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ABSTRACT
Learning of the information diffusion model is a fundamental
problem in the study of information diffusion in social net-
works. Existing approaches learn the diffusion models from
events in social networks. However, events in social networks
may have different underlying reasons. Some of them may
be caused by the social influence inside the network, while
others may reflect external trends in the “real world”. Most
existing work on the learning of diffusion models does not
distinguish the events caused by the social influence from
those caused by external trends.
In this paper, we extract social events from data streams

in social networks, and then use the extracted social events
to improve the learning of information diffusion models. We
propose a LADP (Latent Action Diffusion Path) model to
incorporate the information diffusion model with the model
of external trends, and then design an EM-based algorithm
to infer the diffusion probabilities, the external trends and
the sources of events efficiently.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Application—
Data Mining

General Terms
Algorithms, Experimentation

Keywords
social event; information diffusion; social influence

1. INTRODUCTION
Recently, online social networks have become a major

medium for the spread of information. News, rumors, and
opinions propagate in social networks. These events are usu-
ally explained by information diffusion processes driven by
social influences between users of a social network. Yet each
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social network is not a closed world. Users obtain informa-
tion not only from the social network itself, but also from
other sources, such as mass media, lectures in universities,
friends in real life, etc.

Most existing work on the information diffusion processes
assumes that the model has been learned somehow, and fo-
cuses on exploring the properties of the learned models. A
less studied, but very important topic is the learning of infor-
mation diffusion models. Work on this topic usually learns
the information diffusion model from events in the social
network. However, it is questionable to use all the events
without any distinction, since the information diffusion pro-
cesses are not the only reason triggering events in social net-
works [2, 18, 1, 15]. Some of the events are results of social
influence or information diffusion processes inside the net-
work, while others may reflect external trends in the world
outside the network. For example, #DidYouKnow was a
trending hashtag in the Twitter network in the last three
weeks of 2011. The hashtag was used in tweets where peo-
ple talked about surprising facts. It became popular because
of social influence among users in the Twitter network, while
#JapanEarthquake, another trending hashtag in the Twitter
network at the same time, reflects a major event in the out-
side world. Most previous approaches [9, 17, 16, 8] on the
learning of information diffusion models do not distinguish
the two different types of events, which makes the learned
models inaccurate.

In this paper, we study a problem of learning information
diffusion models. We propose a new approach that can dis-
tinguish the two different sources of events, and then use the
identified social events to improve the learning of informa-
tion diffusion models. Although the basic idea is straightfor-
ward, it is not easy to design a solution based on this idea.
There are three key challenges:

• While the sources of some events are easy to be classified
as external trends or the social influence, for most events the
sources are not easy to determine. For example, when the
earthquake hit Japan, a great many of Twitter users prayed
for people in Japan. Some of the users did that after they
saw the sad news of earthquake on TV, while others did
that because they saw other users in the Twitter network
do that. In this case, we cannot simply classify this event to
be an externally sourced event or a socially sourced event,
but need to decide the source with finer granularity. As we
will show in Section 2, we define the influence source on the
action level.

• In order to distinguish the socially sourced actions from
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externally sourced actions, we need the information diffusion
model as well as the model of external trends. But both of
them are unknown. The model of external trends can only
be inferred from the externally sourced actions, while the
diffusion model can only be learned from the socially sourced
actions. In other words, only when we are able to decide the
sources of actions, we can learn the external trend model
and the information diffusion model accurately. This leads
to an inherent “chicken and egg” problem. We refer to it as
“inference dependency”.

• We need to consider both external trends and informa-
tion diffusion processes at the same time. It is not trivial,
since the external trends are time-related, while the diffu-
sion model depends on the structure of the social network.
It requires us to integrate a temporal model and a structural
model into one joint model. Besides, both of them contain
plenty of parameters. It may lead to high complexity in the
inference of the joint model.

In this paper, we propose a novel LADP (Latent Action
Diffusion Path) model to extract social events and learn dif-
fusion models with better accuracy. Rather than classify
events into external events and social events, we determine
for each action in an event whether it is caused by external
trends or the social influence inside the network. We use
a mixture model framework to combine the external trend
model and the information diffusion model together, and
decide the class of each action. As the learning algorithm
of the model involves the inference of external trends, dif-
fusion probabilities, and the sources of actions at the same
time, a naive implementation can lead to prohibitively high
computational cost. An inference algorithm based on the
expectation maximization (EM) is devised to overcome the
difficulty of inference dependency, while avoiding the high
computational overhead on repeated invocation of the diffu-
sion model.
The improved accuracy can result in better performance

on many applications based on information diffusion models,
such as influence maximization [10] and outbreak detection
[14]. As we will show in the experiment, for the DBLP
network, the top authors suggested by the LADP have an
average H-index and number of citations up to 20% higher
than the top authors suggested by the state-of-the-art ap-
proaches.
Organization. The rest of this paper is organized as fol-

lows: Section 2 formally defines the problem. We proposed
the LADP model in Section 3, and present the learning al-
gorithm in Section 4. In Section 5, we present experiments.
We discuss related work in Section 6, and conclude in Sec-
tion 7.

2. PROBLEM FORMULATION
In this section, we formally define the task of information

diffusion model learning. We begin with a few key concepts
as follows. The notations are summarized in Table 1.

Definition 1. Social Network A social network is a
graph G = (V, E), where a vertex v ∈ V corresponds to a
user, and an edge e = (vi, vj) ∈ E stands for a connection
between the users vi and vj. Edges in a social network can
either be directed or undirected.

The social network itself provides nothing more than struc-
tural information. To learn the diffusion model, we also need

the contents created by users in the network, for example,
the tweets created by users of Twitter network, or the pub-
lications of authors in the DBLP network. We define the
collection of contents as “data stream”.

Definition 2. Data Stream A data stream S on a so-
cial network G is defined as a chronological sequence of doc-
ument sets Ct, i.e. S = {Ct}Tt=1. A textual document d ∈ Ct

contains a set of terms. Each document is associated with
a node in V, denoted by vd, and has a time stamp, denoted
by td. The t-th document set Ct ∈ S contains the documents
created at time step t, i.e. Ct = {d; td = t}.

If a document d is contained in one of the sets Ct, we
say that the document d is contained in the data stream S.
With a little abuse of notation, we denote it by d ∈ S.

We denote with L the set of terms in the data stream
S. Terms in the documents can be defined in various ways.
For example, we can define each word in a document as
a term. We can also define each hashtag in a tweet as a
term. More generally, we can define any tags or labels as
terms, so that the streams are not limited to sequences of
textual documents. In this paper, we focus on the analysis
of textual streams. Nevertheless, the proposed LADP model
can be applied to more general types of streams.

In the LADP model, we regard the generation of a doc-
ument as a process that, for each term l ∈ L, the author
makes a decision whether to include it in the document or
not. We call this decision an “action”.

Definition 3. Action For each document di ∈ S, for
each term l ∈ L, there is an action (i, l) taken by the author
of the document. If the document di contains the term l, the
action is a positive action, denoted by xi,l = 1. Otherwise,
the action is a negative action, denoted by xi,l = 0.

For the positive action, we also introduce the concepts
of socially sourced action, and externally sourced ac-
tion. A socially sourced action is a positive action that
taken by a user because she is influenced by an information
diffusion process inside the social network, while an exter-
nally sourced action is a positive action that is triggered
by an external trend. It is true that a positive action may
sometimes be triggered by both the social influence and the
external trend at the same time. But in most cases, the ma-
jor source of an action can be identified, since at one point of
time the user usually gets information from only one source.
In this paper, for simplicity of the model, we assume that a
positive action can either be a socially sourced action or an
externally sourced action.

Definition 4. Event An event in a social network is a
sequence of positive actions of the same term l ∈ L. Each
event may include a socially sourced portion (or a so-
cial event), and an externally sourced portion. The so-
cially sourced portion contains socially sourced actions, while
the externally sourced portion contains externally sourced ac-
tions.

We define the sources on the action level, rather than
on the event level, on the user level, or on the document
level. Although the event, the document and the user of
an action are all important factors of it, each factor alone
cannot perfectly capture the reasons for triggering the ac-
tion. As we have discussed in Section 1, we cannot simply
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SYMBOL DESCRIPTION
G = (V, E) The social network

S The data stream, define by a temporal sequence of Ct

Ct The t-th document collection in S
L The set of considered terms
N The number of documents in S
Nt The number of documents in Ct

M The number of terms in L
T The number of time steps in the sequence S
xi,l The label denoting whether the action with document di and

the term l is positive or negative
zi,l The label denoting whether the action with document di and

the term l is decided by the information diffusion process or
not

θl The mean of zi,l for the term l
α The Beta prior of θl
µl,t The probability of an action generated from external trends

about term l taken at time t being positive
βl The Beta prior for µl,t

ql,t,v The probability of an action generated about term l taken by
user v at time t generated from the diffusion model being pos-
itive

pu,v The diffusion probability along the edge (u, v)
Λ The collection of parameters for the model, i.e.

{θl, µl,t, pu,v}Ml=1,
T
t=1 ,v,u∈V

Table 1: Notations

classify an event as a socially sourced event or an exter-
nally sourced event, since actions in the event may have
different sources. We cannot define the classes on user level
either, because each user usually obtains information from
both inside and outside the network, and actions taken by
a user can be triggered by the social influence or external
trends. Even the classification on document level is not good
enough, since each document may contain several different
terms or topics. For example, a tweet in 2011 said “#DidY-
ouKnow that #JapanEarthquake affected the underground
water in Florida?” It involves both the social event of using
the hashtag“#DidYouKnow”in Twitter community and the
external trend of “Japan earthquake”.
By defining the classes on the action level, our approach

has greatest flexibility and can infer the underlying reasons
precisely. By classifying the actions as socially sourced or
externally sourced actions, the inference algorithm can split
socially sourced portion and the externally sourced portion
of an event. In another sense, it can extract the socially
sourced portion from the event. We refer to the extracted
externally sourced portion as social event and the extract-
ing procedure as social event extraction.

Definition 5. Information Diffusion Process The in-
formation diffusion process is the process that actions of
terms propagate along the edges of the social network. The
process is the result of influence among users in a social
network.

A diffusion model aims to predict diffusion processes. Typ-
ically, given the actions at time step t, the diffusion model
predicts the probability for each user in the social network of
taking a positive or a negative action in the next time step
t+1. The IC (Independent Cascade) model [10] is a widely
used information diffusion model. In the IC model, when a
user becomes active, she has an independent chance to make
each of her neighbors become active. In the proposed LADP
model, we define a mechanism of positive action propagation
that extends the IC model to the action level.
Task. Based on the definitions of the above concepts, we

can formalize the task of information diffusion model learn-
ing: Given a social network G and data stream S on it, we

aim to learn the diffusion model on the network G. In vari-
eties of information diffusion models, including the IC model
and our model, the parameters of a diffusion model are the
diffusion probabilities along edges, so we focus on the learn-
ing of diffusion probabilities in this paper. Different from
existing approaches, we extract social events from the data
stream, and learn the diffusion model from the extracted
social events.

3. PROPOSED MODEL
The LADP model extracts social events from data stream,

and learns the information diffusion model from the ex-
tracted social events. The block diagram of the LADPmodel
is shown in Figure 1(a).

To extract social events, the LADP model infers the in-
fluence source for each positive action. The distribution of
socially sourced actions is decided by the information diffu-
sion model, and the diffusion probabilities are the param-
eters that need to be estimated. The distribution of the
externally sourced actions is decided by the external trend
model, and the trend profiles are the parameters of the in-
formation diffusion model that need to be estimated. A
mixture framework is proposed to integrate the information
diffusion model and the external trend model.

The inference of action sources depends on trend profiles
and diffusion probabilities, while the inference of trend pro-
files and diffusion probabilities depends on the sources of ac-
tions. We design an EM-based inference algorithm to solve
this “inference dependency” problem. The algorithm esti-
mates the parameters iteratively. In each iteration, it first
infers the sources of actions based on the current estimates
of trend profiles and the information diffusion probabilities,
and then infers the trend profiles and the diffusion probabil-
ities based on the probability of each action being socially
caused or externally caused.

LADP	  Model	  

Informa1on	  
Diffusion	  
Model	  
	  

External	  
Trend	  
Model	  
	  

E-‐step	  

M-‐step	  

EM-‐based	  
Inference	  

Trend	  
Profiles	  

Ac1on	  
Sources	  

Diffusion	  
Probabili1es	  

(a) Block Diagram

xi,l

zi,l

Nt
T

M

θl

α

βl

puv

μl,t

External 
Trend
Model Information 

Diffusion
Model

(b) Graphical repre-
sentation

Figure 1: LADP Model

3.1 The framework of LADP Model
Now we formally define the LADP model. As shown in

graphical representation of the LADP model in Figure 1(b),
the observation variables xi,l are central to the model. Each
xi,l indicates whether the corresponding action (i, l) is pos-
itive or negative. It is drawn from a mixture distribution,
which integrates the external trend and the information dif-
fusion process. The label zi,l decides from which component
distribution the variable xi,l is drawn. The left part of the
graphical representation (βl and µl,t) shows the model of
external trends, while the right part (pu,v) represents the
information diffusion model. The two of them form the two
components of the distribution of xi,l.

Notice that, the external trend model is a temporal model,
while the information diffusion model based on the structure
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of the network. Both of them are complicated models with
a lot of parameters. It is not easy to combine these two
models together without making the inference algorithm in-
tractable. We therefore make an assumption that each ac-
tion can only be generated from either the external trend
model or the information diffusion model. This assumption
makes it possible to integrate the two models together under
a mixture model framework.
Formally, xi,l is defined as:

xi,l =

{
1 if the action (i, l) is positive
0 otherwise.

The hidden variables Z indicates whether the action is
drawn from the external trend model or from the informa-
tion diffusion model.

zi,l =

{
1 if action (i, l) is drawn from the information diffusion

component
0 otherwise.

Notice that zi,l is defined for all actions, whether they
are positive or not, though the concepts of socially sourced
action and externally sourced action are defined for the pos-
itive actions only. When zi,l = 1 and xi,l = 1, the action is
a socially sourced action. When zi,l = 0 and xi,l = 1, the
actions is an externally source action.
For each i, zi,l is a random variable drawn from Bernoulli

distribution with mean θl, i.e. zi,l ∼ Bernoulli(θl). The
mean θl is different for each term, since different term has
different potential probability of being related to an infor-
mation diffusion process or an external trend. We use a
Beta prior for the parameter θl, i.e. θl ∼ Beta(α), where
α = (α1, α0) are fixed parameters. We choose Beta distri-
bution because (1) it has a great flexibility of the shape,
and (2) it is the conjugate prior distribution for Bernoulli
distribution.
Given the corresponding hidden variable, the distribution

of xi,l is given as:

xi,l ∼
{

Bernoulli(ql,tdi ,vdi
) if zi,l = 1

Bernoulli(µl,tdi
) if zi,l = 0.

where ql,tdi ,vdi is decided by the information diffusion model,
and µl,tdi

is decided by the external trend model. We will
discuss the two models in the following sections.

3.2 Information Diffusion Model
We use a diffusion model that can be regarded as an ex-

tension to the widely used Independent Cascade (IC) model
[10]. In the IC model, information propagates along the
edges in the network. When a node becomes active, it at-
tempts to activate its neighbors. For each node, the at-
tempts to activate it from all its active neighbors are inde-
pendent. Similarly, in the LADP model, ql,t,v, the probabil-
ity that a user v uses a term l is predicted from the actions
that v’s neighbors took in the last time step. For each pos-
itive action about term l taken by in-neighbors of v at last
time step t− 1, there is an independent chance to make the
action of v at time t to be positive. Formally, for the term l,
the probability of an action taken by user v at time t being
positive is given as:

ql,t,v = 1−
∏

di∈Ct−1,zi,l=1

(1− pvdi ,v
)

(1)

where Ct−1 is the set of documents that were created at the
last time step t− 1. pvdi ,v is the diffusion probability along

with the edge (vdi , v). For the convenience of notation, we
define pvd,v = 0, if there is no edge between the nodes vd
and v. The product in the formula is the probability that
all of the in-neighbors of v fail to make the action of v at
time t to be positive. Under the independent assumption,
this probability could be calculated by multiplying together
the probabilities that each attempt fails. We then can get
ql,t,v, the probability that at least one attempt succeeds, by
subtracting the product from 1.

3.3 External Trend Model
For the actions that are generated by external trend model,

the probabilities of being positive are not decided by the so-
cial network structure and previous actions in the network.
A reasonable assumption with these actions is that the prob-
ability of being positive only depends on the time and the
term, but does not depend on the user takes the action. (A
similar assumption was made in [15].) The reason under-
lying the assumption is that, if an action is decided by an
external trend outside the network, we cannot make any pre-
diction on whether the action is positive or not, based on the
network structure, so the best assumption we can make is
that each action is a random variable independently drawn
from the same distribution.

Nevertheless, the probability of an action being positive
should be depends on the term l and the time t. That is
because different terms have different levels of popularity in
the external world. The more popular a term is, the more
likely that an action with regard to it is positive. For a given
term, its popularity changes over time. For each term l, the
parameters µl,t forms a time sequence which we call profile
of the external trend.

We therefore assume an Beta prior for µl,t the probability
of being positive: µl,t ∼ Beta(βl) = Beta(βl,1, βl,0). Similar
to the prior of θl, we choose Beta distribution because its
shape is flexible and it is the conjugate prior for Bernoulli
distribution. For each term l, we set the parameter βl in the
prior distribution according to the number of positive and
negative actions over all the time steps. Specifically, βl,1 is
set to the average number of positive actions for the term
l in all the steps, while βl,0 is set to the average number of
negative actions in all the steps.

4. PARAMETERS ESTIMATION
We have discussed the difficulty of inference dependency

in the introduction. We design an EM-based algorithm to
solve this difficulty by iteratively estimating the conditional
distribution of hidden variables zi,l and the parameters. In
the E-step of each iteration, the estimate for the conditional
probability of zi,l is updated, while the estimates for param-
eters θl, µl,t and pu,v are updated in the M-step.

The parameters θl and µl,t are easy to estimate using the
EM algorithm of the maximum a posteriori (MAP) estimate.
However, it is difficult to define and calculate the MAP es-
timate of the parameters pu,v, due to the complexity of the
diffusion model. To solve that difficulty, we modify the PCB
model in [9] so that it can be integrated into the EM frame-
work to provide estimate of pu,v efficiently. We first assume
that pu,v are known (consequently, ql,t,v are known), and
show the EM algorithm. Then, we discuss the estimation of
pu,v and add it into to the EM framework.
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Given the LADP model above, we want to maximize ex-
pectation of the logarithm of the posterior:

Q(Λ|Λ(n)) = EZ|X ,Λ(n) logPr(Λ;X ,Z)

=
∑M

l=1[(α1 − 1)logθl + (α0 − 1)log(1− θl)]

+
∑M

l=1

∑T
t=1[(βl,1 − 1)logµl,t + (βl,0 − 1)log(1− µl,t)]

+
∑M

l=1

∑N
i=1

[
z
(n)
i,l,1

(
logθl + xi,llog(ql,tdi ,vdi

)

+(1− xi,l)log (1− ql,tdi ,vdi
)
)

+z
(n)
i,l,0

(
log(1− θl) + xi,llog(µl,tdi

) + (1− xi,l)log (1− µl,tdi
)
)]

where z
(n)
i,l,j stands for P (z

(n)
i,l = j|X ,Λ(n)) for the simplicity

of the equation.
The first term in the formula comes from the distribution

θl ∼ Beta(α). The second term comes from the distribution
µl,t ∼ Beta(βl). The last term comes from the distribution
of X and Z, given the parameters θ, µ and q.
E-step. In the E-step, we calculate the conditional prob-

ability of hidden variables Z, given the observed variables
X and estimate of parameter Λ:

z
(n)
i,l,j =

p(xi,l|z
(n)
i,l = j,Λ(n))∑1

j′=0 p(xi,l|z
(n)
i,l = j′,Λ(n))

where j = 0, 1. p(·|z(n−1)
i,l = 1,Λ(n)) is the probability mass

function of xi,l, given it is drawn from the information dif-
fusion component:

p(xi,l|z
(n)
i,l = 1,Λ(n)) = θ

(n−1)
l (ql,tdi ,vdi

)xi,l (1− ql,tdi ,vdi
)1−xi,l

and p(·|z(n)
i,l = 0,Λ) is the probability mass function of x(i, l),

given it is drawn from the external trend component:

p(xi,l|z
(n)
i,l = 0,Λ(n)) = (1− θ

(n)
l )(µ

(n)
l,tdi

)xi,l (1− µ
(n)
l,tdi

)1−xi,l

M-step. By taking partial derivatives of the expectation
of log-likelihood, we get the new estimation of parameters.

θ
(n+1)
l =

∑N
d=1 z

(n)
i,l,1 + α1 − 1

N + α1 + α0 − 2

and

µ
(n+1)
l,tdi

=

∑
di∈Ci

z
(n)
i,l,1xi,l + βl,1 − 1∑

di∈Ci
z
(n)
i,l,1 + βl,0 + βl,1 − 2

Estimate of Diffusion Probabilities. We now discuss
the estimate of diffusion probabilities. It is possible to for-
mulize it as an inference problem for maximum likelihood
or MAP estimate. Saito at el. defined a likelihood func-
tion for the IC model, and proposed an EM algorithm for
inference problem[17]. However, the number of parameters
in the diffusion model is very large (one parameter for each
edge in the network). The inferring of model is very time-
consuming, even on a fixed set of actions. In the LADP
model, the set of socially sourced actions changes in each it-
eration of the EM algorithm. Getting maximum likelihood
estimation for the diffusion probabilities in each iteration
of the EM algorithm will be an enormous computational
challenge. Therefore, we follow the Partial Credit Bernoulli
model (PCB) [9] to estimate the diffusion probabilities.

The original PCB model is not based on the maximum
likelihood or MAP estimate, so it does not work together
with the EM algorithm for inferring the LADP model. We
change it so that it can be incorporated into the M-step of
the EM algorithm. We will first describe the PCB model,
and then show that how we change it so that it can be
incorporated into the EM algorithm.

The idea of the PCB model is as follows: if user v takes a
positive action about a term l at time t after his in-neighbor
u’s positive action at time t − 1, we regard there is a suc-
cessful diffusion from u to v. If there are more than one
in-neighbors of v take positive action at the previous step,
they share the credit for the one successful diffusion equally.
The diffusion probability pu,v is then given by the ratio of
the number of successful diffusion from u to v to the number
of positive actions taken by u.

Formally, the diffusion probabilities can be estimated by:

pu,v =

∑
(i,l)∈Av

∑
d∈Can(i,l)

I(vd=u)
|Can(i,l)|

|Au|
(2)

where Av = {(i, l) : xi,l = 1, vdi = v} is the set of all the
positive actions taken by the node v and I(·) is the indicator
function. Can(i, l) is the candidate set of documents that
share the credit for the successful diffusion. A document is
in the candidate set if and only if it is posted by a friend
of vdi and it is posted in the time step right before tdi , i.e.,
Can(i, l) = {dj |tdj = tdi − 1, xj,l = 1, u ∈ IN(vdi)}, where
IN(v) is the set of in-neighbors of v.

According to Equation 2, all the positive actions are used
for the learning of the diffusion model. Since in the LADP
model we have the hidden variable zi,l representing whether
an action is drawn from diffusion processes or not, we should
train the model with the socially source actions only. We
then can add the hidden variable zi,l to Equation 2, and
replace it with the following equation:

pu,v =

∑
(i,l)∈Av

∑
d∈Can(i,l)

I(vd=u,zi,l=1)

|Can(i,l)|

|Au|
(3)

We then replace zi,l in the above function with P (z
(n)
i,l =

j|X ,Λ(n−1)), and integrate the learning of diffusion proba-
bilities into the EM algorithm.

5. EXPERIMENT

5.1 Baselines
We compared the proposed LADP model with three base-

lines: two for the task of learning diffusion model, and the
other for the analysis of extracted social events.

the PCB algorithm: We compare the LADP model
against the Static PC Bernoulli algorithm (PCB) [9] for the
task of learning diffusion model. The PCB algorithm is sim-
ilar to the inference method described in Section 4, but all
positive actions are regarded as socially sourced actions and
are used for the probability learning. It is equivalent to the
LADP model with θ = 1.

Saito’s Algorithm The Saito’s algorithm [17] is another
baseline that we used for evaluating the task of learning
diffusion probabilities. It is an EM algorithm for maximum
likelihood estimation of the IC model.

Myers’s Algorithm: For better understanding of the
LADP model, we also analyze the social events extracted by

369



the model. The Myers’s algorithm [15] is used for compari-
son in the analysis of extracted social events. This algorithm
is not designed for the same purpose as the LADP model.
But it can divide the influence to the users into two parts:
the internal part and the external part. The internal part
can roughly be aligned with the socially sourced portion in
our model, so we use it for a comparison in the analysis of
extracted social events.

5.2 Datasets
The algorithms are tested on four real world datasets and

one semi-synthetic dataset. Each real world dataset con-
sists of a social network and a data stream on the network.
The semi-synthetic dataset is based on real world network,
but we generate the data stream synthetically. The semi-
synthetic dataset is used to evaluate the accuracy of the in-
ference algorithm, while the real world datasets are used to
test how well the LADP model works for real applications.
Twitter-UIC dataset: This dataset consists of 974,382

tweets on a network of 2,180 users and 14,572 links. The
users in the dataset are the followers of the “UIC news” ac-
count on twitter.com. Most of them are students in Uni-
versity of Illinois at Chicago. Directed links in the network
correspond to who-follows-whom relationships. They are di-
rected from the one being followed to the follower. The
stream data on the network are generated from the tweets
posted by the users over the 52 weeks of the year 2011.
Hashtags in the tweets are used as the terms. Each week is
regarded as a time step.
Twitter semi-synthetic dataset: We first randomly

crawled a network from twitter.com that consists of 40,000
users and 544,936 links, and then generate the semi-synthetic
dataset using steps as follows. The diffusion probabilities
with edges are randomly picked from a Beta distribution
with parameters (1, 30). We use the same collection of terms
as those in the Twitter-UIC dataset, and the Google Trend
profiles of the corresponding terms are used as the external
trends profile. The socially sourced actions are generated
using the diffusion probabilities with the diffusion model de-
scribed in 3.2, and the externally sourced action are gener-
ated from external trends. The synthetic data contains 223
events, and 14,170,112 positive actions. 68.1% of the pos-
itive actions are socially sourced actions, while others are
externally sourced actions.
DBLP datasets: We extract three datasets from the

DBLP database. Each of them contains the stream of pub-
lications in a certain area and the co-author network of that
area. In the co-author network, each node corresponds to
one author, while each undirected edge corresponds to a
co-author relationship between two authors. The titles of
publications are used as the textual stream. We remove
stopwords from the titles, and use bigrams as terms. The
three datasets we used for the evaluations are as follows.

• Data mining community dataset: This community con-
tains 14,011 publications and their authors in 10 data min-
ing conferences over 15 years (1995-2010). Each year is re-
garded as a time step. Conferences are listed in Table 2. The
co-author network contains 6,948 nodes and 39,797 edges.
Authors that have less than 3 publications are filtered out.

• Machine learning community dataset: It is similar to the
data mining community, but are based on 10 machine learn-

ing conferences, as listed in Table 2. This community con-
tains 24,184 publications, 6,845 nodes and 34,254 edges.

• Mixed dataset (data mining + machine learning): We
want to test the algorithms on a more complicated com-
munity, because the above two simple communities share
several desirable properties: Authors in each community
are from the same area, and are strongly connected to each
other; Documents in each community are from similar top-
ics, so the events are easier to be detected. By extracting
publication in the 20 listed conference and filtering out au-
thors with less than 5 publication, we get a network that
consists of 7664 nodes and 47,158 edges.

Data Mining Machine Learning
KDD CIKM AAAI UAI
SDM ICDE IJCAI KR
ICDM WWW ICML IROS

SIGMOD PKDD ICRA ATAL
VLDB PAKDD ICGA AAMAS

Table 2: Conference Lists of Two Communities in
DBLP dataset

5.3 Experiment with Twitter Datasets

5.3.1 Experiment with Semi-synthetic Dataset
To test the accuracy of the inference algorithm, we evalu-

ate the LADP model on the semi-synthetic dataset. As the
diffusion probabilities and external trends for this dataset
are known, we can evaluate the inferred values directly.

Result of diffusion model learning. The result is
shown in Figure 2(a), for the diffusion probability with each
edge in the network, we calculate the prediction error as
the difference between the real value and the inferred value.
We plot the empirical cumulative distribution function of
the prediction error in Figure 2(a). Each point in the curve
shows a value and the percentage of the prediction errors
that are below the given value. As shown in the figure, the
diffusion probabilities inferred by LADP model have much
smaller error than the ones inferred by the baselines. For ex-
ample, for 92.0% edges, the prediction errors of the LADP
model are smaller than 0.05, while only for 79.8% and 50.8%
edges respectively the prediction errors of the PCB algo-
rithm and the Saito’s algorithm are within this range.

The only difference between the LADP model and the
PCB algorithm is that the LADP model extracts the so-
cial events from the entire events, and learns the diffusion
probabilities from the social events, while the PCB algo-
rithm learns the diffusion probabilities from all actions in
the events. It implies that the improvement of accuracy by
the LADP model is the result of extracting social events.

Extraction of social events. For better understanding
of how the LADP model makes the improvement, we show
the difference between inferred socially sourced portion and
the ground truth in Figure 2(b). To calculate the difference,
we first define the time sequence {at}Tt=1 of a set of actions.
For each time step t = 1, . . . , T , there is an element at in
the time sequence, which is the number of actions in the
set that are created at time step t. We then calculate for
each event the L2 distance between the time sequence of the
extracted socially sourced portion and that of the ground
truth, and plot the empirical distribution of the distance in
Figure 2(b).
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Figure 2: Evaluation on Synthetic Stream Data

For the proposed LADP model, only the extracted socially
sourced portion are used for the learning of diffusion model,
while for the PCB and Saito’s algorithms the entire events
are used for the learning, in other words, they consider the
entire events to be social events, so we also show the L2
distance between the time sequence of the entire event and
that of socially sourced portion.
Since the time sequence of entire events is always an over-

estimation of the time sequence of social sourced portion,
we can easily get a better estimation by simply scaling it.
We then scale the time sequence for each event and make it
have the same mean value as the time sequence of the social
sourced portion, and calculate the L2 distance between the
scaled time sequence and that of socially sourced portion as
well.
As shown in Figure 2(b), the distance between the time

sequence of socially sourced events inferred by LADP and
that of the ground truth is smaller than the distance be-
tween the time sequence of the entire events and that of
socially sourced portion, even when we scale the time se-
quence of entire event. This reflects that the LADP model
can extract social events from the entire events, and the ex-
traction is more than divide the entire events into two parts
according to the proportion of socially sourced portion and
externally sourced portion. The extraction of social events
by the LADP model results in better accuracy in learning
the diffusion model.

5.3.2 Experiment with Twitter-UIC dataset
Result of diffusion model learning. For the real

stream data, the diffusion probabilities are unknown, so we
are not able to evaluate a learned diffusion model directly.
Instead, we evaluate it by evaluating the most influential
node suggested by the models. In the Twitter commu-
nity, users can re-post tweets of other users, which is called
“retweet”. The more retweets a tweet gets, the more widely
it spreads in the network. We can expect that users with
larger number of retweets per tweet are more influential in
the social network.
Given the learned diffusion model, by sampling the diffu-

sion process for 50,000 times, we calculate the average in-
fluence of each node, i.e. the average number of activations
when using each single node as the seedset. The nodes are
then sorted according to the descending order of their influ-
ences. In this way, we find out the most influential nodes
in the models learned by the LADP, PCB and Saito’s al-
gorithms. We then evaluate the most influential node by
the average number of retweets for each tweet. Figure 3(a)
shows the comparison between the LADP method and the
baselines for finding the most influential nodes. For each
number k on the x-axis, we calculate the average number
of retweets for the top k users and plot it in the figure. In

All Myers’s LADP
1 Chicago Chicago (-) Chicago (-)
2 FF FF (-) UIC (↑)
3 UIC UIC (-) FF (↓)
4 energy energy (-) higherEd (↑)
5 higherEd higherEd (-) Illinois (↑)

Table 3: Top events and top social events identified
by LADP and Myers’s in UIC Twitter network

the most range of x-axis, the LADP model achieves a larger
average number than the baselines. Besides, the curve of
the LADP model is a monotone decreasing curve. It is more
desirable than the non-monotonic curve of the PCB model,
because the monotone decreasing curve suggests that higher-
ranking nodes inferred by the algorithm are really more in-
fluential than lower-ranking nodes. The better performance
in finding top influential users suggests that the diffusion
model learned by LADP is better than those learned by the
baselines.

Analysis of top social events. We analyze the top
social events extracted by the LADP model in order to un-
derstand how the LADP model improves the learning of dif-
fusion model. First, we rank the events according to the
numbers of all actions in the events, and list the top events
in the network. Then, we rank the events according to the
number of actions in the inferred socially sourced portion,
i.e. we rank the social events extracted by the LADP model.
After excluding the externally sourced actions, the list of top
social events extracted by the LADP model is different from
the list of top events with the largest number of actions. For
a comparison, we also list the top events with the largest in-
ternal portion inferred by the Myers’s algorithm [15].

The results are shown in Table 3. The first column in
the table is the list of keywords of events with the largest
number of actions. Some keywords in the list are closely
related to the UIC community (Chicago, UIC, higherEd1),
but others are not (FF2, energy). The second column is
the list of top five internal events returned by the Myers’s
algorithm. For this dataset, the lists in the second column
happens to be the same as the list in the first column, but
this is not always the case, as we will show in the follow-
ing experiment. In the third column, we list the top social
event extracted by the LADP model. Comparing with the
first column, the keywords “UIC”, “higherEd”, and “Illinois”
move upward in the rankings, while the keywords “FF”, “en-
ergy” move downward. It is obvious that keywords that are
related to the community get better rankings in the list re-
turned by the LADP model. Since the keywords that are
closely related to the community is more likely to suggest
social events inside the network, the top events extracted
by the LADP model are more likely to reflect information
diffusion processes inside the social network. (Notice that
though the keyword “FF” reflects an event on the Twitter
website. It is not unique to the UIC community, and its
propagation does not suggest an information diffusion pro-
cess inside the Twitter-UIC network. Further analysis on
the keywords “UIC” and “FF” will be provided in next sec-
tion.) This explains that the improvement of LADP in the
learning of diffusion probabilities.

5.3.3 Case Study
In Figures 3(b) and 3(c), we show the results of “UIC”and

1higherEd is short for higher education in this context.
2FF is short for FollowFriday in Twitter. It is an online
event that people recommend friends for other users.
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“FF” inferred by the LADP model. For each of the events,
we show the number of actions over time for the socially
sourced portion, externally sourced portion, and the entire
event. As shown in the figure, for the event of “UIC”, the
socially sourced portion is the majority, while for the event
of “FF”, the size of the two portions are similar. Beside,
for the event of “UIC”, the socially sourced portion explains
most of the peaks in the full event, while for the event of
“FF”, some peaks are explained by the influence while others
are explained by the external trends. This is the reason why
the ranking of “UIC” moves upward in the list of top social
events returned by LADP, while “FF” moves downward.

5.4 Experiment with DBLP Datasets
Result of diffusion model learning. Similar to the

Twitter-UIC dataset, since there is no ground truth for the
diffusion probabilities, we evaluate them by looking at the
most influential nodes. For the most influential users sug-
gested by each algorithm, we evaluate the top-k influential
nodes using their H-index and the number of citations. The
H-index and the number of citations of author are obtained
from arnetminer.org.
On all the three datasets, we run the LADP model, the

PCB algorithm and Saito’s algorithm respectively to learn
the diffusion probability with each edge. These three sets
of diffusion probabilities can then be used for deciding most
influential nodes. By sampling the independent cascade pro-
cess for 50,000 times, we calculate the average influence of
each node, i.e. the average number of activations when using
each single node as the seedset. We then sort nodes to the
descending order of influence and plot the average H-index
and the average number of citations for top-k authors.
Figures 4(a)-(f) show the comparison of the LADP model

and the baselines on three datasets. The x-axes of these
figures are the number of top authors, while the y-axes are
the average H-index or the average number of citations of
these top authors. On all but one figure, the curves of the
LADP method are obviously above those of the baselines,
which means the top-ranking authors reported by the LADP
model are more influential than those reported by the base-
lines. Even for that Figure 4(b), LADP performance on the
top 10 authors is significantly better than the baselines. It
reflects that the diffusion model learned by LADP is more
accurate than the one learned by the baselines.
Analysis of top social events. Similar to the exper-

iment on Twitter dataset, in order to understand how the
LADP model improves the learning of diffusion model, we
analyze the top social events extracted by the LADP model.
Since we are more familiar with topics in the data mining,
we use the data mining community for the analysis.
The results are shown in Table 4. For each network in the

dataset, the first column in the table is the list of keywords
of events with the largest number of actions. The second
column is the list of top five internal events returned by the
Myers’s algorithm. The top five social events extracted by
the LADP model are listed in the third column.
The rankings of keywords related to specific research top-

ics in the data mining community are moved upward by
the LADP algorithm (data streams, time series, association
rules), while keywords that are less related to specific top-
ics move downward. That is desirable because specific top-
ics are more likely to be connected to information diffusion
processes in the network, and represent social events. The
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Figure 4: (a)(c)(e) H-index for Top Authors,
(b)(d)(f) Number of Citations for Top Authors.

All Myers’s LADP
1 data mining query processing (↑) data streams(↑)
2 data streams association rules (↑) time series (↑)
3 time series text classification (↑) data mining(↓)
4 query processing xml data (↑) association rules (↑)
5 association rules pattern mining (↑) query processing(↓)

Table 4: Top events and top social events identified
by LADP and Myers’s in data mining community

Myers’s algorithm also tends to give specific topics higher
ranking, but it undesirably gives higher ranking to the top-
ics “query processing” and “xml data”, which are related to
the database community, rather than the data mining com-
munity specifically.

6. RELATED WORK
Information diffusion has been intensively studied in so-

cial network analysis [3, 5, 4, 12, 1]. Earlier work on infor-
mation diffusion model does not consider the time dynamic
of diffusion processes. Recent work in [14, 11, 19] consider
the diffusion processes that unfold along the time, so that
temporal events in the social network can be explained by
the information diffusion processes. Independent Cascade
(IC) model and its variants [10, 14, 7, 6, 13] form most
widely used class of information diffusion models. Models
in this class share two features: (1) the influences from the
neighbors of a user are independent; (2) there is a diffusion
probability along with each edge in the network.

The problem of estimating the diffusion probabilities has
been studied in [9, 17, 16, 8]. The diffusion probabilities are
learned from events in social networks. Models in [9] esti-
mate the diffusion probability for general threshold models
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Figure 3: (a) Average number of retweets for top users. (b)(c) Case study on the events “UIC” and “FF”

which include the IC model and almost all of its variants.
[17, 16] propose a likelihood maximization approach for the
learning of diffusion probabilities. However, due to the large
number of parameters and the complexity of the likelihood
function, the inference algorithm is time-consuming.
Although it has long been argued that the information

diffusion process is not the only reason triggering events in
social networks [2, 18, 1], most existing work on the learning
of diffusion probabilities neglects the propagation of infor-
mation from external trends. Work in [15] explicitly models
the external trends and incorporates it with the information
diffusion model. While their approach adopts a simple infor-
mation diffusion model and focuses on inferring the external
trends, our model aims to learn the diffusion probabilities
with edges in the networks, and the learned diffusion prob-
abilities can be used in the IC model and its variants.

7. CONCLUSION
In this paper, we study the problem of learning informa-

tion diffusion models on social networks. We propose an
LADP model that improves the learning by extracting so-
cial events from data streams. The LADP model integrates
the external trends and the information propagation process
inside the social network.
Evaluation on real and synthetic datasets shows that the

LADP outperforms existing method on the task of learn-
ing information diffusion models. Analysis shows that the
improvement is due to the extraction of social event.
A possible future work is to use more sophisticated model

for the external trends instead of the simple Beta distri-
bution. We also expect a further extension to the LADP
model that uses topic modeling methods, instead of consid-
ering each keyword independently.
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