c. According to the RE0 criterion, both mod-
els will produce the same score and thus the wrong model
M2 will be chosen since it contains less states. However,
applying the RE1 criterion we obtain asymptotically that
RE1(M

1) = 0 while RE1(M
2) > 0, i.e., the RE1 criterion

will select the correct model relying on enough data.

8. MODEL CONSTRUCTION
In this section we expand the notion of consistency to al-

gorithms that construct one specific candidate model. We
begin with a formal definition of a model construction algo-
rithm:

Definition 12. A model construction algorithm A is given
an input data trajectory DT , and returns a candidate model
M = (F, S), i.e., a mapping F : O → S.

Following Assumption 3, we can define a model construc-
tion algorithm to be weakly consistent by demanding that
for increasingly more data the constructed mapping will con-
verge to the true mapping. Different partitions on the obser-
vations’ space might use different state spaces, so a logical
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way of comparing two such partitions is by checking their
agreement on pairs of observations. Since we allow the con-
structed model to be a refined version of the correct one, we
define weak consistency as follows:

Definition 13. Assume Assumptions 1, 2 and 3, and de-
note FT = A(DT ). We define a model construction algo-
rithm to be weakly consistent if:

P (FT (o1) = FT (o2), F
∗(o1) ̸= F ∗(o2)) → 0 as T → ∞,

where the probability density over the observation o is the
induced probability from the stationarity of the process.

A trivial example of a weakly consistent model construc-
tion is one that assigns each new observation to a new state.
However, this property is immidate: general observations
based clustering methods are not weakly consistent. We
present a non trivial algorithm that is weakly consistent.

Algorithm 1 Naive model construction algorithm

1: Assume all observations belong to the same state.
2: Choose a state and a feature d that were not chosen

before.
3: Find the median of the observations in the current states

according to this feature.
4: Partition the current state to two states, to one of them

add the observations in the state holding ot(d) <median
and all the rest add the other.

5: If the states are aliased according to our hypothesis test-
ing, reunite them.

6: If there are more states and features not visited, or if
you reached a predefined desirable number of states, go
back to step 2.

Theorem 5. Assume the observations have a continuous
distribution and that all state space partitions to non aliased
states results in two states with different mixtures of original
states, then Algorithm 1 is weakly consistent.

An intuitive explanation as to why this simple decision
tree [4] based algorithm is weakly consistent is as follows:
Once a state generated by Algorithm 1 contains only obser-
vations coming from the same state, it will not be divided
anymore. However, if a state contains observations from sev-
eral distinct states given enough samples it will be divided
since each half of the samples contain a different mixture of
original states. Each such division diminishes the probabil-
ity given in Definition 13 for the current state by an order of
2, implying convergence. The rigorous proof is left out due
to space constraints.
Algorithm 1 has some additional advantages: Since it is

based on the median, it is naturally robust to outliers. In
addition, the complexity is linear in the size of the data set
and the tree depth. Finally, due to its hierarchical nature, it
is possible to extend it when more data is available without
rebuilding the entire tree.

9. EXPERIMENTS
Our experiments were done both on simulated data and

on real data taken from the KDD cup 1998 [9]. Initially, we
evaluate our suggested criteria and the classic MDL based
criteria on a simple randomized simulation. Our goal is to

examine which criteria find the correct model most distinc-
tively and exhibit correlation between the different criteria.

Next, we test our methods on data from the KDD cup
1998. These data describes donation requests over a time
period of 22 months from a given set of individuals. For each
person in the mailing list there is some meta-data available
such as his age and income level. Over the course of time,
the number of mail requests and donations received by each
person is documented. The meta-data and personal history
for each person can be transformed into a feature vector we
use as observations. The action in this case is whether or
not to send a donation request and the reward is given by
the donation accepted.

9.1 Simulated data
We simulated an MDP with 20 non aliased states with

noisy rewards and observations consisting of 7 independent
features. The MDPs were generated in the following man-
ner: each transition probability, in the transition matrix for
N = 20 states, was sampled uniformly over the simplex. The
rewards’ expectations were generated from the uniform dis-
tribution in the interval [0, 1]. The observations expectation
in each of the 7 dimensions were generated from the uni-
form distribution in the interval [0, 20]. Whenever sampled,
states’ rewards and observations were added a normally dis-
tributed noise with variance 0.052 and 1 respectively.

Next, we generated two data trajectories using the simula-
tor. Using Matlab’s k-means clustering algorithm [4] on the
observations from the first trajectory we constructed can-
didate models of increasing state space size from 2 to 40,
where the candidate model of size 20 was set to be the cor-
rect model. The first trajectory was only used to create data
independent candidate models.

The second trajectory was used for evaluation of different
MDL criteria, RE0/RE1 criteria, our aggregation method
and the optimal average value function based on the esti-
mated model. This simulation process was averaged over
100 simulations, and we used trajectories of different sizes -
100, 1K and 10K. The results are shown in Figures 3 and 4.

According to these results, we can see that the REd works
best among the inspected criteria on our simulations. The
penalized MDL scores show decent results; However for in-
creasingly more data we can see the weight is tilted towards
more refined models. Looking at the value function we can
see an interesting property - when there’s not enough data
the estimated value is higher than the correct one. This phe-
nomenon is more severe for more refined state spaces, which
means sometimes choosing a smaller, yet incorrect model
can lead to better performance. With that in mind, we can
see the value function itself can be used as a model selec-
tion criterion, perhaps with some additional regularization
summand. As for the aggregation criterion, although it was
slower, it seems to produce similar results to the REd crite-
rion, identifying the correct model starting from trajectories
of length 1K.

9.2 KDD Cup 1998 Data
As a test bench, we used the donation data set from the

KDD Cup 1998 competition [9] in which the goal was to es-
timate the return for a direct mailing task. As observations
we used the first 8 features given by [15]: the amount in
dollars of the last gift, total amount of gifts to date, number
of gifts to date, number of promotions to date, their divi-
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Figure 3: Performance of the different criteria on
simulated data. [First two rows] The blue plot is
the REd score without the regularizing summand.
[Third row] The ML (blue), AIC (red) and BIC
(green) scores. [Last row] The correct value for the
optimal policy (blue), the value for the estimated
optimal policy (red) and its real value (green).

sion, number of months since the last gift, age and income
bracket. We rescaled the first 3 mentioned features using
f(x) = log(x + 1). We then tested the different criteria in
a similar manner as before: we used a small portion of the
data (1K trajectories of length 22) to construct candidate
models using k-means. In order to compensate for unknown
penalty for requesting donation too often, we have decreased
the reward for sending a donation request by 2. Over 100
simulations, we randomly chose the data from which candi-
date models are formed, and used the most of what’s left of
the data (8K trajectories) to evaluate the different criteria
on the proposed models. The remaining 1K trajectories were
used to estimate the optimal/myopic policy for the infinite
horizon value function with a discount factor 0.9 (normalized
to [0, 1]). The results are shown in Figure 5.
It is important to emphasize that in our scheme of cross

validation, instead of using the same data to construct the
state space and to estimate the induced MDP, we used dis-
joint parts from the data. When the state space is con-
structed only according to the observations, this partition
is not necessary. However, building the state space accord-
ing to the dynamics of the problem and then estimating the
same dynamics yields a statistical dependence which under-
mines the generality of the proposed solution.
An analysis of the results is in order. First, it seems that

all criteria point towards state spaces with roughly 60 states,
which implies a correlation between the different criteria. In
addition, as was shown before [15], we see again that dy-
namic policy distinctively outperform a myopic policy. An-
other interesting property is the saturation behavior of the

Figure 4: Histogram of the chosen state space size
for the aggregation criterion.

estimated value function, while its evaluation on a differ-
ent portion of the data receives its maximum and decreases
significantly afterwards. This phenomenon can be describes
as overfitting - the suspected optimal policy is less accurate
since the number of samples per state decreases.

In Figure 6 we can see the different scores applied to mod-
els constructed using Algorithm 1 with varying number of
states. Instead of choosing arbitrarily among the unvisited
states and features on each iteration, we visited the states ac-
cording to the number of observations they encompass, and
partitioned according to the feature for which the splitted
states are least similar according to our hypothesis testing.
We applied the algorithm on observations made from the 17
features given by [15].

We can observe the same saturation phenomena as pre-
viously seen using k-means, though now the value itself is
higher (at the cost of a longer run-time). This means models
constructed by Algorithm 1 are likely to perform better on
this data set than models constructed by k-means in terms of
accumulated reward. The model order has not changed and
it is still around 50 states by all checked criteria, implying
this is the true order of the model.

10. CONCLUSIONS
Estimating or optimizing a Markov decision process re-

quires three steps: identifying the correct model, estimat-
ing the parameters, and applying an optimization algorithm.
While considerable research has been conducted on estima-
tion procedures and optimization algorithms [21], much less
work has been done on identifying the right model. In this
paper we propose a framework for statistical identification
of Markovian models from data.

Our work concentrated mainly on asymptotic notions and
definitions. Yet, providing finite sample analysis for the pro-
posed criteria is not hard as we employ standard tools of
statistical hypothesis testing. As a result, the tolerance pa-
rameters can be chosen in a simple fashion and exponen-
tial bounds on the error probabilities can be derived. The
methods themselves are easy to implement and their com-
putational complexity is low.

In our experiments, we had examined different model se-
lection criteria. The REd criterion showed results as good
as ML based methods. Our aggregation criterion required
more computation power, but its theoretical guarantees are
better. We extended these ideas to build a weakly consis-
tent decision tree based model construction algorithm that
works in manageable complexity. Finally, our methods were
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Figure 5: Performance of the different criteria on
real data acquired from the KDD cup 1998, where
the state space was constructed by k-means clus-
tering. [1st row] The REd score with/without the
regularizing summand (red/blue). [2nd row, left]
The ML (blue), AIC (red) and BIC (green) scores.
[2nd row, right] The estimated value optimal policy
(blue), estimated value for the greedy policy (dashed
blue), and their sampled value on the general pop-
ulation (red and dashed red correspondingly).

used on real world donation data from the KDD cup 1998,
yielding promising results.

11. ACKNOWLEDGMENTS
We thank Georgios Theocharous and Duncan Simester for

helpful discussions. The research leading to these results
has received funding from the European Research Counsel
under the European Union’s Seventh Framework Program
(FP7/2007-2013) / ERC Grant Agreement No 306638 and
from the Israel Science Foundation under grant no. 920/12.

References
[1] Akaike, H. 1974. A new look at the statistical model

identification. Automatic Control, IEEE Transactions on
19(6) 716–723.

[2] Cover, TM, J. Thomas. 2006. Elements of information theory,
2nd Ed. .

[3] Dean, T., K. Kanazawa. 1989. A model for reasoning about
persistence and causation. Computational intelligence 5(2)
142–150.

[4] Duda, R.O., P.E. Hart, D.G. Stork. 2001. Pattern
classification, vol. 2. wiley New York:.

[5] Elliott, R.J., L. Aggoun, J.B. Moore. 1995. Hidden Markov
models: estimation and control, vol. 29. Springer.

[6] Farahmand, A., C. Szepesvári. 2011. Model selection in
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