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ABSTRACT
Multi-view graph clustering aims to enhance clustering performance
by integrating heterogeneous information collected in different do-
mains. Each domain provides a different view of the data instances.
Leveraging cross-domain information has been demonstrated an ef-
fective way to achieve better clustering results. Despite the previ-
ous success, existing multi-view graph clustering methods usually
assume that different views are available for the same set of in-
stances. Thus instances in different domains can be treated as hav-
ing strict one-to-one relationship. In many real-life applications,
however, data instances in one domain may correspond to multiple
instances in another domain. Moreover, relationships between in-
stances in different domains may be associated with weights based
on prior (partial) knowledge. In this paper, we propose a flexible
and robust framework, CGC (Co-regularized Graph Clustering),
based on non-negative matrix factorization (NMF), to tackle these
challenges. CGC has several advantages over the existing method-
s. First, it supports many-to-many cross-domain instance relation-
ship. Second, it incorporates weight on cross-domain relationship.
Third, it allows partial cross-domain mapping so that graphs in dif-
ferent domains may have different sizes. Finally, it provides users
with the extent to which the cross-domain instance relationship vi-
olates the in-domain clustering structure, and thus enables users to
re-evaluate the consistency of the relationship. Extensive experi-
mental results on UCI benchmark data sets, newsgroup data sets
and biological interaction networks demonstrate the effectiveness
of our approach.

Categories and Subject Descriptors
H.8 [Database management]: Database applications—Data min-
ing
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1. INTRODUCTION
Graphs are ubiquitous in real-life applications. A large volume

of graph data have been generated, such as social networks [21],
biology interaction networks [11], and literature citation networks
[28]. Graph clustering has attracted increasing research interest
recently. Several effective approaches have been proposed in the
literature, such as spectral clustering [24], symmetric Non-negative
Matrix Factorization (symNMF) [17], Markov clustering (MCL)
[32], and Ncut [25].

In many applications, graph data may be collected from hetero-
geneous domains (sources) [13]. For example, the gene expression
levels may be reported by different techniques or on different sam-
ple sets, thus the gene co-expression networks built on them are
heterogeneous; the proximity networks between researchers such
as co-citation network and co-author network are also heteroge-
neous. By exploiting multi-domain information to refine clustering
and resolve ambiguity, multi-view graph clustering methods have
the potential to dramatically increase the accuracy of the final re-
sults [3, 19, 5]. The key assumption of these methods is that the
same set of data instances may have multiple representations, and
different views are generated from the same underlying distribution
[5]. These views should agree on a consensus partition of the in-
stances that reflects the hidden ground truth [22]. The learning ob-
jective is thus to find the most consensus clustering structure across
different domains.

Existing multi-view graph clustering methods usually assume
that information collected in different domains are for the same
set of instances. Thus, the cross-domain instance relationships are
strictly one-to-one. This also implies that different views are of the
same size. For example, Fig. 1(a) shows a typical scenario of multi-
view graph clustering, where the same set of 12 data instances has
3 different views. Each view gives a different graph representation
of the instances.

In many real-life applications, it is common to have cross-domain
relationship as shown in Fig. 1(b). This example illustrates sever-
al key properties that are different from the traditional multi-view
graph clustering scenario.

• An instance in one domain may be mapped to multiple in-
stances in another domain. For example, in Fig. 1(b), in-
stance A⃝ in domain 1 is mapped to two instances 1⃝ and 2⃝
in domain 2. The cross-domain relationship is many-to-many
rather than one-to-one.

• Mapping between cross-domain instances may be associated
with weights, which is a generalization of a binary relation-
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Figure 1: Multi-view graph clustering vs co-regularized multi-
domain graph clustering (CGC)

ship. As shown in Fig. 1(b), each cross-domain mapping
is coupled with a weight. Users may specify these weights
based on their prior knowledge.

• The cross-domain instance relationship may be a partial map-
ping. Graphs in different domains may have different sizes.
Some instance in one domain may not have corresponding
instance in another. As shown in Fig. 1(b), mapping between
instances in different domains is not complete.

One important problem in bioinformatics research is protein func-
tional module detection [16]. A widely used approach is to cluster
protein-protein interaction (PPI) networks [2]. In a PPI network,
each instance (node) is a protein and an edge represents the strength
of the interaction between two connected proteins. To improve the
accuracy of the clustering results, we may explore the data col-
lected in multiple domains, such as gene co-expression networks
[15] and genetic interaction networks [7]. The relationship across
gene, protein and genetic variant domains can be many-to-many.
For example, multiple proteins may be synthesized from one gene
and one gene may contain many genetic variants. Consider another
application of text clustering, where we want to cluster journal pa-
per corps (domain 1) and conference paper corps (domain 2). We
may construct two affinity (similarity) graphs for domains 1 and 2
respectively, in which each instance (node) is a paper and an edge
represents the similarity between two papers (e.g., cosine similarity
between term-frequency vectors of the two papers). Some journal
papers may be extended versions of one or multiple conference pa-
pers. Thus the mappings between papers in two domains may be
many-to-many.

These emerging applications call for novel cross-domain graph
clustering methods. In this paper, we propose CGC (Co-regularized
Graph Clustering), a flexible and robust approach to integrate het-

erogenous graph data. Our contributions are summarized as fol-
lows.

1. We propose and investigate the problem of clustering mul-
tiple heterogenous graph data, where the cross-domain in-
stance relationship is many-to-many. This problem has a
wide range of applications and poses new technical chal-
lenges that cannot be directly tackled by traditional multi-
view graph clustering methods.

2. We develop a method, CGC, based on collective symmetric
non-negative matrix factorization with co-regularized penal-
ty to manipulate cross-domain relationships. CGC allows
weighted cross-domain relationships. It also allows partial
mapping and can handle graphs of different sizes. Such flex-
ibility is crucial for real-life applications. We also provide
rigid theoretical analysis of the performance of the proposed
method.

3. We develop effective and efficient techniques to handle the
situation when the cross-domain relationship contains noise.
Our method supports users to evaluate the accuracy of the
specified relationships based on single-domain clustering struc-
ture. For example, in Fig. 1(b), mapping between ( B⃝– 3⃝) in
domains 1 and 2, and ( 5⃝– a⃝) in domains 2 and 3, may not
be accurate as they are inconsistent with in-domain cluster-
ing structure. (Note that each domain contains two clusters,
one on the top and one at the bottom.)

4. We evaluate the proposed method on benchmark UCI data
sets, newsgroup data sets and various biological interaction
networks. The experimental results demonstrate the effec-
tiveness of our method.

2. PROBLEM FORMULATION
Suppose that we have d graphs, each from a domain in {D1,D2,...,
Dd}. We use nπ to denote the number of instances (nodes) in the
graph from domain Dπ (1 ≤ π ≤ d). Each graph is represent-
ed by an affinity (similarity) matrix. The affinity matrix of the
graph in domain Dπ is denoted as A(π) ∈ Rnπ×nπ

+ . In this pa-
per, we follow the convention and assume that A(π) is a symmet-
ric and non-negative matrix [24, 17]. We denote the set of pair-
wise cross-domain relationships as I = {(i, j)} where i and j are
domain indices. For example, I = {(1, 3), (2, 5)} contains two
cross-domain relationships (mappings): the relationship between
instances in D1 and D3, and the relationship between instances in
D2 and D5. Each relationship (i, j) ∈ I is coupled with a ma-
trix S(i,j) ∈ Rnj×ni

+ , indicating the (weighted) mapping between
instances in Di and Dj , where ni and nj represent the number of
instances in Di and Dj respectively. We use S

(i,j)
a,b to denote the

weight between the a-th instance in Dj and the b-th instance in
Di, which can be either binary (0 or 1) or quantitative (any value
between [0,1]). Important notations are listed in Table 1.

Our goal is to partition each A(π) into kπ clusters while consid-
ering the co-regularizing constraints implicitly represented by the
cross-domain relationships in I.

3. CO-REGULARIZED MULTI-DOMAIN
GRAPH CLUSTERING

In this section, we present the Co-regularized Graph Clustering
(CGC) method. We model cross-domain graph clustering as a joint
matrix optimization problem. The proposed CGC method simulta-
neously optimizes the empirical likelihood in multiple domains and
take into account the cross-domain relationships.
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Table 1: Summary of symbols and their meanings
Symbols Description

d The number of domains
Dπ The π-th domain
nπ The number of instances in the graph from Dπ

kπ The number of clusters in Dπ

A(π) The affinity matrix of graph in Dπ

I The set of cross-domain relationships
S(i,j) The relationship matrix between instances in Di and Dj

W(i,j) The confidence matrix of relationship matrix S(i,j)

H(π) The clustering indicator matrix of Dπ

3.1 Objective Function

3.1.1 Single-Domain Clustering
Graph clustering in a single domain has been extensively stud-

ied. We adopt the widely used non-negative matrix factorization
(NMF) approach [20]. In particular, we use the symmetric version
of NMF [17, 9] to formulate the objective of clustering on A(π) as
minimizing the objective function:

L(π)
= ||A(π) −H

(π)
(H

(π)
)
T||2F (1)

where || · ||F denotes the Frobenius norm, H(π) is a non-negative
matrix of size nπ × kπ , and kπ is the number of clusters request-
ed. We have H(π) = [h

(π)
1∗ ,h

(π)
2∗ , ...,h

(π)
nπ∗]

T ∈ Rnπ×kπ , where
each h

(π)
a∗ (1 ≤ a ≤ nπ) represents the cluster assignment (dis-

tribution) of the a-th instance in domain Dπ . For hard clustering,
argmaxj h

(π)
aj is often used as the cluster assignment.

3.1.2 Cross-Domain Co-Regularization
To incorporate the cross-domain relationship, the key idea is to

add pairwise co-regularizers to the single-domain clustering ob-
jective function. We develop two loss functions to regularize the
cross-domain clustering structure. Both loss functions are designed
to penalize cluster assignment inconsistency with the given cross-
domain relationships. The residual sum of squares (RSS) loss re-
quires that graphs in different domains are partitioned into the same
number of clusters. The clustering disagreement loss has no such
restriction.
A). Residual sum of squares (RSS) loss function

We first consider the case where the number of clusters is the
same in different domains, i.e. k1 = k2 = ... = kd = k. For sim-
plicity, we denote the instances in domainDπ as {x(π)

1 , x
(π)
2 , ..., x

(π)
nπ }.

If an instance x
(i)
a in Di is mapped to an instance x

(j)
b in Dj , then

the clustering assignments h(i)
a∗ and h

(j)
b∗ should be similar. We now

generalize the relationship to many-to-many. We use N (i,j)(x
(j)
b )

to denote the set of indices of instances in Di that are mapped to
x
(j)
b with positive weights, and |N (i,j)(x

(j)
b )| represents its cardi-

nality. To penalize the inconsistency of cross-domain cluster parti-
tions, for the l-th cluster in Di, the loss function (residual) for the
b-th instance is

J (i,j)
b,l = (E(i,j)

(x
(j)
b , l)− h

(j)
b,l )

2 (2)

where

E(i,j)
(x

(j)
b , l) =

1

|N (i,j)(x
(j)
b )|

∑
a∈N(i,j)(x

(j)
b

)

S
(i,j)
b,a h

(i)
a,l (3)

is the weighted mean of cluster assignment of instances mapped to
x
(j)
b , for the l-th cluster.

We assume every non-zero row of S(i,j) is normalized. By sum-
ming up Eq. (2) over all instances in Dj and k clusters, we have
the following residual of sum of squares loss function

J (i,j)
RSS =

k∑
l=1

nj∑
b=1

J (i,j)
b,l = ||S(i,j)

H
(i) −H

(j)||2F (4)

B). Clustering disagreement (CD) loss function
When the number of clusters in different domains varies, we can

no longer use the RSS loss to quantify the inconsistency of cross-
domain partitions. From the previous discussion, we observe that
S(i,j)H(i) in fact serves as a weighted projection of instances in
domain Di to instances in domain Dj . For simplicity, we denote
the matrix H̃(i→j) = S(i,j)H(i). Recall that h(j)

a∗ represents a clus-
ter assignment over kj clusters for the a-th instance in Dj . Then
H̃

(i→j)
a∗ corresponds to H

(j)
a∗ for the a-th instance in domain Dj .

The previous RSS loss compares them directly to measure the clus-
tering inconsistency. However, it is inapplicable to the case where
different domains have different numbers of clusters. To tackle
this problem, we first measure the similarity between H̃

(i→j)
a∗ and

H̃
(i→j)
b∗ , and the similarity between H

(j)
a∗ and H

(j)
b∗ . Then we mea-

sure the difference between these two similarity values. Taking Fig.
1(b) as an example. Note that A⃝ and B⃝ in domain 1 are mapped to
2⃝ in domain 2, and C⃝ is mapped to 4⃝. Intuitively, if the similarity

between clustering assignments for 2⃝ and 4⃝ is small, the similar-
ity of clustering assignments between A⃝ and C⃝ and the similarity
between B⃝ and C⃝ should also be small. Note that symmetric N-
MF can handle both linearity and nonlinearity [17]. Thus in this
paper, we choose a linear kernel to measure the in-domain clus-
ter assignment similarity, i.e., K(h

(j)
a∗ ,h

(j)
b∗ ) = h

(j)
a∗ (h

(j)
b∗ )T. The

cross-domain clustering disagreement loss function is thus defined
as

J (i,j)
CD =

nj∑
a=1

nj∑
b=1

(
K(H̃

(i→j)
a∗ , H̃

(i→j)
b∗ )−K(h

(j)
a∗ ,h

(j)
b∗ )
)2

= ||S(i,j)
H

(i)
(S

(i,j)
H

(i)
)
T −H

(j)
(H

(j)
)
T||2F

(5)

3.1.3 Joint Matrix Optimization
We can integrate the domain-specific objective and the loss func-

tion quantifying the inconsistency of cross-domain partitions into a
unified objective function

min
H(π)≥0(1≤π≤d)

O =

d∑
i=1

L(i)
+

∑
(i,j)∈I

λ
(i,j)J (i,j) (6)

where J (i,j) can be either J (i,j)
RSS or J (i,j)

CD . λ(i,j) ≥ 0 is a tuning
parameter balancing between in-domain clustering objective and
cross-domain regularizer. When all λ(i,j)= 0, Eq. (6) degenerates
to d independent graph clusterings. Intuitively, the more reliable
the prior cross-domain relationship, the larger the value of λ(i,j).

3.2 Learning Algorithm
In this section, we present an alternating scheme to optimize the

objective function in Eq. (6), that is, we optimize the objective with
respect to one variable while fixing others. This procedure contin-
ues until convergence. The objective function is invariant under
these updates if and only if H(π)’s are at a stationary point [20].
Specifically, the solution to the optimization problem in Eq. (6) is
based on the following two theorems, which is derived from the
Karush-Kuhn-Tucker (KKT) complementarity condition [4]. De-
tailed theoretical analysis of the optimization procedure will be p-
resented in the next section.
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Theorem 3.1. For RSS loss, updating H(π) according to Eq. (7)
will monotonically decrease the objective function in Eq. (6) until
convergence.

H
(π) ← H

(π) ◦
(

Ψ′(H(π))

Ξ′(H(π))

) 1
4

(7)

where

Ψ
′
(H

(π)
) = A

(π)
H

(π)
+

∑
(i,π)∈I

λ(i,π)

2
S

(i,π)
H

(i)

+
∑

(π,j)∈I

λ(π,j)

2
(S

(π,j)
)
T
H

(j)

(8)

and

Ξ
′
(H

(π)
) = H

(π)
(H

(π)
)
T
H

(π)
+

∑
(i,π)∈I

λ(i,π)

2
H

(π)

+
∑

(π,j)∈I

λ(π,j)

2
(S

(π,j)
)
T
S

(π,j)
H

(π)

(9)

Theorem 3.2. For CD loss, updating H(π) according to Eq. (10)
will monotonically decrease the objective function in Eq. (6) until
convergence.

H
(π) ← H

(π) ◦
(

Ψ(H(π))

Ξ(H(π))

) 1
4

(10)

where

Ψ(H
(π)

) = A
(π)

H
(π)

+
∑

(i,π)∈I

λ
(i,π)

S
(i,π)

H
(i)

(H
(i)

)
T
(S

(i,π)
)
T
H

(π)

+
∑

(π,j)∈I

λ
(π,j)

(S
(π,j)

)
T
H

(j)
(H

(j)
)
T
S

(π,j)
H

(π)

(11)

and

Ξ(H
(π)

) = H
(π)

(H
(π)

)
T
H

(π)

+
∑

(i,π)∈I

λ
(i,π)

H
(π)

(H
(π)

)
T
H

(π)

+
∑

(π,j)∈I

λ
(π,j)

(S
(π,j)

)
T
S

(π,j)
H

(π)
(H

(π)
)
T
(S

(π,j)
)
T
S

(π,j)
H

(π)

(12)

where ◦, [·]
[·] and (·)

1
4 are element-wise operators.

Based on Theorem 3.1 and Theorem 3.2, we develop the iterative
multiplicative updating algorithm for optimization and summarize
it in Algorithm 1.

3.3 Theoretical Analysis

3.3.1 Derivation
We derive the solution to Eq. (6) following the constrained op-

timization theory [4]. Since the objective function is not jointly
convex, we adopt an effective alternating minimization algorithm
to find a locally optimal solution. We prove Theorem 3.2 in the
following. The proof of Theorem 3.1 is similar and hence omitted.

We formulate the Lagrange function for optimization

L(H
(1)

,H
(2)

, ...,H
(d)

)

=

d∑
i=1

||A(i) −H
(i)

(H
(i)

)
T||2F

+
∑

(i,j)∈I

λ
(i,j)||S(i,j)

H
(i)

(S
(i,j)

H
(i)

)
T −H

(j)
(H

(j)
)
T||2F

(13)

Algorithm 1: Co-regularized Graph Clustering (CGC)
Input: graphs from d domains, each of which is represented

by an affinity matrix A(π), kπ(number of clusters in
domain Dπ), a set of pairwise relationships I and the
corresponding matrices {S(i,j)}, parameters {λ(i,j)}

Output: clustering results for each domain (inferred from
H(π))

1 begin
2 Normalize all graph affinity matrices by Frobenius norm;
3 foreach (i, j) ∈ I do
4 Normalize non-zero rows of S(i,j);
5 end
6 for π ← 1 to d do
7 Initialize H(π) with random values between (0,1];
8 end
9 repeat

10 for π ← 1 to d do
11 Update H(π) by Eq. (7) or (10);
12 end
13 until convergence;
14 end

Without loss of generality, we only show the derivation of the up-
dating rule for one domain π (π ∈ [1, d]). The partial derivative of
Lagrange function with respect to H(π) is:

∇
H(π)L =

−A
(π)

H
(π)

+ H
(π)

(H
(π)

)
T
H

(π)

+
∑

(π,j)∈I

λ
(π,j)

(S
(π,j)

)
T
S

(π,j)
H

(π)
(H

(π)
)
T
(S

(π,j)
)
T
S

(π,j)
H

(π)

−
∑

(π,j)∈I

λ
(π,j)

(S
(π,j)

)
T
H

(j)
(H

(j)
)
T
S

(π,j)
H

(π)

−
∑

(i,π)∈I

λ
(i,π)

S
(i,π)

H
(i)

(H
(i)

)
T
(S

(i,π)
)
T
H

(π)

+
∑

(i,π)∈I

λ
(i,π)

H
(π)

(H
(π)

)
T
H

(π)

(14)
Using the Karush-Kuhn-Tucker (KKT) complementarity condition
[4] for the non-negative constraint on H(π), we have

∇
H(π)L ◦H

(π)
= 0 (15)

The above formula leads to the updating rule for H(π) in Eq. (10).

3.3.2 Convergence
We use the auxiliary function approach [20] to prove the conver-

gence of Eq. (10) in Theorem 3.2. We first introduce the definition
of auxiliary function as follows.

Definition 3.3. Z(h, h̃) is an auxiliary function for L(h) if the
conditions

Z(h, h̃) ≥ L(h) and Z(h, h) = L(h), (16)

are satisfied for any given h, h̃ [20].

Lemma 3.4. If Z is an auxiliary function for L, then L is non-
increasing under the update [20].

h(t+1) = argmin
h

Z(h, h(t)) (17)

323



Theorem 3.5. Let L(H(π)) denote the sum of all terms in L con-
taining H(π). The following function

Z(H
(π)

, H̃
(π)

) = −2
∑
klm

A
(π)
ml P (k, l,m)

+ (1 +
∑

(i,π)∈I

λ
(i,π)

)
∑
kl

(
H̃

(π)
(H̃

(π)
)
T
H̃

(π)
)
kl
·
(H

(π)
kl )4

(H̃
(π)
kl )3

− 2
∑

(i,π)∈I

λ
(i,π)

∑
klm

(
S

(i,π)
H

(i)
(H

(i)
)
T
(S

(i,π)
)
T
)
lm

P (k, l,m)

+
∑

(π,j)∈I

λ
(π,j)

∑
kl

(Q(j))kl ·
(H

(π)
lk )4

(H̃
(π)
lk )3

− 2
∑

(π,j)∈I

λ
(π,j)

∑
klm

(
(S

(π,j)
)
T
H

(j)
(H

(j)
)
T
S

(π,j)
)
lm

P (k, l,m)

(18)
is an auxiliary function for L(H(π)), where P (k, l,m) = H̃

(π)
lk H̃

(π)
mk(

1 + log
H

(π)
lk

H
(π)
mk

H̃
(π)
lk

H̃
(π)
mk

)
and Q(j) = (H̃(π))T(S(π,j))TS(π,j)H̃(π)

(H̃(π))T(S(π,j))TS(π,j). Furthermore, it is a convex function in
H(π) and has a global minimum.

Theorem 3.5 can be proved using a similar idea to that in [9] by
validating Z(H(π), H̃(π)) ≥ L(H(π)), Z(H(π),H(π)) = L(H(π)),
and the Hessian matrix ∇∇H(π)Z(H(π), H̃(π)) ≽ 0. Due to space
limitation, we omit the details.

Based on Theorem 3.5, we can minimize Z(H(π), H̃(π)) with
respect to H(π) with H̃(π) fixed. We set ∇H(π)Z(H(π), H̃(π)) = 0,
and get the following updating formula

H
(π) ← H̃

(π) ◦
(

Ψ(H̃(π))

Ξ(H̃(π))

) 1
4

,

which is consistent with the updating formula derived from the KK-
T condition aforementioned.

From Lemma 3.4 and Theorem 3.5, for each subsequent iteration
of updating H(π), we have L((H(π))0) = Z((H(π))0, (H(π))0) ≥
Z((H(π))1, (H(π))0) ≥ Z((H(π))1, (H(π))1) = L((H(π))1) ≥ ... ≥
L((H(π))Iter). Thus L(H(π)) monotonically decreases. This is al-
so true for the other variables. Since the objective function Eq. (6)
is lower bounded by 0, the correctness of Theorem 3.2 is proved.
Theorem 3.1 can be proven with a similar strategy.

3.3.3 Complexity Analysis
The time complexity of Algorithm 1 (for both loss functions) is
O(Iter · d|I|(ñ3 + ñ2k̃)), where ñ is the largest nπ (1 ≤ π ≤ d),
k̃ is the largest kπ and Iter is the number of iterations needed be-
fore convergence. In practice, |I| and d are usually small con-
stants. Moreover, from Eq. (10) and Eq. (7), we observe that the
ñ3 term is from the matrix multiplication (S(π,j))TS(π,j). Since
S(π,j) is the input matrix and often very sparse, we can compute
(S(π,j))TS(π,j) in advance in sparse form. In this way, the com-
plexity of Algorithm 1 is reduced to O(Iter · ñ2k̃).

3.4 Re-Evaluating Cross-Domain Relationship
In real applications, the cross-domain instance relationship based

on prior knowledge may contain noise. Thus, it is crucial to al-
low users to evaluate whether the provided relationships violate any
single-domain clustering structures. In this section, we develop a
principled way to archive this goal. In fact, we only need to slight-
ly modify the co-regularization loss functions in Section 3.1.2 by
multiplying a confidence matrix W(i,j) to each S(i,j). Each ele-
ment in the confidence matrix W(i,j) is initialized to 1. For RSS
loss, we give the modified loss function below (the case for CD loss

Table 2: The UCI benchmarks
Identifier #Instances #Attributes

Iris 100 4
Wine 119 13

Ionosphere 351 34
WDBC 569 30

is similar).

J (i,j)
W = ||(W(i,j) ◦ S(i,j)

)H
(i) −H

(j)||2F (19)

Here, ◦ is element-wise product. By optimizing the following ob-
jective function, we can learn the optimal confidence matrix

min
W≥0,H(π)≥0(1≤π≤d)

O =

d∑
i=1

L(i)
+

∑
(i,j)∈I

λ
(i,j)J (i,j)

W (20)

Eq. (20) can be optimized by iteratively implementing following
two steps until convergence: 1) replace S(π,j) and S(i,π) in Eq.
(7) with (W(π,j) ◦ S(π,j)) and (W(i,π) ◦ S(i,π)) respectively, and
use the replaced formula to update each H(π); 2) use the following
formula to update each W(i,j)

W
(i,j) ←W

(i,j) ◦

√
(H(j)(H(i))T) ◦ S(i,j)

((W(i,j) ◦ S(i,j))H(i)(H(i))T) ◦ S(i,j)
(21)

Here,
√
· is element-wise square root. Note that many elements

in S(i,j) are 0. We only update the elements in W(i,j) whose cor-
responding elements in S(i,j) are positive. In the following, we
only focus on such elements. The learned confidence matrix min-
imizes the inconsistency between the original single-domain clus-
tering structure and the prior cross-domain relationship. Thus for
any element W(i,j)

a,b , the smaller the value, the stronger the incon-

sistency between S
(i,j)
a,b and single-domain clustering structures in

Di and Dj . Therefore, we can sort the values of W(i,j) and re-
port to users the smallest elements and their corresponding cross-
domain relationships. Accurate relationship can help to improve
the overall results. On the other hand, inaccurate relationship may
provide wrong guidance of the clustering process. Our method al-
lows the users to examine these critical relationships and improve
the accuracy of the results.

4. EMPIRICAL STUDY
In this section, we present extensive experimental results on e-

valuating the performance of our method.

4.1 Effectiveness Evaluation
We evaluate the proposed method by clustering benchmark data

sets from the UCI Archive [1]. We use four data sets with class
label information, namely Iris, Wine, Ionosphere and Breast Can-
cer Wisconsin (Diagnostic) data sets. They are from four different
domains. To make each data set contain the same number of (e.g.,
two) clusters, we follow the preprocessing step in [33] to remove
the SETOSA class from the Iris data set and Class 1 from the Wine
data set. The statistics of the resulting data sets are shown in Table
2.

For each data set, we compute the affinity matrix using the RBF
kernel [4]. Our goal is to examine whether cross-domain rela-
tionship can help to enhance the accuracy of the clustering result-
s. We construct two cross-domain relationships: Wine-Iris and
Ionosphere-WDBC. The relationships are generated based on the
class labels, i.e., positive (negative) instances in one domain can
only be mapped to positive (negative) instances in another domain.
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Figure 2: Clustering results on UCI datasets(Wine v.s. Iris,
Ionosphere v.s. WDBC)

We use the widely used Clustering Accuracy [35] to measure the
quality of the clustering results. Parameter λ is set to 1 throughout
the experiments. Since no existing method can handle the multi-
domain co-regularized graph clustering problem, we compare our
CGC method with three representative single-domain methods: sym-
metric NMF [17], K-means [26] and spectral clustering [24]. We
report the accuracy when varying the available cross-domain in-
stance relationships (from 0 to 1 with 10% increment). The accura-
cy shown in Fig. 2 is averaged over 100 sets of randomly generated
relationships.

We have several key observations from Fig. 2. First, CGC sig-
nificantly outperforms all single-domain graph clustering methods,
even though single-domain methods may perform differently on d-
ifferent data sets. For example, symmetric NMF works better on
Wine and Iris data sets, while K-means works better on Ionosphere
and WDBC data sets. Note that when the percentage of available
relationships is 0, CGC degrades to symmetric NMF. CGC outper-
forms all alternative methods when cross-domain relationships are
available. This demonstrates the effectiveness of the cross-domain
relationship co-regularized method. We also notice that the perfor-
mance of CGC dramatically improves when the available relation-
ships increase from 0 to 30%, suggesting that our method can effec-
tively improve the clustering result even with limited information
on cross-domain relationship. This is crucial for many real-life ap-
plications. Finally, we can see that RSS loss is more effective than
CD loss. This is because RSS loss directly measures the weights of
clustering assignment, while the CD loss does this indirectly by us-
ing linear kernel similarity first (see Section 3.1). Thus, for a given
percentage of cross-domain relationships, the method using RSS
loss gains more improvements over the single-domain clustering
than that using CD loss.

4.2 Robustness Evaluation
In real-life applications, both graph data and cross-domain in-

stance relationship may contain noise. In this section, we 1) evalu-
ate whether CGC is sensitive to the inconsistent relationships, and
2) study the effectiveness of the relationship re-evaluation strategy
proposed in Section 3.4. Due to space limitation, we only report the
results on Wine-Iris data set used in the previous section. Similar
results can be observed in other data sets.
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Figure 3: Clustering with inconsistent cross-domain relation-
ship
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Figure 4: Relationship matrix S and confidence matrix W on
Wine-Iris data set)

We add inconsistency into matrix S with ratio r. The results are
shown in Fig. 3. The percentage of available cross-domain rela-
tionships is fixed at 20%. Single-domain symmetric NMF is used
as a reference method. We observe that, even when the inconsisten-
cy ratio r is close to 50%, CGC still outperforms the single-domain
symmetric NMF method. This indicates that our method is robust
to noisy relationships. We also observe that, when r is very large,
CD loss works better than RSS loss, although when r is small, RSS
loss outperforms the CD loss (as discussed in Section 4.1). When r
reaches 1, the relationship is full of noise. From the figure, we can
see that CD loss is immune to noise.

In Section 3.4, we provide a method to report the cross-domain
relationships that violate the single-domain clustering structure. We
still use the Wine-Iris data set to evaluate its effectiveness. As
shown in Fig. 4, in the relationship matrix S, each black point
represents a cross-domain relationship (all with value 1) mapping
classes between the two domains. We leave the bottom right part
of the matrix blank intentionally so that the inconsistent relation-
ships only appear between instances in cluster 1 of domain 1 and
cluster 2 of domain 2. The learned confidence matrix W is shown
in the figure (entries normalized to [0,1]). The smaller the value
is, the stronger the evidence that the cross-domain relationship vi-
olates the original single-domain clustering structure. Reporting
these suspicious relationships to users will allow them to examine
the cross-domain relationships that are likely resulting from inac-
curate prior knowledge.

4.3 Binary v.s. Weighted Relationship
In this section, we demonstrate that CGC can effectively incor-

porate weighted cross-domain relationship, which may carry richer
information than binary relationship. The 20 Newsgroup data set1

contains documents organized by a hierarchy of topic classes. We

1http://qwone.com/ jason/20Newsgroups/
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Table 3: The newsgroup data
Group Id Label

3 comp.os.ms-windows.misc
4 comp.sys.ibm.pc.hardware
5 comp.sys.mac.hardware
9 rec.motorcycles

10 rec.sport.baseball
11 rec.sport.hockey

choose 6 groups as shown in Table 3. For example, at the top level,
the 6 groups belong to two topics, computer (groups {3,4,5}) or
recreation (groups {9,10,11}). The computer related data sets can
be further partitioned into two subcategories, os (group 3) and sys
(groups {4, 5}). Similarly, the recreation related data sets consist of
subcategories motocycles (group 9) and sport (groups 10 and 11).

We generate two domains, each contains randomly sampled 300
documents from the 6 groups (50 documents from each group).
To generate binary relationships, two articles are related if they
are from the same high-level topic, i.e., computer or recreation,
as shown in Fig. 5(a). Weighted relationships are generated based
on the topic hierarchy. Given two group labels, we compute the
longest common prefix. The weight is assigned to be the ratio
of the length of the common prefix over the length of the short-
er of the two labels. The weighted relationship matrix is shown
in Fig. 5(b). For example, if two documents come from the same
group, we set the corresponding entry to 1; if one document is from
rec.sport.baseball and the other from rec.sport.hockey, we set the
corresponding entry to 0.67; if they do not share any label term at
all, we set the entry to 0.
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Figure 5: Binary and weighted relationship matrices

We perform experiments using binary and weighted relationship-
s respectively. The affinity matrix of documents is computed based
on cosine similarity. We cluster the data set into either 2 or 6 clus-
ters and results are shown in Fig. 6. We observe that when each
domain is partitioned into 2 clusters, the binary relationship out-
performs the weighted one. This is because the binary relation-
ship better represents the top-level topics, computer and recreation.
On the other hand, for the domain partitioned into 6 clusters, the
weighted relationship performs significantly better than the binary
one. This is because weights provide more detailed information on
cross-domain relationships than the binary relationships.

4.4 Performance Evaluation
In this section, we study the performance of the proposed meth-

ods: the number of iterations before converging to a local optima.
Fig. 7 shows the value of the objective function with respect to the
number of iterations on different data sets. We observe that the ob-
jective function value decreases steadily with more iterations. Usu-
ally, less than 100 iterations are needed before convergence.
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Figure 6: Clustering results on the newsgroup data set with
binary or weighted relationships
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4.5 Protein Module Detection by Integrating
Multi-Domain Heterogenous Data

In this section, we apply the proposed method to detect protein
functional modules [16]. The goal is to identify clusters of proteins
that have strong interconnection with each other. A common ap-
proach is to cluster the protein-protein interaction (PPI) networks
[2]. We show that, by integrating multi-domain heterogenous in-
formation, such as gene co-expression network [15] and genetic
interaction network [7], the performance of the detection algorithm
can be dramatically improved.

We download the widely used human PPI network from BioGrid2.
Three Hypertension related gene expression data sets are down-
loaded from Gene Expression Ominbus3 with ids GSE2559, GSE703,
and GSE4737. In total, 5412 genes included in all three data sets
are used to construct gene co-expression network. Pearson correla-
tion coefficients(normalized between [0 1]) are used as the weights
on edges between genes. The genetic interaction network is con-
structed using a large-scale Hypertension genetic data [10], which
contains 490032 genetic markers across 4890 (1952 disease and
2938 healthy) samples. We use 1 million top-ranked genetic marker-
pairs to construct the network and the test statistics are used as the
weights on the edges between markers [36]. The constructed het-
erogenous networks are shown in Fig. 8. The relationship between
genes and genetic markers is many-to-many, since multiple genetic

2http://thebiogrid.org/download.php
3http://www.ncbi.nlm.nih.gov/gds
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Figure 8: Protein-protein interaction network, gene co-
expression network, genetic interaction network and cross-
domain relationships

Method Number of significant modules
Markov Clustering 21

NCut 25
Spectral Clustering 44
Symmetric NMF 77

CGC 84

Table 4: Gene Ontology (GO) enrichment analysis of the gene
sets identified by different methods

markers may be covered by a gene and each marker may be cov-
ered by multiple genes due to the overlapping between genes. The
relationship between proteins and genes is one-to-one.

We apply CGC (with RSS loss) to cluster the generated multi-
domain graphs. We use the standard Gene Set Enrichment Analysis
(GSEA) [23] to evaluate the significance of the inferred clusters. In
particular, for each inferred cluster (protein/gene set) T , we identify
the most significantly enriched Gene Ontology categories [31, 6].
The significance (p-value) is determined by the Fisher’s exact test.
The raw p-values are further calibrated to correct for the multiple
testing problem [34]. To compute calibrated p-values for each T ,
we perform a randomization test, wherein we apply the same test
to 1000 randomly created gene sets that have the same number of
genes as T .

The calibrated p-values of the gene sets learned by CGC and
single-domain graph clustering methods, Ncut [25], symmetric N-
MF [17], Markov clustering [32] and spectral clustering, when ap-
plied on PPI network, are shown in Fig. 9. The clusters are ar-
ranged in ascending order of their p-values. As can be seen from
the figure, by integrating three types of heterogenous networks,
CGC achieves better performance than the single-domain methods.
Table 4 shows the number of significant (calibrated p-value≤ 0.05)
modules identified by different methods. We find that CGC reports
more significant functional modules than the single-domain meth-
ods. We also apply existing multi-view graph clustering method
[19, 30] on the gene co-expression networks and PPI network. S-
ince these four networks are of the same size, multi-view method
can be applied. In total, less than 20 significant modules are i-
dentified. This is because the gene expression data are very noisy.
Multi-view graph clustering methods forced to find one common
clustering assignment over different data sets and thus are more
sensitive to noise.
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Figure 9: Comparison of CGC and single-domain graph clus-
tering (k = 100)

5. RELATED WORK
To our best knowledge, this is the first work to study co-regularized

multi-domain graph clustering with many-to-many cross-domain
relationship. Existing work on multi-view graph clustering relies
on a fundamental assumption that all views are with respect to the
same set of instances. This set of instances have multiple repre-
sentations and different views are generated from the same under-
lying distribution [5]. In multi-view graph clustering, research has
been done to explore the most consensus clustering structure from
different views [18, 19, 30]. Another common approach in multi-
view graph clustering is a two-step approach, which first combines
multiple views into one view, then does clustering on the resulting
view [29, 37]. However, these methods do not address the many-
to-many cross-domain relationship. Note that our work is different
from transfer clustering [8] and multi-task clustering [14]. These
methods assume that there are some common features shared by
different domains. They are also not designed for graph data.

Clustering ensemble approaches also aim to find consensus clus-
ters from multiple data sources. Strehl and Ghosh [27] proposed
instance-based and cluster-based approaches for combining multi-
ple partitions. Fern and Brodley [12] developed a hybrid bipartite
graph formulation to infer ensemble clustering result. These ap-
proaches try to combine multiple clustering structures for a set of
instances into a single consolidated clustering structure. Similar
to multi-view graph clustering, they cannot handle many-to-many
cross-domain relationships.

6. CONCLUSION AND DISCUSSION
Integrating multiple data sources for graph clustering is an im-

portant problem in data mining research. Robust and flexible ap-
proaches that can incorporate multiple sources to enhance graph
clustering performance are highly desirable. We develop CGC,
which utilizes cross-domain relationship as co-regularizing penal-
ty to guide the search of consensus clustering structure. CGC is
robust even when the cross-domain relationships based on prior
knowledge are noisy. Using various benchmark and real-life da-
ta sets, we show that the proposed CGC method can dramatically
improve the graph clustering performance compared with single-
domain methods.
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