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ABSTRACT
Many applications (e.g., anomaly detection) concern sparse
signals. This paper focuses on the problem of recovering a
K-sparse signal x ∈ R

1×N , i.e., K � N and
∑N

i=1 1{xi �=
0} = K. In the mainstream framework of compressed sens-
ing (CS), x is recovered from M linear measurements y =
xS ∈ R

1×M , where S ∈ R
N×M is often a Gaussian (or

Gaussian-like) design matrix.
In our proposed method, the design matrix S is generated

from an α-stable distribution with α ≈ 0. Our decoding al-
gorithm mainly requires one linear scan of the coordinates,
followed by a few iterations on a small number of coordinates
which are “undetermined” in the previous iteration. Our
practical algorithm consists of two estimators. In the first
iteration, the (absolute) minimum estimator is able to filter
out a majority of the zero coordinates. The gap estimator,
which is applied in each iteration, can accurately recover the
magnitudes of the nonzero coordinates. Comparisons with
linear programming (LP) and orthogonal matching pursuit
(OMP) demonstrate that our algorithm can be significantly
faster in decoding speed and more accurate in recovery qual-
ity, for the task of exact spare recovery. Our procedure is
robust against measurement noise. Even when there are no
sufficient measurements, our algorithm can still reliably re-
cover a significant portion of the nonzero coordinates.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining

General Terms
Algorithms, Performance, Theory

Keywords
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1. INTRODUCTION
The goal of Compressed Sensing (CS) [7, 2] is to recover a

sparse signal x ∈ R
1×N from a small number of non-adaptive
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linear measurements y = xS, (typically) by convex opti-
mization (e.g., linear programming). Here, y ∈ R

1×M is
the vector of measurements and S ∈ R

N×M is the design
matrix. In classical settings, entries of S are i.i.d. samples
from the Gaussian distribution N(0, 1), or a Gaussian-like
distribution (e.g., a distribution with finite variance).

In this paper, we sample S from a heavy-tailed distribu-
tion. Strikingly, using such a design matrix turns out to
result in a simple and powerful solution to the problem of
exact K-sparse recovery, i.e.,

∑N
i=1 1{xi �= 0} = K.

1.1 Compressed Sensing
Sparse recovery can be naturally suitable for: (i) the “sin-

gle pixel camera” type of applications; and (ii) the ”data
streams” type of applications. The idea of compressed sens-
ing may be traced back to prior papers such as [10, 8, 5].

It has been realized (and implemented by hardware) that
collecting a linear combination of a sparse vector, i.e., y = xS,
can be more advantageous than sampling the vector itself.
This is the foundation of the “single pixel camera” proposal.
See the site https://sites.google.com/site/igorcarron2/
compressedsensinghardware for a list of single-pixel-camera
type of applications. Fig. 1 provides an illustrative example.

Original Min+Gap(3): ζ = 1, Time = 11.63 Min+Gap(3): ζ = 3, Time = 4.61

Min+Gap(3): ζ = 5, Time = 4.86 Min+Gap(3): ζ = 10, Time = 5.45 Min+Gap(3): ζ = 15, Time = 4.94

Figure 1: We reconstruct a 256 × 256 image (i.e., N =

65536) with K = 852 nonzero pixels, using our proposed

method with M = K log((N − K)/0.01)/ζ) measurements,

for ζ = 1, 3, 5, 10, 15. Our method, “Min+Gap(3)”, will be

explained in the paper. For ζ = 1, our method is able

to exactly reconstruct the image, using 11.63 seconds.

Strikingly, even with ζ = 15 (i.e., M = 891 measurements),

the reconstructed image could still be informative.

Natural images are in general not as sparse as the example
in Fig. 1. We nevertheless expect that in many practical
scenarios, the sparsity assumption can be reasonable. For
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example, the differences between consecutive image/video
frames taken by surveillance cameras are usually very sparse
because the background remains still. In general, anomaly
detection problems are often very sparse.

Another line of applications concerns data streams, which
can be viewed as sparse dynamic vectors with entries rapidly
varying over time. Due to the dynamic nature, it is nontriv-
ial to know where the nonzero coordinates are, since the his-
tory of streaming is usually not stored. Many problems can
be formulated as sparse data streams. For example, video
data are naturally streaming. A common task in databases
is to find the “heavy-hitters” [23], e.g., product items with
the highest total sales. Also, see some recent papers on com-
pressed sensing for network applications [21, 28, 29].

For data stream applications, entries of the signals x are
(rapidly) updated over time (by addition and deletion). At
a time t, the it-th entry is updated by It, i.e., xit → xit +
It. This is often referred to as the turnstile model [23].
As the projection operation is linear, i.e., y = xS, we can
(re)generate corresponding entries of S on-demand when-
ever one entry of x is altered, to update all entries of the
measurement vector y. The use of stable random projec-
tions for estimating the α-th frequency moment

∑N
i=1 |xi|α

(instead of the individual terms xi) was studied in [14]. [16]
proposed the use of geometric mean estimator for stable ran-
dom projections, for estimating

∑N
i=1 |xi|α as well as the

harmonic mean estimator for estimating
∑N

i=1 |xi|α when
α ≈ 0. When the data are nonnegative, the method named
compressed counting [17, 18] based on skewed-stable distri-
butions becomes particularly effective.

1.2 Review of α-Stable Distribution
A random variable Z follows an α-stable distribution with

unit scale, S(α, 1), if its characteristic function is [24]

E
(
e
√−1Zt

)
= e−|t|α , 0 < α ≤ 2 (1)

When α = 2 (or α = 1), this is the normal (or Cauchy) dis-
tribution. To sample from S(α, 1), we sample independent
exponential w ∼ exp(1) and uniform u ∼ unif(−π/2, π/2)
variables, and then compute Z ∼ S(α, 1) by [3]

Z =
sin(αu)

(cos u)1/α

[ cos(u− αu)

w

](1−α)/α

∼ S(α, 1) (2)

If S1, S2 ∼ S(α, 1) i.i.d., then for any constants C1, C2, we

have C1S1 + C2S2 = S × (|C1|α + |C2|α)1/α, where S ∼
S(α, 1). More generally,

∑N
i=1 xiSi = S × (

∑N
i=1 |xi|α)1/α.

In our numerical experiments with Matlab, α is taken to
be 0.03 and no special data storage structure is needed. Our
method can be intuitively illustrated by an “idealized” algo-
rithm using the limit as α→ 0.

1.3 The Proposed Practical Recovery Algorithm
We assume x ∈ R

1×N is K-sparse. We obtain M linear
measurements y = xS ∈ R

1×M , where entries of S ∈ R
N×M ,

denoted by sij , are i.i.d. samples from S(α, 1) with a small α

(e.g., 0.03). That is, each measurement is yj =
∑N

i=1 xisij .
Our algorithm, which consists of two estimators, utilizes the
ratio statistics zi,j = yj/sij , j = 1, 2, ..., M , to recover xi.

The absolute minimum estimator is defined as

x̂i,min = zi,t, where t = argmin
1≤j≤M

|zi,j |, zi,j =
yj

sij

Algorithm 1 The proposed recovery algorithm.

Input: K-sparse signal x ∈ R
1×N , threshold ε > 0 (e.g., 10−5),

design matrix S ∈ R
N×M sampled from S(α, 1) with α ≈ 0 (e.g.,

0.03). S can be generated on-demand in data streams.

Output: The recovered signal, denoted by x̂i, i = 1 to N .

Linear measurements: y = xS, which can be conducted in-
crementally if entries of x arrive in a streaming fashion.

Detection: For i = 1 to N , compute x̂i,min = argminj |yj/sij |.
If |x̂i,min| ≤ ε, set x̂i = 0.

Estimation: If |x̂i,min| > ε, compute the gaps for the sorted ob-
servations yj/sij and estimate xi using the gap estimator x̂i,gap.
Let x̂i = x̂i,gap. See details below.

Iterations: If |x̂i,min| > ε and the minimum gap length > ε, we

call this i an“undetermined” coordinate and set x̂i = 0. Compute

the residuals: r = y− x̂S, and apply the gap estimator using the

residual r, only on these “undetermined” coordinates. Repeat the

iterations a number of times until no changes are observed.

We prove that essentiallyM0 = K log ((N −K)/δ) measure-
ments are sufficient for detecting all zeros with probability
at least 1−δ. The actual required measurements will be sig-
nificantly lower than M0 if we use the minimum algorithm
together with the gap estimator and the iterative process.

When |x̂i,min| > ε, the gap estimator is used to estimate
the magnitude of xi. We first sort zi,j ’s: zi,(1) ≤ zi,(2) ≤
... ≤ zi,(M), and then compute the gaps: zi,(j+1)−zi,(j), 1 ≤
j ≤M − 1. The gap estimator is simply

x̂i,gap =
1

2

{
zi,(ji) + zi,(ji+1)

}
, ji = argmin

1≤j≤M−1
zi,(j+1) − zi,(j)

We also derive the error bound Pr (|x̂i,gap − xi| > ε). When
M < M0, we discover that it is better to apply the gap esti-
mator iteratively, each time using the residual measurements
only on the “undetermined” coordinates; see Alg. 1.

2. INTUITION
Our procedure is intuitive from the ratio of two indepen-

dent α-stable random variables, in the limit α → 0. Recall
that, for each coordinate i, our observations are (yj , sij),
j = 1 to M . Naturally our first attempt was to use the joint
likelihood of (yj , sij). However, our proposed method only
utilizes the ratio statistics yj/sij . We first explain why.

2.1 Why Using the Ratio Statistics yj/sij?
For convenience, we first define

θ =

(
N∑

i=1

|xi|α
)1/α

, θi = (θα − |xi|α)1/α (3)

Denote the density function of S(α, 1) by fS(s). By a con-
ditional probability argument, the joint density of (yj , sij)

can be shown to be 1
θi
fS(sij)fS

(
yj−xisij

θi

)
, from which we

derive the joint log-likelihood of (yj , sij), j = 1 to M , as

l(xi, θi) =
M∑

j=1

log fS(sij) +
M∑

j=1

log fS

(
yj − xisij

θi

)
−M log θi

Closed-form expressions of fS are in general not available
(unless α = 1, 2). Interestingly, from the procedure (2) for
sampling Z ∼ S(α, 1), we can guess that 1/|Z|α is approx-
imately w ∼ exp(1) when α ≈ 0. Indeed, as shown by [6],
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1/|Z|α → exp(1) in distribution. Using this limit, the den-

sity function fS(s) is approximately α
2

e−|s|−α

|s|α+1 , and hence

the joint log-likelihood l(xi, θi) is approximately

l (xi, θi) ≈
M∑

j=1

log fS(sij) + αM log θi +M log
(α

2

)

+

M∑
j=1

{
− θα

i

|yj − xisij |α − (α+ 1) log |yj − xisij |
}

which approaches infinity (i.e., the maximum likelihood) at
the poles: yj − xisij = 0, j = 1 to M . This is the reason
why we use only the ratio statistics zi,j = yj/sij .

2.2 The Approximate Distribution of yj/sij

Note that
yj

sij
=

∑N
t=1 xtstj

sij
=

∑
t�=i xtstj

sij
+ xi = θi

S2
S1

+ xi,

where S1, S2 ∼ S(α, 1), i.i.d. Recall the definition θi =(∑
t �=i |xt|α

)1/α

. Thus, Pr
(

yj

sij
< t

)
= Pr

(
S2
S1

< t−xi
θi

)
and the problem boils down to finding the distribution of
the ratio of two α-random variables with α ≈ 0. Using the
limits: 1/|S1|α → exp(1), 1/|S2|α → exp(1), the approxi-
mate cumulative distribution function (CDF) of yj/sij is

Pr

(
yj

sij
< t

)
= Pr

(
S2

S1
<
t− xi

θi

)

≈

⎧⎪⎪⎨
⎪⎪⎩

1

2
(
1+

∣∣∣ t−xi
θi

∣∣∣α) t < xi

1 − 1

2
(
1+

∣∣∣ t−xi
θi

∣∣∣α) t ≥ xi

(4)

The CDF of S2/S1 is also given by (4) with xi = 0, θi = 1.

Fig. 2 plots the approximate CDFs (4) for S2/S1 (left
panel) and yj/sij (right panel, with xi = 0 and three values
of θα). While the distribution of S2/S1 is extremely heavy-
tailed, about half of the probability mass concentrated near
0. This means, as α→ 0, samples of |S2/S1| are equal likely
to be either very close to zero or very large. Since (4) is
only approximate, we also provide the simulations of S2/S1

in Fig. 3 to help verify the approximate CDF in Fig. 2.
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Figure 2: Approximate CDFs of S2/S1 (left panel) and
yj

sij
(right panel) as in (4). The CDF of S2/S1 is heavy-

tailed with an essentially vertical jump around 0, i.e.,

samples of S2/S1 are likely to be either close 0 or large.

The CDF of yj/sij is a scaled (and shifted) version of the

CDF of S2/S1, with an almost vertical jump around xi.

This motivates us to develop the gap estimator. Given

M observations: yj/sij , j = 1 to M , observations outside

(xi − e, xi + e) for very small e will likely be far away from

each other. Observations within (xi − e, xi + e) are very

close to each other (i.e., a cluster around xi).
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Figure 3: Simulations of |S2/S1| directly using the for-

mula (2) for generating two independent α-stable vari-

ables S1 and S2. With α → 0, most of the samples are

either close to 0 (< 10−6) or large (> 106).

2.3 The “Idealized” Algorithm with K = 2

We consider K = 2, to illustrate the iterative process in
Alg. 1. For simplicity, let x1 = x2 = 1, xi = 0, ∀ 3 ≤ i ≤ N .
This way, the observations become yj = x1s1j + x2s2j =
s1j + s2j , for j = 1 to M . The ratio statistics are

z1,j = yj/s1j = 1 +
s2j

s1j
, z2,j = yj/s2j = 1 +

s1j

s2j

zi,j = yj/sij =
s1j

sij
+
s2j

sij
, i ≥ 3

We assume an “idealized” algorithm, which allows us to
use an extremely small α. As α → 0,

s2j

s1j
is either (vir-

tually) 0 or ±∞. Note that
s1j

s2j
≈ 0 ⇐⇒ s2j

s1j
≈ ±∞.

Suppose, with M = 3 observations, the ratio statistics, for
i = 1, 2, are: (z1,1, z2,1) = (1,±∞), (z1,2, z2,2) = (±∞, 1),
(z1,3, z2,3) = (1,±∞). Then we have seen z1,j = 1 twice
and this “idealized” algorithm is able to correctly estimate
x̂1 = 1, as there is a“cluster”of 1’s. After we have estimated
x1, we compute the residual rj = yj − x̂1s1j = s2j . In the
second iteration, the ratio statistics become

rj/s2j = 1, rj/sij =
s2j

sij
, i ≥ 3

This means we know x2 = 1. We again compute the resid-
uals, which become zero. In the third iteration, all zero
coordinates can be recovered. The most exciting part of this
example is that, with M = 3 measurements, we can recov-
ery a signal with K = 2, regardless of N . We hope this
example helps understand why our algorithm performs so
well empirically. We summarize the “idealized” algorithm:

1. The algorithm assumes α→ 0, or as small as necessary.

2. As long as there are two observations yj/sij in the
extremely narrow interval (xi − e, xi + e) with e very
close to 0, the algorithm is able to correctly recover xi.
We assume e is so small that it is outside the required
precision range of xi. Here we use e instead of ε to
differentiate it from the ε in our Alg. 1.

This“idealized”algorithm can not be strictly implemented.
When we use a small α instead of α = 0, the observations
|yj/sij | will be between 0 and ∞, and we will not be able to
identify the true xi with high confidence unless we see two
essentially identical observations. As analyzed in Sec. 5, the
proposed gap estimator is a practical surrogate.

2.4 The Intuition for the Two Estimators
Fig. 2 (right panel) shows that the distribution of yj/sij

is heavy-tailed, with a jump very near xi in the CDF. This
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means more than one observations (among M observations)
will likely lie in the extremely narrow interval around xi, de-
pending on the value of θα (which is essentially K). We are
able to detect whether xi = 0 if there is just one observation
near xi. To estimate the magnitude of xi, however, we need
to see a “cluster” of observations, e.g., two or more obser-
vations which are essentially identical. This is the intuition
for the minimum estimator and the gap estimator. Also, as
one would expect, Fig. 2 shows that the performance will
degrade (i.e., more observations are needed) as θα

i increases.
The gap estimator is a practical surrogate for the “ide-

alized” algorithm. Basically, for each i, if we sort the ob-
servations: zi,(1) ≤ zi,(2) ≤ ... ≤ zi,(M), the two neighbor-
ing observations corresponding to the minimum gap will be
likely lying in a narrow neighborhood of xi, provided that
the length of the minimum gap is very small, due to the
heavy concentration of the probability mass about xi.

If the observed minimum gap is not small, we give up esti-
mating this (“undetermined”) coordinate in the current iter-
ation. After we remove the (reliably) estimated coordinates,
we may have a better chance of successfully recovering some
of these undetermined coordinates because the effective “K”
and the effective “N” are significantly reduced.

3. TWO BASELINES: LP AND OMP
Both linear programming (LP) and orthogonal matching

pursuit (OMP) utilize a design matrix sampled from Gaus-
sian (i.e., α-stable with α = 2) or Gaussian-like distribution.
Here, we use S(2) to denote such a design matrix.

The well-known LP algorithm recovers the signal x by
solving the following l1 optimization problem:

min
x

‖x‖1 subject to y = xS(2) (5)

which is also commonly known as Basis Pursuit [4]. It has
been proved that LP can recover x usingM = O (K log(N/K))
measurements [11]. This procedure is computationally pro-
hibitive for large N (e.g., N = 109). When there are mea-
surement noises, the LP algorithm can be modified as other
convex optimization problems, for example, the Lasso [25].

The orthogonal matching pursuit (OMP) algorithm [22]
is a greedy iterative procedure. It typically proceeds with
K iterations. At each iteration, it conducts univariate least
squares for all the coordinates on the residuals, and chooses
the coordinate which maximally reduces the overall square
errors. At the end of each iteration, all chosen coordinates
are used to update the residuals via a multivariate least
square. [30, 12] showed that, under appropriate conditions,
the required number of measurements of OMP is essentially
O(K log(N −K)), which improved the prior result in [26].
Our experimental study will focus on the comparisons with
OMP and LP, as they are the basic and strong baselines. We
are aware of other methods such as the“message-passing” al-
gorithm [9] and the “sparse matrix” algorithm [13].

In parallel to this paper, we develop two other algorithms
concurrently: (i) sparse recovery with compressed counting [19],
by using skewed projections [17, 18], and (ii) sparse recovery
with very sparse matrices [20], by using an idea similar to
very sparse stable random projections [15] in KDD’07.

4. SIMULATIONS
To validate the procedure in Alg. 1, we provide some sim-

ulations (and comparisons with LP and OMP), before pre-

senting the theory. In each simulation, we randomly select
K coordinates from a total of N coordinates. We set the
magnitudes (and signs) of these K coordinates according to
one of the two mechanisms. (i) Gaussian signals: the val-
ues are sampled from Normal(0, 52). (ii) Sign signals: we
simply take the signs, i.e., {−1, 0, 1}, of the generated Gaus-
sian signals. The number of measurements M is chosen by

M = M0/ζ, M0 = K log ((N −K)/δ) (6)

where δ = 0.01 and ζ ∈ {1, 1.3, 2, 3, 4, 5}.

4.1 Sample Instances of Simulations
Fig. 4 to Fig. 6 present instances of simulations, for sign

signals, N = 100000 and K = 30. In each simulation (each
figure), we generate the heavy-tailed design matrix S (with
α = 0.03) and the Gaussian design matrix S(2) (with α = 2),
using the same random variables (w’s and u’s) as in (2). This
provides shoulder-by-shoulder comparisons of our method
with LP and OMP. We use the popular l1-magic package [1].

In Fig. 4, we let M = M0 (i.e., ζ = 1). For this M , all
methods perform well. The left-top panel of Fig. 4 shows
that the minimum estimator x̂i,min can precisely identify all
the nonzero coordinates. The right-top panel shows that
the gap estimator x̂i,gap applied on the coordinates identified
by x̂i,min, can accurately estimate the magnitudes. The
label “min+gap(1)” means only one iteration is performed
(which is good enough for ζ = 1).
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Figure 4: Reconstruction results from one simulation,

using N = 100000, K = 30, M = M0 (i.e., ζ = 1), and

sign signals. The reconstructed signals are denoted by

(red) circles. The minimum estimator (left-top) is able

to identify all nonzero coordinates with no false positives,

using only 0.55 seconds. With one iteration of the gap

estimator (right-top), we can perfectly reconstruct the

signal using additional 0.03 seconds (so the total time is

0.58 seconds). Both OMP and LP (bottom panels) also

perform well at significantly higher computational costs.

The bottom panels of Fig. 4 show that both OMP and
LP also perform well when ζ = 1. OMP is noticeably more
costly than our method (even though K is small) while LP
is significantly much more expensive than all other methods.

We believe these plots of sample instances provide useful
information, especially when M � M0. If M is too small,
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then all methods will ultimately fail, but the failure pat-
terns are important, for example, a “catastrophic” failure
such that none of the reported nonzeros is correct will be
very undesirable. Our method does not have such failures.
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Figure 5: Reconstruction results from one simulation,

with N = 100000, K = 30, M = M0/3 (i.e., ζ = 3), and

sign signals. Many of the false positives produced by the

min estimator are removed by the gap estimator after 1

iteration. The signal is perfectly reconstructed after the

second iteration. Both OMP and LP perform poorly.

Simulations in Fig. 5 use M = M0/3 (i.e., ζ = 3). The
minimum estimator x̂i,min outputs a significant number of
false positives but our method can still perfectly reconstruct
signal using the gap estimator with one additional iteration
(i.e., Min+Gap(2)). In comparisons, both LP and OMP
perform poorly and exhibit catastrophic failures.

Fig. 6 uses M = M0/5 (i.e., ζ = 5) to further demonstrate
the robustness of our algorithm. As M is not large enough,
a small fraction of nonzero coordinates are not recovered
by our method, but there are no catastrophic failures. This
point is of course already illustrated in Fig. 1 (with M ≈ K).

4.2 Summary Statistics from Simulations
We also report the aggregated reconstruction errors and

run times, using M = M0/ζ with ζ ∈ {1, 1.3, 2, 3, 4, 5}, and
(N, K) from {(10000, 50), (10000, 100), (100000, 100)}, for
both Gaussian Normal(0, 52) signals and sign signals. For
each setting, we repeat the simulations 1000 times, except
(N,K) = (100000, 100), for which we only repeat 100 times.

4.2.1 Precision and Recall
For sparse recovery, it is crucial to correctly recover the

nonzero locations. Here we use precision and recall
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Figure 6: Reconstruction results from one simulation,

with N = 100000, K = 30, M = M0/5 (i.e., ζ = 5), and sign

signals. A small fraction of the nonzero coordinates are

not reconstructed by our method. In comparisons, both

OMP and LP perform very poorly in that none of the

reported nonzero coordinates is correct.

Precision =
# True Nonzeros

# Returned Nonzeros
=

tp

tp+ fp
,

Recall =
# True Nonzeros

# Total True Nonzeros
=

tp

tp+ fn

to compare the proposed absolute minimum estimator with
LP decoding. Here, we view nonzero coordinates as “posi-
tives”(p) and zero coordinates as“negatives”(n). Ideally, we
hope to maximize “true positives” (tp) and minimize “false
positives” (fp) and “false negatives” (fn). In reality, we usu-
ally hope to achieve at least perfect recalls so that the re-
trieved set of coordinates contain all the true nonzeros.

Fig. 7 presents the (median) precision-recall curves. Our
minimum estimator always produces essentially 100% re-
calls, meaning that the true positives are always included
for the next stage of reconstruction. In comparison, as M
decreases, the recalls of LP decreases significantly.

4.2.2 Reconstruction Accuracy

The reconstruction accuracy is another useful measure of
quality. We define the reconstruction error as

Error =

√∑N
i=1 (xi − estimated xi)

2∑N
i=1 x

2
i

(7)

Fig. 8 presents the median reconstruction errors. At M =
M0 (i.e., ζ = 1), all methods perform well. For sign signals,
both OMP and LP perform poorly as soon as ζ > 1.3 or 2
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Figure 7: Median precision and recall curves, for com-

paring our proposed minimum estimator with LP decod-

ing. The minimum estimator produces essentially 100%

recalls even for M as small as M0/5.

and OMP results are particularly bad. For Gaussian signals,
OMP can produce good results even when ζ = 3.

Our method performs well, and 2 or 3 iterations of the
gap estimation procedure help noticeably. One should keep
in mind that errors defined by (7) may not always be as
informative. For example, with M = M0/5, Fig. 6 shows
that, even though our method fails to recover a small frac-
tion of nonzero coordinates, the recovered coordinates are
accurate. In comparison, for OMP and LP, essentially none
of the nonzero coordinates in Fig. 6 could be identified when
M = M0/5. We have seen the stability and reliability of our
method in Fig. 1. In that example, even with M ≈ K, the
reconstructed signal by our method is still informative.

4.2.3 Reconstruction Time

Fig. 9 confirms that LP is computationally expensive, us-
ing the l1-magic package. In comparison, OMP is substan-
tially more efficient than LP, although it is still much more
costly than our algorithm, especially when K is not small.

In addition to the results reported in Fig. 9, we also ex-
perimented with the SPGL1 package [27] (the faster .mex
version) and found our method (implemented in Matlab) is
still substantially much faster than SPGL1.

5. THEORY
This section will develop the theoretical analysis of our

method, including the minimum estimator and the gap esti-
mator. The minimum estimator is not crucial once we have
the gap estimator and the iterative process. We keep it in
our procedure for two reasons. Firstly, it is faster than the
gap estimator and is able to identify a majority of the zero
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Figure 8: Median reconstruction errors (7). When

M = M0, all methods perform well. As M decreases, the

advantage of our algorithm becomes more obvious, espe-

cially with 2 or 3 iterations. Note that, with M < M0/3,

the error of our method comes from the fraction of coor-

dinates which our method “gives up”, and the reported

nonzero coordinates are still very accurate. See Fig. 6.

coordinates in the first iteration. Secondly, even if we just
use one iteration, the required sample size for the minimum
estimator M is essentially K logN/δ, which already matches
the complexity bounds in the compressed sensing literature.

5.1 Probability Bounds
Our analysis uses the distribution of the ratio of two in-

dependent stable random variables, S1, S2 ∼ S(α, 1). As
a closed-form expression is not available, we compute the
lower and upper bounds. First, we define

Fα(t) = Pr
(
|S2/S1|α/(1−α) ≤ t

)
, t ≥ 0 (8)

where

|S2/S1|α/(1−α) = Qα
w1

w2
, Qα = Qα(u1, u2) =

∣∣∣∣ qα(u2)

qα(u1)

∣∣∣∣
α/(1−α)

,

qα(u) =
sin(αu)

cos1/α u
[cos(u− αu)](1−α)/α

based on (2) for generating α-stable random variables. The
following lemmas provide useful bounds for Fα(t).

Lemma 1. For all t ≥ 0,

Fα(t) = E

(
1

1 +Qα/t

)
(9)

≥max

{
1/2

1 + 1/t
,

1 + (1/t − 3)Pr(Qα ≤ t)/2

1 + 1/t

}
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Figure 9: Median reconstruction times, for comparing

our proposed algorithm with OMP and LP. When K is

not small, our method can be significantly more efficient

than OMP. LP (l1-magic) is expensive.

In particular, when t ≤ 1/3, Fα(t) ≥ 1
1+1/t

. In addition, for

any t ≥ 0, limα→0 Fα(t) = 1
1+1/t

. �

Lemma 2. If 0 < α < 1/3, then

Fα(t) ≤Cαt
1−α
1+α max{1, t 2α

1+α } (10)

Cα = μ1μ2 +
1

π
(μ2(1 − α))

1−α
1+α

(
1 − α

α

) 2α
1+α

(
1 + α

1 − α

)

μ1 =
1

π

Γ (1/(2 − 2α)) Γ ((1 − 3α)/(2 − 2α))

Γ ((2 − 3α)/(2 − 2α))

μ2 = 1/ cos (πα/(2 − 2α))

The const. Cα → 1+1/π as α→ 0, Cα < 1.5 if α ≤ 0.05.�

Lemma 3. For all 0 < s < t,

Fα(t) − Fα(s) ≤ (1 − s/t)Fα(t) ≤ (t/s− 1)Fα(s) � (11)

5.2 Analysis of the Minimum Estimator
Recall the definition of the absolute min estimator:

x̂i,min =
yt

sit
, where t = argmin

1≤j≤M

∣∣∣∣ yj

sij

∣∣∣∣ (12)

If |x̂i,min| > ε, then the i-th coordinate is a (candidate of)
nonzero entry. The task is to analyze the probability of
false positive, Pr (|x̂i,min| > ε, xi = 0), and the probability
of false negative, Pr (|x̂i,min| ≤ ε, |xi| > ε). We should keep
in mind that, in the proposed method, i.e., Alg. 1, the min-
imum estimator is just the first step for filtering out many
true zero coordinates. False positives will have chance to be
removed by the gap estimator and iterative process.

5.2.1 Analysis of False Positives

Theorem 1. If ψ =
(

ε
θ

) α
1−α ≤ 1

3
, θα =

∑N
i=1 |xi|α, then

Pr (|x̂i,min| > ε, xi = 0) ≤ 1

(1 + ψ)M
. (13)

Proof:
yj

sij
=

∑N
t=1 xtstj

sij
= θi

S2
S1

+ xi, where S1 and S2 are

i.i.d. S(α, 1) variables. When xi = 0,
yj

sij
= θ S2

S1
. Denote

γ = (1 − α)/α, By Lemma 1,

Pr (|x̂i,min| > ε, xi = 0) =

[
Pr

(∣∣∣∣ yj

sij

∣∣∣∣ > ε, xi = 0

)]M

= [Pr (|S2/S1| > ε/θ)]M =
[
1 − Pr

(
|S2/S1|1/γ ≤ (ε/θ)1/γ

)]M

= (1 − Fα(ψ))M ≤
(

1 − 1

1 + 1/ψ

)M

=
1

(1 + ψ)M
�

The assumption ψ =
(

ε
θ

) α
1−α ≤ 1/3 is very reasonable for

small α because ψ ≈ εα

K
≈ 1/K, i.e., 1/K < 1/3.

5.2.2 Required Number of Measurements

We derive the requiredM , number of measurements, based
on the false positive probability in Theorem 1. This result is
useful if we just use one iteration, which matches the known
complexity bounds in the compressed sensing literature.

Theorem 2. To ensure that the total number of false pos-
itives is bounded by δ, it suffices to let

M ≥ log ((N −K)/δ)

log(1 + ψ)
� (14)

Since ψ =
(

ε
θ

) α
1−α ≈ 1/K and 1/ log(1 + ψ) ≈ K, we define

M0 = K log ((N −K)/δ) (15)

as a convenient approximation. Note that the parameter ε
affects the required M only through εα. This means our
algorithm is not sensitive to the choice of ε. For example,
when α = 0.03, then (10−3)α = 0.8128, (10−4)α = 0.7586.

5.2.3 Analysis of False Negatives

Theorem 3. If α ≤ 0.05,
(

|xi|+ε
θi

)α/(1−α)

< 1/3, then

Pr (|x̂i,min| ≤ ε, |xi| > ε) (16)

≤
⎧⎨
⎩1 −

[
1 − 3

4

∣∣∣∣ |xi| + ε

θi

∣∣∣∣
α

1+α

(
1 −

∣∣∣∣ |xi| − ε

|xi| + ε

∣∣∣∣
α/(1−α)

)]M
⎫⎬
⎭

5.2.4 The Choice of Threshold ε

We can better understand the choice of ε from the false
negative probability as shown in Theorem 3. Assume xi �= 0
and |xi|/ε = Hi � 1, the probability Pr (|x̂i,min| ≤ ε, |xi| > ε)
upper bound is roughly

1 −
[
1 − 3/4

K

2α

Hi

]M

≈ 1 − e
− 3/2αM

KHi ≈ 3/2αM

KHi

As we usually choose M ≤M0 = K log((N−K)/δ), we have
αM
KHi

< α log((N−K)/δ)
Hi

. To ensure that all the K nonzero co-

ordinates can be safely detected by the minimum estimator
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(i.e., the total false negatives should be less than δ), we need∑
xi �=0

1

Hi
<

δ

1.5α log N−K
δ

.

For sign signals, i.e., |xi| = 1 if xi �= 0, we need Hi >
1.5αK log N−K

δ
/δ, or equivalently ε < δ

1.5αK log N−K
δ

. If

K = 100 (or 1000), it is sufficient to let ε = 10−4 (or 10−5).
Note that even with N = 232, log(N) = 22 is still not large.

For general signals, when the smallestHi dominates
∑

xi �=0
1

Hi
,

we just need the smallest Hi > 1.5α log N−K
δ

/δ, without the

K term. In our experiments, for simplicity, we let ε = 10−5,
for both sign signals and Gaussian signals. In general, with
the gap estimator and the iterative process, we find the per-
formance is not sensitive to ε as long as it is small.

5.3 Analysis of the Gap Estimator
The minimum estimator only detects the locations of nonzero

coordinate (in the first iteration). To estimate the magni-
tudes, we resort to the gap estimator, defined as

zi,j = yj/sij , zi,(1) ≤ zi,(2) ≤ ... ≤ zi,(M) (17)

ji = argmin
1≤j≤M−1

{zi,(j+1) − zi,(j)} (18)

x̂i,gap =
zi,(ji) + zi,(ji+1)

2
(19)

Theorem 4. Let γ = (1−α)/α. Suppose the existence of
a0 > 1 and integer k0 > 1 satisfying θ (a0k0/(M + a0k0))

γ ≤
ε, i.e., a0k0 ≤M/K∗

ε,θ,α, where K∗
ε,θ,α = 1/ (ε/θ)α/(1−α)−1.

Then

Pr (|x̂i,gap − xi| > ε) ≤ GM,K∗
ε,θ,α

(20)

=min
a0,k0

⎧⎨
⎩B(M,a0k0/M) +

M−2∑
k=k0

(
1 +

1

2k

)
ηk,γ

⎫⎬
⎭

where B(M,a0k0/M) = Pr (Binomial(M,a0k0/M) < k0) is
the binomial CDF, and ηk,γ is defined as

ηk,γ = min

{
u ∈ (0, 1) : 2

(
1 −

( u
2k

)1/k
)γ

+
(
1 − u

2k

)γ

≤ 1

}

�

Since k0 in Theorem 4 only takes finite values, we can
basically numerically evaluate GM,K∗

ε,θ,α
to obtain the upper

bound for Pr (|x̂i,gap − xi| > ε). It turns out that, once α
and ε are fixed, G is only a function of K∗ = K∗

ε,θ,α and the

ratio M
K∗

ε,θ,α
. Also, note that K∗ ≈ K/εα.
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Figure 10: Values of the upper bound of the error prob-

ability Pr (|x̂i,gap − xi| > ε) ≤ GM,K∗
ε,θ,α

as computed in

(20). The labels on the curves are the values of M/K∗
ε,θ,α.

Fig. 10 plots the upper boundGM,K∗
ε,θ,α

for α = 0.005 and

0.03, in terms of K∗ and M
K∗ . For example, when using M =

5K∗ and α = 0.005 / 0.03, the error probabilities are 0.042
/ 0.084. In other word, in order for the error probability
to be ≤ 0.05, it suffices to use M = 5K∗ if α = 0.005.
When α = 0.03, we will have to use respectively M = 7K∗

measurements in order to achieve error probability < 0.05.
This way, the required sample size can be numerically

computed from Theorem 4. Of course, these numerical val-
ues are just the (possibly very conservative) upper bounds.

5.4 Connection to the “Idealized” Algorithm
The error probability bound Pr (|x̂i,gap − xi| > ε) in (20)

has two parts: min
a0,k0

{
B(M,a0k0/M) +

∑M−2
k=k0

(
1 + 1

2k

)
ηk,γ

}
,

where B(M,a0k0/M) corresponds to the error from the“ide-

alized”algorithm (assuming α→ 0) and
∑M−2

k=k0

(
1 + 1

2k

)
ηk,γ

is the adjustment due to the use of α > 0. It is clear from
the definition of ηk,γ , when α = 0, we have ηk,γ = 0 and
min
a0,k0

{B(M,a0k0/M) = Pr (Binomial(M, 1/K) < 2)}, which

is exactly the probability that one or zero observation falls
in the region (xi − e, xi + e) with e→ 0.

The error bound (20) holds for any small α and ε. With
a fixed small α, we can use enough measurements to bound
Pr (|x̂i,gap − xi| > ε) even for a very small ε (for example,
below the required precision). This means we can remove
the reliably estimated xi and improve the reconstruction by
iterations. This is why our procedure requires significantly
smaller number of measurements than K logN/δ.

6. MEASUREMENT NOISE
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Figure 11: Reconstruction results from one simulation,

with N = 100000, K = 30, M = M0 (i.e., ζ = 1), σ = 0.1,

and sign signals. With the proposed method, the signal is

perfectly reconstructed in one iteration. In comparisons,

both OMP and LP perform very poorly.

Our method is robust against measurement noise. In the
literature, it is common to assume additive measurement
noise y = xS + n, where each nj is typically assumed to be
nj ∼ Normal

(
0, σ2N

)
. We present a set of experiments

with additive noise in Fig. 11. With N = 100000, K = 30,
and M = M0 (i.e., ζ = 1), we have seen in the simulations
in Sec. 4 that all methods perform well (when σ = 0). In the
presence of additive measurement noises (σ = 0.1), Fig. 11
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illustrates that our proposed method still achieves perfect
recovery while LP and OMP fail.

To understand this interesting phenomenon, we examine

yj + nj

sij
= xi + θi

S2

S1
+
nj

S1

Without measurement noise, our algorithm uses observa-
tions with S2/S1 ≈ 0 to recover xi. For those “useful” obser-
vations, most likely |S1| is very large. When S1 is small,

nj

S1

might be large but very likely S2
S1

will be large as well (i.e.,

the observation is not useful anyway). This intuition ex-
plains why our method is indifferent to measurement noise.

7. CONCURRENT WORK
In parallel to this paper, we concurrently develop a new

sparse recovery algorithm [19] using maximally-skewed sta-
ble random projections [17, 18], which has a number of sig-
nificant advantages over the method in this paper: (i) It al-
lows thorough theoretical analysis at least for α ∈ (0, 0.5],
not just for α very close to 0. (ii) Both the theory and
estimation procedure are much simpler. (iii) The accuracy
is not as sensitive to α. The disadvantage is that [19] is
restricted to nonnegative signals (which are common).

In addition, we also develop a sparse recovery algorithm
based on “very sparse” matrices [20], using an idea similar
to very sparse stable random projections [15] in KDD’07.

8. CONCLUSION
Compressed sensing has been an active area of research,

as many important applications can be formulated as sparse
recovery problems, for example, anomaly detections. In this
paper, we present our study of using L0 projections for
highly efficient exact sparse recovery. Our proposed pro-
cedure consists of the minimum estimator (for detection),
the gap estimator (for estimation), and the iterative pro-
cess. The procedure is able to produce accurate recovery
results with smaller number of measurements, compared to
LP and OMP using traditional Gaussian (or Gaussian-like)
design matrix. Our method utilizes the α-stable distribution
with α ≈ 0. The reported Matlab experiments use α = 0.03.
The algorithm is robust against measurement noises. Even
without sufficient measurements, our method produces sta-
ble (partial) recovery results with no catastrophic failures.
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