
Robust Principal Component Analysis via Capped Norms

Qian Sun
Arizona State University
Tempe, AZ 85287, USA
qsun21@asu.edu

Shuo Xiang
Arizona State University
Tempe, AZ 85287, USA

shuo.xiang@asu.edu

Jieping Ye
Arizona State University
Tempe, AZ 85287, USA
jieping.ye@asu.edu

ABSTRACT
In many applications such as image and video processing,
the data matrix often possesses simultaneously a low-rank
structure capturing the global information and a sparse com-
ponent capturing the local information. How to accurately
extract the low-rank and sparse components is a major chal-
lenge. Robust Principal Component Analysis (RPCA) is
a general framework to extract such structures. It is well
studied that under certain assumptions, convex optimiza-
tion using the trace norm and ℓ1-norm can be an effective
computation surrogate of the difficult RPCA problem. How-
ever, such convex formulation is based on a strong assump-
tion which may not hold in real-world applications, and the
approximation error in these convex relaxations often can-
not be neglected. In this paper, we present a novel non-
convex formulation for the RPCA problem using the capped
trace norm and the capped ℓ1-norm. In addition, we present
two algorithms to solve the non-convex optimization: one is
based on the Difference of Convex functions (DC) frame-
work and the other attempts to solve the sub-problems via
a greedy approach. Our empirical evaluations on synthetic
and real-world data show that both of the proposed algo-
rithms achieve higher accuracy than existing convex formu-
lations. Furthermore, between the two proposed algorithms,
the greedy algorithm is more efficient than the DC program-
ming, while they achieve comparable accuracy.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database applications-
Data Mining

General Terms
Algorithm

Keywords
Non-convex optimization, DC programming, ADMM, low-
rank, sparsity, trace norm, image processing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD’13, August 11–14, 2013, Chicago, Illinois, USA.
Copyright 2013 ACM 978-1-4503-2174-7/13/08 ...$15.00.

1. INTRODUCTION
In many applications, we encounter very high-dimensional

data such as images, texts, and genomic data. Analysis of
such data is challenging due to the curse of dimensionality.
One promising approach is to exploit the special structures
of the data and it has recently achieved great success in
many applications [2, 8, 14, 19, 24]. Two particularly inter-
esting structures are the low-rank structure and the sparse
structure. For example, the images of the same scene may
be taken from different illusions, thus the shadows represent
the sparse component and the scene relates to the low-rank
part [1]. For a collection of text documents, the low-rank
component could capture common words used in all the doc-
uments while the sparse component may capture the few key
words that best distinguish each document from others [6].
Robust Principal Component Analysis (RPCA) [6], or Sta-
ble Principal Component Pursuit (SPCP) [1] is an efficient
tool for such analysis and has received increasing attentions
in many areas [5, 6, 17, 18, 20, 22].

The most general form of the RPCA problem can be for-
mulated as follows:

minimize
X,Y

rank(X) + λ∥Y ∥0,

subject to A = X + Y,
(1)

where we assume that the data matrix A ∈ Rm×n is the
summation of a low-rank matrix X and a sparse component
Y . We minimize the rank of X as well as the number of
non-zero entries in Y . Due to the discrete nature of the
rank function, such a problem has been proven to be NP-
hard. Therefore computing a global optimal solution of (1)
is a challenge. Recently, one proper relaxation with theoret-
ical guarantees has been proposed in [6]. In particular, the
authors approximate the original problem by minimizing the
sum of trace norm of X and ℓ1-norm of Y with an equality
constraint:

minimize
X,Y

∥X∥∗ + λ∥Y ∥1,

subject to A = X + Y,
(2)

where the trace norm ∥X∥∗ is defined as the sum of all
singular values of X, and ∥Y ∥1 =

∑
ij |Yij | denotes the sum

of absolute values of all entries in Y . Notice that (2) is
a convex optimization problem, therefore a global optimal
can be computed. Moreover, the authors of [6] also provide
an efficient algorithm for (2). It is well known that the
trace norm and the ℓ1-norm are capable of inducing low-
rank and sparse structures [20], achieving our desired goal.
Furthermore, it has been shown in [6] that with the balance

311

parameter λ equal to 1√
max(m,n)

, (2) will provide the correct

answer.
Problem (2) can recover a low-rank matrix only with sparse

corruptions. In practice, as discussed in [5], it is necessary
to consider the observed data matrix under more realistic
conditions. Particularly, the given data may not only be
corrupted by impulse noise which is sparse and large, but
also by Gaussian noise which is small but dense. To deal
with this more realistic scenario, a modified model with tol-
erance of both Gaussian noise and impulse noise has been
proposed in [20], by changing the constraint from equality
to inequality:

minimize
X,Y

∥X∥∗ + λ∥Y ∥1,

subject to ∥A−X − Y ∥F ≤ σ,
(3)

where σ denotes the level of the Gaussian noise. The authors
proposed to apply the augmented lagrangian approaches to
efficiently solve problem (3). Based on the same model,
an Augmented Lagrange Method of Multipliers (ADMM) is
proposed in [13] to solve the optimization problem, which
iteratively solves X and Y using soft-thresholding. In [1],
the authors developed a non-smooth augmented lagrange
method to efficiently solve problem (3). There are also many
other approaches which aim to solve a similar problem. For
example, in [7], the authors develop a notion of rank-sparsity
incoherence and uses it to characterize both of the funda-
mental identifiability and the sufficient conditions for exact
recovery. In [23], the authors presented an approach to re-
cover the correct column space of the uncorrupted matrix,
rather than the matrix itself.
To our best knowledge, most of the recent research focuses

on solving RPCA via solving a convex problem with certain
constraints [5, 17, 18, 22]. By contrast, this paper tack-
les this interesting problem from a different point of view:
non-convex optimization using a mixture of capped trace
norm and capped ℓ1-norm. We propose two algorithms to
solve the non-convex formulation. First, we apply the Dif-
ference of Convex functions (DC programming) framework
to iteratively solve the non-convex formulation, and apply
ADMM to solve the sub-problem. In our second approach,
instead of using ADMM to solve the sub-problem, we present
a greedy algorithm to solve the sub-problem, based on which
we propose a fast alternating optimization algorithm. Both
low-rank part X and sparse component Y can be recovered
by our algorithms with higher accuracy than most of the
existed work.
The RPCA formulation has applications in many areas [6].

In this paper, we evaluate the proposed algorithms on syn-
thetic data and two real-world applications: background de-
tection in surveillance video and shadow removal from illu-
minated portraits. In both synthetic experiments and real-
world applications, our proposed algorithms achieve better
recovery of X and Y than existing convex formulations. In
particular, our proposed algorithms can capture the sparse
locations with higher accuracy than existing methods.
The rest of the paper is organized as follows. In Section 2,

we present our non-convex formulation for the RPCA prob-
lem. In Section 3, we present a DC framework to solve our
formulation. In Section 4, we develop a fast alternating op-
timization algorithm to solve the formulation. In Section 5,
we evaluate our algorithms on both synthetic data and real-
world applications. We conclude the paper in Section 6.

2. PROBLEM FORMULATION
In this section, we formulate the RPCA problem as a non-

convex minimization problem via capped norms.
Given a data matrix A, the goal of RPCA is to extract

a low rank X and a sparse component Y from A. Follow-
ing (1), we consider a non-convex formulation of RPCA with
an inequality constraint:

minimize
X,Y

rank(X) + λ∥Y ∥0,

subject to ∥A−X − Y ∥2F ≤ σ2,
(4)

where A ∈ Rm×n is the observed matrix, σ2 is the level of
Gaussian noise and λ > 0 is a trade-off parameter between
the low rank and the sparse component. Here, the ∥·∥0 norm
is the number of non-zero entries of a matrix. In [1, 20],
the trace norm and the ℓ1-norm were used to approximate
the rank function and ℓ0-norm to convert the non-convex
problem into a convex one. It is noteworthy that the con-
vex relaxation may not be a good approximation of (4) in
real-world applications. The main motivation of the refor-
mulation to be presented in the next subsection is to reduce
the approximation error using non-convex formulations.

2.1 Capped norms
We first introduce the capped norms for matrices and vec-

tors, which are the surrogates of the rank function and the
ℓ0-norm. Let p = min(m,n). We can approximate the rank
function and the ℓ0-norm by:

rank(X) ≈
p∑

i=1

min(1,
σi(X)

θ1
)

=
1

θ1

[
∥X∥∗ −

p∑
i=1

max(σi(X)− θ1, 0)

]
,

∥Y ∥0 ≈
∑
ij

min(1,
|Yij |
θ2

)

=
1

θ2

[
∥Y ∥1 −

∑
i,j

max(|Yij | − θ2, 0)

]
,

for some small parameters θ1, θ2 > 0. We can observe that
if all the singular values of X are greater than θ1 and all the
absolute values of elements in Y are greater than θ2, then
the approximation will become equality.

The smaller θ1 and θ2 are, the more accurate the capped
norm approximation would be. We can control the recovery
precision via making use of θ1 and θ2. By carefully choosing
θ1 and θ2, we can recovery X and Y more accurately than
the trace norm and the ℓ1-norm approximation.

2.2 Proposed non-convex formulation
With the aforementioned capped norms, we propose to

solve the following non-convex RPCA formulation:

minimize
X,Y

1

θ1
∥X∥∗ +

λ

θ2
∥Y ∥1 −

[
1

θ1
P1(X) +

λ

θ2
P2(Y)

]
,

subject to ∥A−X − Y ∥2F ≤ σ2,
(5)

where P1(X) =
∑p

i=1 max(σi(X) − θ1, 0), and P2(Y) =∑
i,j

max(|Yij | − θ2, 0).

Clearly, the new objective function in problem (5) is not
convex due to the last two terms being concave functions.

312

However, the intrinsic structure of the formulation naturally
leads to use of Difference of Convex (DC) Programming [21].
DC programming treats a non-convex function as the differ-
ence of two convex functions, and then iteratively solves it
on the basis of the combination of the first convex part and
the linear approximation of the second convex part. Obvi-
ously, the trace norm and the ℓ1-norm of matrices are con-
vex, and the summation of maximum is also convex. Thus
problem (5) exhibits the DC structure. The details of DC
programming to solve the RPCA problem are presented in
the next section.

3. A DC PROGRAMMING-BASED ALGO-
RITHM

In this section, we detail the DC programming framework
for solving problem (5). In each iteration of the framework,
the first-order approximation is used to substitute the non-
convex part. To generate the first-order approximation of
P1(X) and P2(Y) in our formulation, we need to compute
the subdifferential of a capped trace norm, as summarized
in the following lemma:

Lemma 1. The subdifferential of

P1(X) =

p∑
i=1

max(σi(X)− θ1, 0)

is given by:

∂P1(X) =
{
UDiag(z)V T : z ∈ Z∗

}
, (6)

where U and V are the left and right singular vectors of X,
respectively, and

Z∗ =

z ∈ Rp

∣∣∣∣∣∣∣zi


= 1 if σi(X) > θ1,

= 0 if σi(X) < θ1,

∈ [0, 1] otherwise.


and p is the rank of X.

Proof. First, we can denote X = UΣXV T as the SVD
of matrix X where U and V are unitary matrices. Then we
define auxiliary matrices B = UΣBV

T and C = UΣθV
T ,

where ΣB = Diag(b), bi ∈ {0, 1} and Σθ = Diag(θ). For
simplicity, we denote

σX = (σ1(X), σ2(X), . . . , σp(X))T ,

σB = (σ1(B), σ2(B), . . . , σp(B))T ,

and

σθ = (θ1, θ1, . . . , θ1)
T .

Using the notations above, P1(X) can be written as

P1(X) =

p∑
i=1

max(σi(X)− θ1, 0)

= max
σB∈E

< σB , σX − σθ >,

where E = {s ∈ Rp : si ∈ {0, 1}}. We can see that the
maximum can be achieved if and only if:

σi(B) ∈


1 if σi(X)− θ1 > 0,

0 if σi(X)− θ1 < 0,

{0, 1} otherwise.

The subdifferential should be the convex hull of B [16]:

∂P1(X) = conv{B : B = UΣBV
T }

= UΣ∗
BV

T ,

where Σ∗
B = Diag(σ∗

B) and

σ∗
B(i) ∈


1 if σi(X)− θ1 > 0,

0 if σi(X)− θ1 < 0,

[0, 1] otherwise.

This completes the proof of the lemma.

In addition, it can be easily shown that:

∂P2(Y) =

V ∈ Rm×n

∣∣∣∣∣∣∣∣∣Vij ∈


{1} if Yij > θ2,
[0, 1] if Yij = θ2,
{0} if |Yij | < θ2,
[−1, 0] if Yij = −θ2,
{−1} if Yij < −θ2.


(7)

By denoting U = 1
θ1
∂P1(X) and V = 1

θ2
∂P2(Y), the for-

mulation (5) can be rewritten as:

minimize
X,Y

1

θ1
∥X∥∗ +

λ

θ2
∥Y ∥1 − ⟨U,X⟩ − ⟨λV, Y ⟩,

subject to ∥A−X − Y ∥2F ≤ σ2,

(8)

where ⟨U,X⟩ =
∑m

i=1

∑n
j=1 UijXij . Thus, we solve the orig-

inal non-convex problem by solving a series of convex prob-
lems. In each iteration, we approximate problem (5) by the
sub-problem (8) at the current Xk and Y k. The key sub-
problem is to solve the convex problem (8).

3.1 Solving the sub-problem
Here, we apply the Augmented Lagrange Method of Mul-

tipliers (ADMM) [3] to solve the sub-problem (8). ADMM
has been applied successfully to solve many sparse learning
problems. We introduce an auxiliary variable S = X and
rewrite the problem (8) as:

minimize
X,Y

1

θ1
∥S∥∗ +

λ

θ2
∥Y ∥1 − ⟨U,X⟩ − ⟨λV, Y ⟩,

subject to ∥A−X − Y ∥2F ≤ σ2,

X − S = 0.

(9)

The augmented lagrangian function of (9) is:

Lρ(S,X, Y,Λ) =
1

θ1
∥S∥∗ +

λ

θ2
∥Y ∥1 − ⟨U,X⟩ − ⟨λV, Y ⟩

+ ⟨Λ, X − S⟩+ ρ

2
∥X − S∥2F ,

subject to ∥A−X − Y ∥2F ≤ σ2,

where Λ is the lagrangian multiplier and ρ is the step size of
dual update.

The general approach of ADMM consists of the following
iterations:

Sk+1 = argmin
S

Lρ(S,X
k, Y k,Λk),

{Xk+1, Y k+1} = argmin
X,Y

Lρ(S
k+1,X, Y,Λk),

Λk+1 = Λk + ρ(Xk+1 − Sk+1).

(10)

Next, we present the details for updating each variable in (10).

313

3.1.1 Updating S

The update of S involves the following problem:

Sk+1 = argmin
S

1

2

∥∥∥∥S −Xk − Λk

ρ

∥∥∥∥2

F

+
1

θ1ρ
∥S∥∗, (11)

which is the proximal operator of the trace norm. It has an
analytical solution as summarized in the following lemma [4]:

Lemma 2. The proximal operator associated with the trace
norm, i.e., the minimizer of the following problem:

minimize
X∈Rm×n

1

2
∥X −A∥2F + λ∥X∥∗,

is given by:

proxλ∥·∥∗(X) = USV T ,

S = Diag(max(σ − λ, 0)),

where σ = (σ1, . . . , σp) are the singular values of A and
A = UDiag(σ)V T is the SVD of A.

From Lemma 2, if we denote the SVD of matrix Xk + Λk

ρ
as

UsΣsV
T
s , where Σs = Diag(σ), and pi = max(σi − 1

θ1ρ
, 0),

then Sk+1 can be obtained by Sk+1 = UsDiag(p)V T
s .

3.1.2 Updating X and Y

The update of X and Y amounts to solving:

{Xk+1, Y k+1} =argmin
X,Y

λ

θ2
∥Y ∥1 − ⟨Uk, X⟩ − ⟨λV k, Y ⟩

+ ⟨Λk, X − Sk+1⟩+ ρ

2
∥X − Sk+1∥2F

s.t. ∥A−X − Y ∥2F ≤ σ2.
(12)

By introducing a lagrangian multiplier ν for the inequality
constraint, the lagrangian function is given by:

L =
λ

θ2
∥Y ∥1 − ⟨Uk,X⟩ − ⟨λV k, Y ⟩+ ⟨Λk, X − Sk+1⟩

+
ρ

2
∥X − Sk+1∥2F + ν(∥A−X − Y ∥2F − σ2).

Taking partial derivatives of L with respect to X and Y
results in:{

∂L
∂X

= −Uk + Λk + ρ(X − Sk+1) + 2ν(X + Y −A),
∂L
∂Y

= λ
θ2
DY − λV k + 2ν(X + Y −A),

where DY is the subdifferential of ∥Y ∥1. Setting both par-
tial derivatives to 0, we have

ρY +
λ(2ν + ρ)

2νθ2
DY + C = 0, (13)

where C is a constant. It is easy to verify that (13) is pre-
cisely the first-order optimality condition for the following
problem:

minimize
Y

1

2
∥Y +

C

ρ
∥2F +

λ(2ν + ρ)

2νθ2ρ
∥Y ∥1, (14)

which has a closed-form solution summarized below [9]:

Lemma 3. The proximal operator associated with the ℓ1-
norm, i.e., the minimizer of the following problem:

minimize
X∈Rm×n

1

2
∥X − V ∥2F + λ∥X∥1,

is given by:

proxλ∥·∥1(Vij) = sign(Vij)⊗max(|Vij | − λ, 0),

where the ℓ1-norm of a matrix is given by the summation of
the absolute value of all elements.

From Lemma 3, the solution of problem (13) can be obtained

by Y k+1 = sign(−C
ρ
) ⊗ max{|C

ρ
| − λ(2ν+ρ)

2νθ2ρ
, 0} based on ν.

And from the relation between X and Y , we can get Xk+1.
Since there is no direct way to calculate ν, we use the binary
search to find the proper ν.

Thus, we obtain the solution of sub-problem (9), which
is one iteration of DC framework. In the DC framework, a
series of sub-problem (9) are solved iteratively. The details
are summarized in Algorithm 1.

Algorithm 1 Robust PCA via DC programming

Require: X0, Y0, θ1, θ2, σ
Ensure: an optimal solution X and Y

1: while not converge do
2: Calculate P1(X) =

∑p
i=1 max(σi(X) − θ1, 0) and

P2(Y) =
∑
i,j

max(|Yij | − θ2, 0)

3: Compute ∂P1 and ∂P2 according to (6) and (7)
4: Apply ADMM to solve problem (9):
5: for j = 1 to MaxIter do
6: update S using (11)
7: update X and Y using (14)
8: update Λ using (10)
9: end for
10: end while

4. A FAST ALTERNATING ALGORITHM
The DC programming is known to have a slow conver-

gence rate. In this section, we propose an algorithm based
on alternating optimization which is practically much faster
than DC programming. Notice that problem (5) is equiva-
lent to:

minimize
X,Y

1

θ1

∑
i

min{σi(X), θ1}+
1

θ2

∑
i,j

min{|Yij |, θ2},

subject to ∥A−X − Y ∥2F ≤ σ2.
(15)

In the proposed algorithm, we iteratively fix one variable
and compute the other one.

4.1 Computing the optimal Y
When X is fixed, computing the optimal Y amounts to

solving the following sub-problem after dropping constants
and changing variables:

minimize
Y

1

θ2

∑
i,j

min{|Yij |, θ2},

subject to ∥Y − Z∥2F ≤ σ2,

(16)

where Z = A − X. It is easy to see that we only need to
consider the situation that Z ≥ 0. Moreover, notice that
for any feasible solution Y , if Yi > Zi for some i, by setting
Yi = Zi we can always reach another feasible solution with
equal or less objective value. Therefore we can assume that
the optimal Y ∗ satisfies Y ≤ Z. In addition, we may further

314

assume Y and Z are both represented in a vector which is
formed by stacking all columns of the matrix.
It is not hard to see that the objective function of prob-

lem (16) is non-convex and it is usually very difficult to find
a globally optimal solution. We first present our method in
Algorithm 2. Then we will show that, given any feasible
solution of (17), we can always improve it to get a better
local solution through our Algorithm 2.

Algorithm 2 An approximate algorithm for solving (16)

Require: Y , Z, θ
Ensure: an optimal solution Y

1: if ∥Z∥2F ≤ σ2 then
2: return 0
3: end if
4: Initialize Y by Z.
5: Sort Y in increasing order
6: i = 1
7: while σ2 > 0 do
8: if σ > Yi then
9: σ =

√
σ2 − Y 2

i , Yi = 0.
10: else
11: σ = 0, Yi = Yi − σ.
12: end if
13: i = i+ 1
14: end while
15: return Y

An intuitive example is presented in Figure 1. We first
initialize Y by Z and sort Y such that the elements of Y
form a non-decreasing sequence. The key idea behind our
algorithm is as follows: among all the solutions of (16), there
must be one Y ∗ such that the elements of Y ∗ preserves the
order of Z.

Lemma 4. Let Y ∗ be one feasible solution of (16) such
that there exist indices i and j satisfying Zi < Zj and Y ∗

i >

Y ∗
j . There always exists another local solution Ŷ such that

Ŷi ≤ Ŷj and Ŷk = Y ∗
k for all k ̸= i, j.

Proof. If there exist indices i and j such that Zi < Zj

and Y ∗
i > Y ∗

j . Let Ŷi = Y ∗
j , Ŷj = Y ∗

i and Ŷk = Y ∗
k for all

k ̸= i, j, then we have:

∥Y ∗ − Z∥2F − ∥Ŷ − Z∥2F
=∥Y ∗ − Z∥2F − (

∑
k ̸=i,j

(Ŷk − Zk)
2 + (Ŷi − Zi)

2 + (Ŷj − Zj)
2)

=∥Y ∗ − Z∥2F − (
∑
k ̸=i,j

(Y ∗
k − Zk)

2 + (Y ∗
j − Zi)

2 + (Y ∗
i − Zj)

2)

=(Y ∗
i − Zi)

2 + (Y ∗
j − Zj)

2 − (Y ∗
j − Zi)

2 − (Y ∗
i − Zj)

2

=2Y ∗
j Zi + 2Y ∗

i Zj − 2Y ∗
j Zj − 2Y ∗

i Zi

=2(Y ∗
i − Y ∗

j)(Zj − Zi) ≥ 0.

The above result essentially shows that exchanging Y ∗
i and

Y ∗
j will not violate the constraint and clearly the objective

remains unchanged. Therefore we find an alternative feasi-
ble solution that preserves the order of elements in Z.

Lemma 5. Let Y ∗ be one feasible solution of (16) such
that there exists an index i satisfying 0 < Y ∗

i < Y ∗
i+1 < Zi+1.

There always exists another feasible solution Ŷ such that

Ŷk = Y ∗
k for all k ̸= i, i+1 and either Ŷi = 0 or Ŷi+1 = Zi+1

holds.

Lemma 4 essentially states that the optimal solution pre-
serves the order in Z and Lemma 5 shows that we can ob-
tain a solution such that there exists an index i such that
Y ∗
j = 0 for all j < i and Y ∗

j = Zj for all j > i. Then it
is straight-forward to show that our algorithm provides a
better local solution.

Sorted YY0

Reduced YUpdated Y

R1
R2

R3

2222 321  RRR

Figure 1: Illustration of Algorithm 2. Y is initialized
as Z. We first sort the entries of Y to form a non-
decreasing sequence {Yi}, then reduce Y as much as
possible sequentially within the threshold σ, finally
put Y back in the original order.

4.2 Computing the optimal X
When Y is fixed, the optimal X can be obtained via solv-

ing the following equivalent problem:

minimize
X

1

θ1

∑
i

min{σi(X), θ1},

subject to ∥X − Z∥2F ≤ σ2.

(17)

Let Z = UΣV T be the SVD of Z. For any feasible solution
X, let ŨΣ̃Ṽ T be its SVD. We can observe that:

∥X − Z∥2F
=∥X∥2F + ∥Z∥2F − 2Tr(XTZ)

=∥UΣ̃V T ∥2F + ∥Z∥2F − 2Tr(XTZ)

≥∥UΣ̃V T ∥2F + ∥Z∥2F − 2
∑
i

σi(X)σi(Z)

=∥UΣ̃V T ∥2F + ∥Z∥2F − 2Tr((UΣ̃V T)TUΣV T)

=∥UΣ̃V T − Z∥2F ,

where the second equation follows from the fact that the
Frobenius norm is unitary-invariant and we use the Von Neu-
mann’s trace inequality [15] to obtain the first inequality.
The conclusion above essentially shows that the optimal X

315

shares the same left and right singular vectors with Z. Us-
ing the unitary-invariant property of the Frobenius norm we
can conclude that (17) is equivalent to:

minimize
σ(X)

1

θ1

∑
i

min{σi(X), θ1},

subject to
∑
i

(σi(X)− σi(Z))2 ≤ σ2,
(18)

which is exactly in the same form as (16) and therefore can
also be computed via Algorithm 2.

5. EXPERIMENTAL RESULTS
In this section, we compare our proposed algorithms with

ALM [13] and NSA [1] on synthetic data and real-world data
sets. The ALM algorithm formulated RPCA as a convex
problem with an equality constraint and applied augmented
lagrange multiplier method to solve it. The NSA algorithm
formulated the RPCA as a convex problem with an inequal-
ity constraint, and investigated a non-smooth augmented
lagrange algorithm to solve it.
Our experiments were executed on a PC with Intel Core2

Quad Q8400 2.66G CPU and 8G RAM. The ALM code was
downloaded from the Perception and Decision Laboratory,
University of Illinois (http://perception.csl.illinois.
edu/), and the NSA code was kindly provided to us by the
author. We implemented both of the DC framework and
fast alternating algorithm in MATLAB.

5.1 Synthetic data
In this experiment, we compare different algorithms on

synthetic data. We generate the rank-r matrix X0 as a
product of LRT , where L and R are independent n× r ma-
trices whose elements are i.i.d. random variables sampled
from standard Gaussian distributions. We generate Y 0 as
a sparse matrix whose support is chosen uniformly at ran-
dom, and whose non-zero entries are i.i.d. random variables
sampled uniformly in the interval [−100, 100]. We set the
standard Gaussian noise level at ρ to simulate ξ ∼ N (0, ρ2).
The matrix A = X0 +Y 0 + ξ is the input to the algorithms.
In our empirical study, we set θ1 = θ2 = 0.01 and σ2 =

ρ
√

n+
√
8n as in [20] through all our experiments and uti-

lize the NSA results to initialize X and Y in our algorithms.
Note that it is very common (in fact it is recommended) to
use convex relaxation solutions as initial solutions for non-
convex formulations [10, 25].
There are three key parameters in the process of gener-

ating A, namely, n, ρ and cr: n is the dimension of A; cr
represents the ratio between the rank and the dimension of
X0, i.e., r = n×cr; cp denotes the density of non-zero entries
in Y 0, i.e., ∥Y ∥0 = cp×n. To verify the efficacy and robust-
ness of different approaches, we proceed our experiments in
three directions, by varying different parameters:

• We fix ρ and cr, and vary n in the set S1, where S1 =
{100, 200, 500} .

• We fix cr and n, and vary ρ in the set S2, where S2 =
{0.0001, 0.001, 0.01}.

• We fix n and ρ, and vary cr in the set S3, where S3 =
{0.01, 0.02, 0.05, 0.1}.

Following the aforementioned three directions, the exper-
imental results of different approaches are presented in Ta-
ble 1, Table 2 and Table 3. In each table, comprehensive
results of the recovery errors related to X and Y as well
as the accuracy of capturing the sparse location are demon-
strated. In particular, the computation time with respect to
dimensions is summarized in Table 1.

Under all these conditions, our alternating algorithm out-
performs ALM and NSA in terms of the rank of X and the
sparsity of Y . In particular, the rank of X produced by our
alternating algorithm is consistent with the value we gen-
erated through cr in the case of ρ = 0.001. Moreover, for
capturing the sparse locations in matrix Y , our DC algo-
rithm and alternating algorithm both perform much better
than ALM and NSA. Especially, in the case of ρ = 0.001,
n = 100, compared to ALM (20.35%) and NSA (52.57%),
we obtain 99.45% (DC) and 98.73% (alternating) accuracy
which nearly capture all of the sparse locations in Y . Fur-
thermore, our alternating algorithm achieves 81.42% accu-
racy in the case of ρ = 0.01, showing its robustness to noise.

We can observe that the computation time of our DC
framework is longer than ALM and NSA. However, our al-
ternating algorithm has comparable execution time and is
much faster than DC framework. Therefore, in the follow-
ing real-world applications, we only focus on our alternating
algorithm.

5.2 Foreground and background separation on
surveillance Video

In this experiment, we apply different approaches on the
background separation for an airport surveillance video [12].
The dataset contains a sequence of 201 grayscale frames of
size 144× 176 during a time period. To form the matrix A,
we stack the columns of each frame into a vector and con-
catenate the vectors together. We manually add the Gaus-
sian noise by assuming only impulse noise contained in the
video. The Gaussian noise is set at 20dB signal-to-noise ra-

tio (SNR) and ρ = ∥A∥F√
144×176×201×10SNR/20 [1]. The input A′

is generated through A′ = A + ρG, where G ∈ R25344×201

and each entry of G is generated i.i.d. from the standard
Gaussian distribution.

The results of different algorithms are presented in Ta-
ble 4. In addition, we show the results of three frames of
the video in Figure 2. Each of Figure 2(a), Figure 2(b),
Figure 2(c) represents the results of ALM, NSA and our al-
gorithm respectively. In each figure, the first row represents
the 15-th, 150-th and 200-th frame after adding noise, the
second row represents background and the third row relates
to the people in the video. Notice that there is one person
who is identified as part of background; this is due to the
fact that he/she did not move at all during the period we
focus on.

From Figure 2, we conclude that all of the three algo-
rithms can successfully extract background from surveillance
video. Even though the visual qualities of background and
foreground are similar among different algorithms, the nu-
merical measurements in Table 4 demonstrate that our alter-
nating approach performs better than both ALM and NSA
in terms of the low rank and sparsity. In particular, the
rank of our X is 67, which is about half of the rank of X
computed by ALM or NSA.

316

Table 1: Synthetic results for varying n with fixed ρ = 0.001 and cr = 0.05. Our algorithms perform much
better than ALM and NSA in terms of capturing sparse locations in Y .

Dimension Alg rank(X) ∥Y ∥0 time(sec) ∥X−X0∥F
∥X0∥F

∥Y −Y 0∥F
∥Y 0∥F

∥A−X−Y ∥F
∥A∥F

∑
I(Yij = Y 0

ij)

n=100

ALM 60 8535 0.3869 2.72e-4 6.46e-5 1.83e-6 0.2035
NSA 57 5228 0.6135 2.98e-4 5.63e-5 8.93e-6 0.5257

OurDC 100 539 93.8845 4.19e-4 6.79e-5 8.41e-5 0.9945
OurAL 5 612 4.3162 3.30e-3 6.11e-4 8.38e-5 0.9873

n=200

ALM 119 34224 9.1882 1.87e-4 6.10e-5 1.92e-6 0.1930
NSA 116 21704 2.1024 2.12e-4 5.34e-5 5.87e-6 0.5060

OurDC 200 3605 552.8801 2.74e-4 3.78e-5 4.66e-5 0.9586
OurAL 10 7148 5.9051 4.52e-4 1.19e-4 4.71e-5 0.8699

n=500

ALM 299 214001 73.7280 1.16e-4 6.18e-5 1.91e-6 0.1927
NSA 259 150302 19.3789 1.16e-4 6.55e-5 3.51e-6 0.4475

OurDC 500 58745 5259.9872 1.64e-4 2.71e-5 2.25e-5 0.8139
OurAL 50 73997 94.8372 1.25e-4 7.96e-5 2.25e-5 0.7527

Table 2: Synthetic results for varying ρ with fixed n = 100 and cr = 0.05. Our algorithms perform much better
than ALM and NSA in terms of capturing sparse locations in Y .

Gaussian noise Alg rank(X) ∥Y ∥0 ∥X−X0∥F
∥X0∥F

∥Y −Y 0∥F
∥Y 0∥F

∥A−X−Y ∥F
∥A∥F

∑
I(Yij = Y 0

ij)

ρ = 0.0001

ALM 5 493 1.57e-5 1.86e-6 7.20e-6 0.9995
NSA 56 5252 3.13e-5 5.44e-6 9.00e-7 0.5233

OurDC 100 490 1.32e-4 2.06e-5 2.63e-5 0.9999
OurAL 5 504 1.74e-4 1.24e-5 2.52e-5 0.9984

ρ = 0.001

ALM 60 8535 2.72e-4 6.46e-5 1.83e-6 0.2035
NSA 57 5228 2.98e-5 5.63e-5 8.93e-6 0.5257

OurDC 100 539 4.19e-4 6.79e-5 8.41e-5 0.9945
OurAL 5 612 3.30e-3 6.11e-4 8.38e-5 0.9873

ρ = 0.01

ALM 68 8107 3.00e-3 5.83e-4 7.85e-6 0.2387
NSA 57 5290 2.90e-3 5.21e-4 9.01e-5 0.5204

OurDC 100 4014 2.71e-3 4.82e-4 2.59e-4 0.6478
OurAL 14 2352 3.40e-3 7.09e-4 2.68e-4 0.8142

Table 3: Synthetic results for varying cr with fixed n = 100 and ρ = 0.001. Our algorithms perform much
better than ALM and NSA in terms of capturing sparse locations in Y .

Rank ratio Alg rank(X) ∥Y ∥0 ∥X−X0∥F
∥X0∥F

∥Y −Y 0∥F
∥Y 0∥F

∥A−X−Y ∥F
∥A∥F

∑
I(Yij = Y 0

ij)

cr = 0.01

ALM 58 8332 4.38e-4 5.70e-5 6.08e-6 0.2159
NSA 57 5308 4.90e-4 4.93e-5 9.10e-6 0.5183

OurDC 100 499 6.37e-4 7.28e-5 8.38e-5 0.9991
OurAL 1 635 2.11e-3 1.75e-4 8.55e-5 0.9856

cr = 0.02

ALM 59 8429 3.43e-4 6.10e-5 3.42e-6 0.2060
NSA 57 5295 3.89e-4 5.21e-5 9.11e-6 0.5194

OurDC 100 498 5.61e-4 7.12e-5 8.22e-5 0.9989
OurAL 2 630 4.10e-3 4.80e-4 8.56e-5 0.9859

cr = 0.05

ALM 60 8535 2.72e-4 6.46e-5 1.83e-6 0.2035
NSA 57 5228 2.98e-5 5.63e-5 8.93e-6 0.5257

OurDC 100 539 4.19e-4 6.79e-5 8.41e-5 0.9945
OurAL 5 612 3.30e-3 6.11e-4 8.38e-5 0.9873

cr = 0.1

ALM 63 8424 2.28e-4 6.57e-5 1.39e-6 0.2063
NSA 56 5243 1.30e-3 3.12e-4 8.65e-6 0.5244

OurDC 100 727 3.88e-4 6.40e-5 8.54e-5 0.9758
OurAL 10 621 3.11e-3 7.68e-4 8.13e-5 0.9866

317

(a) ALM (b) NSA (c) Our

Figure 2: Background extraction results of different algorithms. In each subfigure, the 15-th, 150-th and 200-
th flame after adding noise are shown in the first row. The low-rank recoveries and the sparse components
extracted by different algorithms are shown in the second and in the last row, respectively.

(a) Subject01 (b) Subject05 (c) Subject10

Figure 3: Shadow removal results of different algorithms (Top: ALM, Middle: NSA, Bottom: our proposed
algorithm). In each subfigure, the YaleB images after adding noise are shown in the left column. The low-
rank recoveries of different algorithms are shown in the middle column, and the sparse errors corresponding
to illumination are shown in the right column.

Table 4: Recovery results of airport surveillance.
Our algorithm produces X with a lower rank and Y
with a smaller ℓ0-norm, while keeping the relative
error comparable with ALM and NSA.

Alg rank(X) ∥Y ∥0 ∥X+Y −A∥F
∥A∥F

ALM 119 4900870 2.8e-7
NSA 129 4915415 6.8e-4
Our 67 4732014 4.4e-5

5.3 Shadows removal from face images
Another interesting application of RPCA is to remove

shadows and specularities from face images [6]. Often times,
portraits are taken under different illuminations which intro-
duce errors to face recognition. If we have enough images
under different illuminations of the same face, we can apply
RPCA to extract the features of the face and remove the
illumination errors.

We compare different algorithms on the YaleB face data [11].
The images of the dataset are of size 192 × 168, and there
are 64 illuminations for each subject. Illuminations vary
from both azimuth and elevation, so the shadows for each
subject are different in both location and intensity. Consid-
ering one subject, the matrix A is constructed by concate-
nating 64 images under all illuminations together. We add
20dB signal-to-noise ratio which is similar to surveillance
video. We obtain a noisy A′ through A′ = A + ρG, where
G ∈ R32256×64 and each entry of G is generated i.i.d. from
the standard Gaussian distribution. In this application, the
low rank part would represent human face, while the sparse
component is the shadow induced by different illuminations.

Considering Subject01, Subject05 and Subject10 in the
dataset, the results of all three algorithms are shown in Fig-
ure 3. For better comparison, each subfigure represents one
subject. And the three columns represent observation im-
age, low-rank recovery and sparsity illumination from left
to right. Though the visual quality of different algorithms
are similar, our algorithm obtains a lower rank of X and a
smaller ℓ0-norm of Y than ALM and NSA, while keeping
the relative error comparable, as demonstrated in Table 5.

318

Table 5: YaleFaceB recovery results. Our algorithm
produces X with a lower rank and Y with a smaller
ℓ0-norm, while keeping the relative error comparable
with ALM and NSA.

Alg rank(X) ∥Y ∥0 ∥X+Y −A∥F
∥A∥F

Subject01
ALM 28 1832343 0.0637
NSA 50 1835919 0.0634
Our 27 1707272 0.0637

Subject05
ALM 29 1823015 0.0637
NSA 49 1828608 0.0634
Our 26 1698480 0.0637

Subject10
ALM 28 1848333 0.0637
NSA 48 1827221 0.0635
Our 26 1703188 0.0637

6. CONCLUSION AND FUTURE WORK
This paper investigates a non-convex formulation for Ro-

bust Principle Component Analysis (RPCA) by the capped
trace norm and the capped ℓ1-norm. We develop a DC
framework as well as a fast alternating algorithm to solve
the non-convex formulation. In the DC framework, ADMM
is applied to solve the sub-problem, while in our fast alter-
nating algorithm, a greedy algorithm for solving the sub-
problem is developed based on the combinatorial optimiza-
tion. We have performed extensive experiments on both
synthetic and real-world datasets. Results show that our
proposed approaches perform better in recovering the low-
rank part and the sparse component of a given matrix than
existing work.
The current work assumes that the complete data is given,

i.e., there are no missing entries in the data. However, in
many real applications the data may come with missing val-
ues. We plan to extend our proposed algorithms to solve
the RPCA problem with missing entries in the future. In
addition, we plan to study the theoretical properties of the
proposed non-convex formulation.

7. ACKNOWLEDGEMENT
The authors are grateful to Professor Necdet Serhat Aybat

from Pennsylvania State University for providing the NSA
code for comparison. This work was supported in part by
NIH (LM010730) and NSF (IIS-0953662).

8. REFERENCES
[1] N. Aybat, D. Goldfarb, and G. Iyengar. Fast

first-order methods for stable principal component
pursuit. arXiv preprint arXiv:1105.2126, 2011.

[2] L. Benôıt, J. Mairal, F. Bach, and J. Ponce. Sparse
image representation with epitomes. In CVPR. IEEE,
2011.

[3] S. Boyd, N. Parikh, E. Chu, B. Peleato, and
J. Eckstein. Distributed optimization and statistical
learning via the alternating direction method of
multipliers. Foundations and Trends R⃝ in Machine
Learning, 2011.

[4] J. Cai, E. Candes, and Z. Shen. A singular value
thresholding algorithm for matrix completion. Arxiv
preprint Arxiv:0810.3286, 2008.

[5] J. Cai, E. Candès, and Z. Shen. A singular value
thresholding algorithm for matrix completion. SIAM
Journal on Optimization, 2010.

[6] E. Candes, X. Li, Y. Ma, and J. Wright. Robust
principal component analysis? Journal of ACM, 2009.

[7] V. Chandrasekaran, S. Sanghavi, P. Parrilo, and
A. Willsky. Rank-sparsity incoherence for matrix
decomposition. SIAM Journal on Optimization, 2011.

[8] J. Chen, J. Liu, and J. Ye. Learning incoherent sparse
and low-rank patterns from multiple tasks. TKDD,
2012.

[9] D. Donoho. De-noising by soft-thresholding. IEEE
Trans, Information Theory, 1995.

[10] J. Fan, L. Xue, and H. Zou. Strong oracle optimality
of folded concave penalized estimation. arXiv preprint
arXiv:1210.5992, 2012.

[11] A. Georghiades, P. Belhumeur, and D. Kriegman.
From few to many: Illumination cone models for face
recognition under variable lighting and pose. PAMI,
2001.

[12] L. Li, W. Huang, I. Gu, and Q. Tian. Statistical
modeling of complex backgrounds for foreground
object detection. IEEE Trans, Image Processing, 2004.

[13] Z. Lin, M. Chen, and Y. Ma. The augmented lagrange
multiplier method for exact recovery of corrupted
low-rank matrices. Arxiv preprint arXiv:1009.5055,
2010.

[14] J. Mairal, R. Jenatton, G. Obozinski, and F. Bach.
Convex and network flow optimization for structured
sparsity. JMLR, 2011.

[15] L. Mirsky. A trace inequality of john von neumann.
Monatshefte für Mathematik, 1975.

[16] Y. Nesterov. Introductory lectures on convex
programming volume i: Basic course. 1998.

[17] Y. Peng, A. Ganesh, J. Wright, W. Xu, and Y. Ma.
Rasl: Robust alignment by sparse and low-rank
decomposition for linearly correlated images. In
CVPR. IEEE, 2010.

[18] B. Recht, M. Fazel, and P. Parrilo. Guaranteed
minimum-rank solutions of linear matrix equations via
nuclear norm minimization. SIAM review, 2010.

[19] A. Singer and M. Cucuringu. Uniqueness of low-rank
matrix completion by rigidity theory. SIAM Journal
on Matrix Analysis and Applications, 2010.

[20] M. Tao and X. Yuan. Recovering low-rank and sparse
components of matrices from incomplete and noisy
observations. SIAM Journal on Optimization, 2011.

[21] P. Tao and L. An. Convex analysis approach to dc
programming: Theory, algorithms and applications.
Acta Mathematica Vietnamica, 1997.

[22] K. Toh and S. Yun. An accelerated proximal gradient
algorithm for nuclear norm regularized linear least
squares problems. Pacific Journal of Optimization,
2010.

[23] H. Xu, C. Caramanis, and S. Sanghavi. Robust pca via
outlier pursuit. arXiv preprint arXiv:1010.4237, 2010.

[24] J. Ye and J. Liu. Sparse methods for biomedical data.
ACM SIGKDD Explorations Newsletter, 2012.

[25] T. Zhang. Analysis of multi-stage convex relaxation
for sparse regularization. JMLR, 2010.

319

